
POSITRON I UM FORMATION I N M ETALS

The value P=0.470r, 'I' is calculated assuming the
conduction electrons of the metal to be an electron gas
and assuming the possibility of a high-density expansion
(r,& 1). In real metals r, is larger than 1, and the high-
density expansion should not be correct. However, it is
shown that the theoretical value P=0.470r, 'I' agrees
with the experimental values for various metals, for
example, aluminum (r, =2.010) and sodium (r, =3.768).
Thus it is concluded that the results gained in this paper
should be correct in the range of small r, . It is desirable

to use the experimental data of k, in the range of large
values of r, . Unfortunately, we have no experimental
data on k, for large values of r, . But this fact does not
prevent us from concluding that positronium formation
does not occur in real metals.

ACKNOWI EDGMENTS

The authors are much indebted to Professor
K. %atanabe and his corraborators for numerical com-
putations using the electronic digital computer.

PH YSICAL REVIEW VOLUME 138, NUMBER 4A 17 MAY 1965

An Additional Equation in the Phenomenology of Superconductivity:
Resistive Effects

P. W. ANDERsoN AND N. R. WERTHAMKR

Bel/ Telephone Laboratories, 3IIurray Hill, 5'ew Jersey

AND

J. M. LUTTINGER

Columbia University, 37em Fork, Sex York

(Received 21 December 1964)

We give a phenomenological derivation and a discussion of the "extra Ginzburg-Landau equation" which
connects the charge, electrical potential, and time dependence of the order parameter in a superconductor.

ECENTLV Gor'kov' pointed out that in his
version of the BCS theory of superconductivity

the "anomalous" Green's function, F (~), and thus
the energy-gap function 6 and the Ginzburg-Landau
order parameter 0, vary as t, "&'I",where p, is the Fermi
energy. josephson' first noted that this time dependence
has observable eRects. In particular, it leads to the ac
j'osephson current in two-superconductor tunnel
junctions.

Because of this time dependence, the Fermi level

plays a role in the phenomenology of superconductivity
diRerent from that in normal metals: it is not only a
macroscopic variable determined by local thermo-
dynamic equilibrium, but a microscopic variable
determining the local state, which is closely coupled by
the long-range order throughout the superconducting
circuit.

Corresponding to this duality, we may introduce the
chemical potential into the theory in two ways. In both
let us erst consider an isolated uniform bit of super-
conductor in equilibrium, later assuming in the standard
fashion of nonequilibrium thermodynamics that a
steady-state system is made up of many such bits
together with the heat and particle fiows necessary to
maintain quasiequilibrium.

'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
/English transl. :Soviet Phys —JETP 7, 505 (1958)j.

B. D. Josephson, Phys. Letters 1, 251 (1962).

X=—X'+pX. (2)

Then the quasiparticle energies and the total many-
particle state are calculated for the Hamiltonian K'.
The quasiparticle energy is

~a= L(e~+eV—y)'+&']'",
and has a minimum at the "Fermi surface" where
eq+eV=p, . The Hamiltonian X' leads to no time de-
pendence of P and A. The number of particles N is not
fixed, but the mean value may be obtained in the usual
fashion,

G(p, T)= —kT lnTr exp( —PX'),
(A )= —BG/Bp.

The Hamiltonian of our bit of superconductor is
taken as

X=X+'0~+X;,g+eVS, (1)
where X is the kinetic energy, 'U„ is the lattice periodic
potential, 3'.;„~is the short-range interaction responsible
for superconductivity, U is the mean electrostatic
potential including any long-range eRect due to a net
space charge in the sample, and E is the total electron
number. The energy necessary to add a single electron
of momentum k in a normal metal with Hamiltonian
(1) we define as eq+eV.

In the standard version of superconductivity theory
we add and subtract a term pÃ, obtaining
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Reintroducing pÃ and. thus using the Iota/ Hamiltonian,
we find that the only modification necessary is that we
must replace

Q ~ Q —2ipt/fi (4)

or that the Ginzburg-Landau order parameter 0'~
+c "&'I", as noted by Gor'kov. Equation (4) is a direct
consequence of the Heisenberg equation of motion and
the commutator $E,hj=2.

Let us now treat the problem in an ostensibly micro-
canonical fashion. With a Peed number of particles X,
we shall use only the first three terms of (1) because the
last term is constant:

X—=Seo+ eV1lt . (3)

Again we construct

F(Ã, T) = kT lnT—r exp( —PXp), (6)

and the conventional thermodynamic definition of the
chemical potential is

p.(T,Ã) =BF/BE. (7)

Basically, p,, is half the energy necessary to add a pair
of electrons to the superconductor, or we could define
it as the chemical potential of a normal metal in equilib-
rium with the superconductor at the same electrostatic
potential. TakiDg account of the electrostatic potential
in Eq. (5), equilibrium thermodynamics clearly requires

p,+eV=p.

As we have noted, p,, is a function of T and E. In the
presence of number or thermal variations, we have

(BII,,/BN)BE+(Bp, /BT)bT=8(peV). (,
—9)

Equations (8) and (9) are very well known and their
development presented hele ls the standard one, the
argument being independent of whether the metal is
superconducting or normal. Nevertheless, when com-
bined with Eq. (4), which is characteristic of super-
conductivity and which is derived easily only in the
6rst scheme, they have consequences which we explore
further.

%e first observe that in a bulk superconductor with

no current Qow, for practical purposes S will be fixed
and in the presence of a thermal gradient,

(BIJ,,/B T)VT= V'y —eV V . (10)

There will thus be an electrostatic potential gradient in
precise analogy to the thermomechanical pressure
gradient in liquid helium. Such an eGect clearly also
occurs in the normal state, but is masked by the usual
thermoelectric transport process. Devising an experi-
ment to measure it in the superconducting state also
seems (BBcult.

To learn more about what happens in the presence of
a gradient of p, , let us now remove the temperature
varlatlon and wr'lte

(Bp,/BÃ)c81V = cd c'BV. —

Here we have neglected background space-charge
sects, which may be included in a straightforward
way. Using Poisson's equation, we may also write
this as

—(1/4ir) (Bp,/Bp) V'BV= cBIJ, c'—BV,

where p is the number density, or

—Xi)'V'BV = (By/c) —8V.

This equation defines the Debye screening length P&.
It is instructive to rearrange the right-hand side by
using the identity

ih lt' B%' Bk*

4 f+J'4 Bi BS

c-
p 2c )

X,'V'A= —+*i iM'+ —A i++c.c. .
4c k c

(12)

The two are not equivalent, however: A,~, the Debye
length, enters into the longitudinal Eq. (11), while Xr, ,
the London length, determines the current in Eq. (12).
The fact that the ratio chris/Xr, ni/K3 is the v——elocity of
coOective excitations in the superconductor is closely
related to the preservation of gauge invariance, as
discussed by Ambegaokar and Kadano8. ' Also, of
course, Eq. (11) has a response contribution from the
normal fraction, and it could in principle also conta. in
the thermal terms.

~ P. Q". Anderson and A. Dayem, Phys. Rev. Letters 13, 195
(1964).' M. Stephen and H. Suhl, Phys. Rev. Letters 13, 797 (1964).

~
¹ R. N erthamer (unpublished).

6 P. Ambegaokar and L. P. KadanoB, Nuovo Cimento 22, 914
(1961).

which follows from Eq. (4). Introducing tlie superQuid
fraction I,—= ~4'~', and the normal fraction n„=1—I„
we find

4PPb V= (1/c) $,'+*(ih-(B/R) 2' V—)@+cc.
+I (bIJ, cbV)j. —(11)

This is the "extra Ginzburg-Landau equation" which
has been proposed elsewhere by one of the authors. '
Essentially identical, or closely similar, equations have
been derived directly from Green's function theory by
Stephen and Suhl' and by one of us. ' It is for that
rea, son that we have made the rather artificial trans-
formations which lead to Eq. (11) from the simpler and
more physical Eqs. (4) and (9).

It is interesting to note the formal similarity between
the terms of Eq. (11) (excluding the last one in e„)and
those of the Ginzburg-Landau current equation. That
is, (11) is an equation for the charge Quctuation con-
taining a time derivative and the scalar potential, and
thus is formally a fourth, "time-like" component of the
GL current equation,
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Since in fact X~ is very small, the left-hand side of
Eq. (11) is negligible in the absence of thermal gradi-
ents. We then see that a potential gradient, and hence
a resistance, is possible in a superconductor, but only
in association with a time dependence of O'. Such a time
dependence can occur by acceleration of a current, but
seldom will; quite commonly, however, it is eRected by
the Qow of magnetic vortex lines through a sample,
since the passage of one vortex between two points
requires a change of 2x in the relative phase of 0' at
those points.

Finally, we note that our basic equations are (4) and

(9) and that the GL charge equation (11) follows from
them. Furthermore, the derivation of (9) must be
regarded as phenomenological because of the focus of
attention on a "small" bit of superconductor in equilib-
rium. The present arguments do not include a speci-
fication of a minimum size for such a bit, and hence do
not give a scale of lengths over which Eqs. (9) and (11)
can be expected to hold. In fact, the more fundamental

Green's function derivation of Eqs. (11) and (12) con-
tains the requirement that disturbances be slowly
varying in both space and time.

It is also worth noting that the GL equation (12)
together with Eq. (4) may be used for a very compact
derivation of a previously known result concerning the
thermopower of a superconductor. ' If the phase of the
order parameter is —2pt, then the time derivative of
the supercurrent is

aj/rft= (p,e/m) ( Vp+—eE). (13)

' J. M. Luttinger, Phys. Rev. 136, A1481 (1964).

Equation (13) shows that the emf in a closed circuit
must be zero under conditions of zero current, and hence
proves that a superconductor has zero thermopower.

W'e wish to thank Professor Stephen and Professor
Suhl for informative conversations, and for supplying
us with a copy of their manuscript prior to publication.
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Detailed studies of the de Haas —van Alphen (dHvA) effect in Ag single crystals have been carried out
with a high-sensitivity torque magnetometer in steady fields up to 40 kG. The angular variations of all of
the pertinent dHvA frequencies were determined to better than 0.1%.We were able to achieve this pre-
cision by observing oscillations in the torque as the magnetic field was rotated with respect to the samples
at a fixed magnetic field. More data have been obtained on the new low-frequency oscillations which we
recently reported, and evidence is presented which suggests that these oscillations may be associated with
a difference frequency between two extremal belly orbits.

INTRODUCTION

HE detailed study of the de Haas —van Alphen
(dHvA) effect in Ag by Schoenberg' showed that

the Fermi surface (FS), like that in Cu, could be
represented by a single sheet which is multiply con-
nected along the (111)directions. These measurements
provided sufhcient information about the FS to allow a
mathematical description' of the shape of the surface,
although several features of the surface could not be in-

vestigated in detail by pulsed-magnetic-field techniques.
In an attempt to complete the experimental picture we
have undertaken a systematic study of the dHvA eRect
in Ag by means of the steady-field torsion-balance
method. In the initial phase of this study a new low-

frequency oscillation Ii, was observeda which appeared

~ D. Shoenberg, Phil. Trans. Roy. Soc. (London) A255, 85
(1962).

~ D. J.Roaf, Phil. Trans. Roy, Soc. (London) A255, 135 (1962).
~ A. S. Joseph and A. C. Thorsen, Phys. Rev. Letters 1B, 9

(1964).

to be inexplicable in terms of the above model of the FS,
and was therefore tentatively attributed to a small
pocket of electrons in the second Brillouin zone, centered
at the symmetry point I.. Further studies of these oscil-
lations have cast some doubt on this interpretation and
have led to an alternative explanation based on a
nonlinear oscillatory eRect of the type first considered
by Shoenberg. '' In eRect, electrons in the metal
experience a field B=Ps+4rrM rather than the applied.
field Bo.When M, and hence 8, is oscillatory, Shoenberg
has shown that the dHvA oscillations have an unusually
large harmonic content. He also pointed out that if more
than one dHvA frequency is present, sum and difference
frequencies may be generated. Accordingly, the low
frequency Ii, may arise as a diRerence frequency
between two dHvA oscillations rather than from a new
segment of the FS. The origin of Ii, can thus be traced
to the existence of tao extremal belly orbits, whose

' A. S. Pippard, Proc. Roy. Soc. (London) A272, 192 (1963).


