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Positronium Formation in Metals
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A bound-state problem is solved for an extended Bethe-Goldstone equation which includes the short-
range positron-electron interaction. It is concluded by numerical calculation that positronium formation is
not possible in the usual range of the density parameter r&.

1. INTRODUCTION

XPERIMENTS on 2y annihilation of the positron
~ in crystals are very useful for determining the mo-

mentum distribution and the Fermi sphere of the con-
duction electrons. The thermalization time of the inci-
dent positron is much shorter than the lifetime of the
2y annihilation, and the 2y angular correlation reQects
the momentum distribution of the conduction electrons
or the core electrons before the 2y annihilation. ' Experi-
mentally, Stewart' did the 2p annihilation for Na
crystals, and found that the momentum distribution of
conduction electrons is very near that of free electrons.
However, the results of Stewart do not agree with the
theoretical calculation of Daniel and Vosko. ' Daniel
and Vosko calculated the momentum distribution of
electrons in the random-phase approximation, and
found that it differs appreciably from that of free elec-
trons because of the Coulomb interaction between elec-
trons. The experimental results of Stewart' might be
interpreted as follows: The electrons are accompanied
by screening clouds and the electron gas is regarded as
an assembly of quasiparticles, the momentum distribu-
tion of which is calculated by Daniel and Vosko; but
when an electron comes very close to the positron, which
is also accompanied by a screening cloud, the two clouds
cancel each other and the electron annihilates with the
positron as a bare electron; thus the 2y angular corre-
lation reQects the momentum distribution of bare elec-
trons. But the 2y angular correlation does not correctly
reflect the momentum distribution of the conduction
electrons in crystals. Thus it is an important problem
to investigate the possibility of positronium formation
in metals.

Experimentally, it is reported by many authors''
that positronium formation is not possible in various
metals. In this paper, starting with the Bethe-Goldstone
equation, we discuss theoretically whether or not the
formation of positronium is possible in various metals
taking into account the Pauli principle and screening
effects.

' R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956).' A. T. Stewart, Phys. Rev. 123, 1587 (1961).' E. Daniel and S. H. Vosko, Phys. Rev. 120, 2041 (1960).
4 R. E. Bell and M. H. Jgrgensen, Can. J. Phys. 38, 652 (1960).
~ G. Jones and J.B.Warren, Can. J. Phys. 39, 1517 (1961).
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2. BOUND-STATE SOLUTIONS

The Bethe-Goldstone equation for bound states is as
follows, taking into account the Pauli principle and
screening effects:

(k'+li, ') (k)=g P (k') (k)k ), (1)
( lt —lt'( p
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where g=4srttte'/tt', kp' ———trtW/pt'. W is the energy
which will be negative if a bound-state solution exists.
x(k) is a Fourier component of a wave function of the
electron-positron pair. kp and k, are the Fermi wave
number and the screening wave number, respectively,
which are related to the density parameter r, by

and
k r 1.917/a pr„——

k,=0.470k,r,I12,

(2)

(3)

where ap is the Bohr radius, and r, = (3tt/4sr)'ts/ap, rt
being the mean density of conduction electrons.

The right-hand side of Kq. (1) is divided into two
integrals, which include the effects of the Pauli principle
and the effect of the screening. We have

(kP+kpP+2prxgk, )x (k)
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k'dk' ln , x(k') (4)
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where x is a parameter which indicates the magnitude
of the screening effects. ' We adopt the most reasonable
value x with respect to the experimental value of the
positron annihilation rates.

Now, since x(k) is defined for k) kr, we may expand
the wave function x(k) as a power series in (kr/k). It
is easy to see that the wave function x(k) is an even
function of k, and the power-series expansion has the
following form:

x(k) = 2 ~-(krlk)'".
n=o

' S. Kahana, Phys. Rev. 117, 123 (1960); A. Held and
S. Kahana, Can. J. Phys. 42, 1908 (1964).

1155



KANAZAKA, OHTSUKI, AND YANAGAWA

with the coefficients in (6) satisfying Eq. (4),

If we substitute Eq. (5) into Eq. (4), it is easy to show Table I.The critical values Xp for positronium formation
that Cp ——0, C~——0. Thus Eq. (4) admits a solution are also shown in the table. It is shown in Table I that

there is no positive eigenvalue which exceeds the value
1 - ky'"

(6)
4' there 1s no positronium formation. for any value of
r, considered here. If we do not take into account the
screening cGects, positronium formation occurs at the
value r, =4.521. The results show us that the screening
effects prevent positronium formation.

Qo

Cp=r P
~-p 2m+1

C, g+XC, p= C„(for r& 2), (7)
2r 1~—p 2e 2t+—3'

2
T=-
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h'k p' 2m A'
W= — X+ xgk. , (9)

Inserting the relation kp'= —mW/k' into Eq. (8), we
hRve

4. DISCUSSION

A. The Tnmcated Equations

We computed the truncated set of Eqs. {7) for ten
values of m{e=0, 1, 9). To estimate the errors of
the results we chose three typical values of r, :

5.275, 6.028, 6.782,

and solved the truncated set at the values of m= 11, 13,
and 15. Thus we calculated numerically the l2X12,
14X14, and 16&16 determinants for the diGerent
values of r, . The computed eigenvalues are shown in
Table II. From the table it is roughly concluded that the

1 1
W= 27.09 —3.675K—+0.901 eV. (10)

Thai, E II. Computed eigenvalues for determinants
of diferent dimensions and electron densities.

(Kahana's screening parameter x is assumed to be 1.)
If we can find a positive value X which ma%.es the

energy 8' negative, we shall have a bound-state solution
(a positronium state) for the Bethe-Goldstone equation.
From Eq. (9) we must seek a positive value X which
exceeds the value ) 0,'

&=11
us=13
m=15
ted=17
m=19
ms=20

v =1.750
r, =5.275

0.67
0.71

g =2.000
r,=6.028

0.70
0.74
0.77
0.80
0.82
0.83

z=2.250
r, =6.782

0.60
0.65
0.70

Xp ——{0.901/3.675')r,gr, 0.078r,gr, ,

where ) 0 is the value of X that makes 8' zero.

3. NUMERICAL CALCULATIONS

We solved a truncated set of Eqs. (7) for C„(e=0,
1, , 9) using an electronic computer. We have carried
our computations for the different values of the parame-
ter r. The values 7 =0.6667, 1.2500 correspond roughly
to aluminum and sodium, respectively. Only positive
eigenvalues for diferent values of v. are shown in

TABLE I. Variation of the eigenvalue X and the critical value X0
with valence-electron density.

Rdditlon of 6vc more lows RIld columns only gives R

small correction to the eigenvalue when r, is small. On
the other hand, the change of the critical values of Ap

due to screening effects is very large compared with the
change of the critical value due to the dimension n,
Thus it is concluded that the truncation of Eq. (7) at
m=9 does not cause a serious error in the conclusion of
the previous sections. However, the results give an in-
correct conclusion when the values r, are large. To make
ouI' dlscusslon Inorc Recur'Rtc, we coIQputcd thc dctcl-
minant with 6ve more dimensions (20X20) when
p =2.000 (r, =6.028). Computed results are shown in
Table II. Thus these results support our conclusion of
Sec. 3.

0.667
1.000
1.250
1.500
1.750
1.825
2.000
2.100
2.250
2.500

2.010
3.014
3.768
4.521
5.275
5.501
6.028
6.329
6.782
7.535

0.912
0.999
1.080
1.102
1~ 154
1.183
1.224
1.290

0.570
0.750
0.945
1.006
1.154
1.242
1.377
1.613

0.41
0.63
0.64
0.64
0.63
0.60
0.60

In the present work, we assumed Kahana's parameter
x to be 1, and the screening parameter P=k,/k~ to be
0.470r,'". lt was shown by Kahana in his treatment of
positron annihilation rates in metals that the rates
agree well with the experimental values, assuming x to
be 1. Then in our case also it is reasonable to assume x
to be 1.
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The value P=0.470r, 'I' is calculated assuming the
conduction electrons of the metal to be an electron gas
and assuming the possibility of a high-density expansion
(r,& 1). In real metals r, is larger than 1, and the high-
density expansion should not be correct. However, it is
shown that the theoretical value P=0.470r, 'I' agrees
with the experimental values for various metals, for
example, aluminum (r, =2.010) and sodium (r, =3.768).
Thus it is concluded that the results gained in this paper
should be correct in the range of small r, . It is desirable

to use the experimental data of k, in the range of large
values of r, . Unfortunately, we have no experimental
data on k, for large values of r, . But this fact does not
prevent us from concluding that positronium formation
does not occur in real metals.
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We give a phenomenological derivation and a discussion of the "extra Ginzburg-Landau equation" which
connects the charge, electrical potential, and time dependence of the order parameter in a superconductor.

ECENTLV Gor'kov' pointed out that in his
version of the BCS theory of superconductivity

the "anomalous" Green's function, F (~), and thus
the energy-gap function 6 and the Ginzburg-Landau
order parameter 0, vary as t, "&'I",where p, is the Fermi
energy. josephson' first noted that this time dependence
has observable eRects. In particular, it leads to the ac
j'osephson current in two-superconductor tunnel
junctions.

Because of this time dependence, the Fermi level

plays a role in the phenomenology of superconductivity
diRerent from that in normal metals: it is not only a
macroscopic variable determined by local thermo-
dynamic equilibrium, but a microscopic variable
determining the local state, which is closely coupled by
the long-range order throughout the superconducting
circuit.

Corresponding to this duality, we may introduce the
chemical potential into the theory in two ways. In both
let us erst consider an isolated uniform bit of super-
conductor in equilibrium, later assuming in the standard
fashion of nonequilibrium thermodynamics that a
steady-state system is made up of many such bits
together with the heat and particle fiows necessary to
maintain quasiequilibrium.

'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
/English transl. :Soviet Phys —JETP 7, 505 (1958)j.

B. D. Josephson, Phys. Letters 1, 251 (1962).

X=—X'+pX. (2)

Then the quasiparticle energies and the total many-
particle state are calculated for the Hamiltonian K'.
The quasiparticle energy is

~a= L(e~+eV—y)'+&']'",
and has a minimum at the "Fermi surface" where
eq+eV=p, . The Hamiltonian X' leads to no time de-
pendence of P and A. The number of particles N is not
fixed, but the mean value may be obtained in the usual
fashion,

G(p, T)= —kT lnTr exp( —PX'),
(A )= —BG/Bp.

The Hamiltonian of our bit of superconductor is
taken as

X=X+'0~+X;,g+eVS, (1)
where X is the kinetic energy, 'U„ is the lattice periodic
potential, 3'.;„~is the short-range interaction responsible
for superconductivity, U is the mean electrostatic
potential including any long-range eRect due to a net
space charge in the sample, and E is the total electron
number. The energy necessary to add a single electron
of momentum k in a normal metal with Hamiltonian
(1) we define as eq+eV.

In the standard version of superconductivity theory
we add and subtract a term pÃ, obtaining


