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succession, we have the less restrictive conditions:

I
Xs+X~T 'I «» IX~+ X,TI &«2;

I
X,(xs+X~T ')

I
-«» (43)

which imply that the energy is in a region forbidden to
pure 8, with the symmetric conditions if no more than
two 8 atoms occur in succession.

If we further assume that no more than one A atom
may occur between neighboring 8 atoms, we have the
still less restrictive conditions

I
Xgg

I
&«1; I

Xs+XgT 'I &«2 i I X/+XsTI &«2, (44)

with the symmetric conditions if no more than a single
8 atom lies between two neighboring A atoms.

If we require an A atom to follow a 8 atom we have
the still less restrictive conditions:

I
XA+XBTI &«2; I

Xs+X~T 'I &«2, (45)

so that an energy gap may be in a region allowed to both
pure A and pure 8. For the Kronig-Penney alloy,
however, an examination of conditions (44) shows that
they cannot be satisfied; we are thus unable to prove the
existence of an energy gap for values of the energy
which are allowed to both pure A and pure 8 for the
Kronig-Penney alloy.
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The mechanics of spin deviations is formulated in a simple manner, which maintains the true spin kine-

matics and does not involve the introduction of any arti6cial interactions. A virial expansion for the thermo-

dynamics, based on this mechanics, clearly distinguishes kinematical and dynamical eBects. At low tempera-

tures, low-density kinematical sects are easily proved exponentially small. The second virial coefficient is
computed unambiguously. Dyson's low-temperature free energy is straightforwardly rederived, and an

upper bound is estimated on the validity of the associated low-density boson picture.

I. INTRODUCTION

HE mechanics of the Heisenberg model is domi-
nated by two properties: (a) It always obeys spin

kinematics and (b) the low-lying states have a propaga-
tional, Particle like, "spin-wave" -behavior. These oppos-
ing properties must be reconciled in any formalism. The
problem of calculating the Heisenberg thermodynamics
has been attacked by three major strategies, each with
its insights and corresponding drawbacks. Cluster ex-
pansions, ' taking the molecular 6eld theory as their
starting point, treat a local group of spins exactly in
the presence of a self-consistent environment. Justice
is done to (a), but (b) is dificult to exhibit. Second,
"spin-deviation" methods' ' start from the mechanics

*Research supported in part by the U. S. Air Force Ofhce of
Scientific Research, Grant No. AF-AFOSR-130-63.' Examples are P. J. Weiss, Phys. Rev. 74, 1493 (1948); P. W.
Kasteleijn and J. Van Kranendonk, Physica 22, 317 (1956); B.
Strieb, H. B. Callen, and G. Horwitz, Phys. Rev. 130, 1798
(1963). For completeness we also include here (somewhat in-
appropriately) high-temperature expansions in powers of P, for
example, the work of G. S. Rushbrooke and R. J. Wood, Proc.
Phys. Soc. (London) 68A, 1161 (1955).' F. J.Dyson, Phys. Rev. 102, 1217 and 1230 (1956).Hereafter
these two papers will be referred to as Dyson I and Dyson II,
respectively.' J. Van Kranendonk, Physica 21, 749 and 925 (1955); T.

of a small number of units of reversed spin in an other-
wise aligned background. They are ideal for expressing
(b) but tend to rely on particle analogs in a way that
obscures (a). Finally, methods based on approximate
solution of the equations of motion for the thermody-
namical Green's functionss (canonically averaged prod-
ucts of time-dependent spin operators) have a great
formal flexibility, being adaptable in a general way to
both spin and particle pictures; however, they deal al-
ways with averaged quantities and are not, therefore,
appropriate for a careful dissection of either kinematics
or dynamics.

The present contribution' follows the spin-deviation
strategy without, however, sacrificing the spin kine-
matics. The purpose is to provide a detailed under-

standing, both physical and formal, of the essential

Morita, Progr. Theoret. Phys. (Kyoto) 20, 614 and 728 (1958),
for example.

4 Another important line follows the work of T. Holstein and
H. Primakoff, Phys. Rev. 58, 1098 (1940).

5 Reviews of this literature are given in V. L. Bonch-Bruevich
and S. V. Tyablikov, The Green Function Method in Stutisticul
3fechunics (Interscience Publishers, Inc. , New York, 1962), and
C. W. Haas and H. S. Jarrett, Phys. Rev. 135, A1089 (1964).

Based in part on M. Wortis, Ph.D. thesis, Harvard University,
1963 (unpublished).
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features of the spin mechanics and the way in which
these features manifest themselves in the thermody-
namics. The insights thus won establish a foundation for
a low-temperature thermodynamical calculation. It is
hoped that they will prove useful elsewhere as well.

Several authors have tried to enforce the spin kine-
matics (the limitation of the maximum number of spin
deviations per site to 25) within a boson formalism by
using an artificially introduced hard core' or by other-
wise modifying the boson Hamiltonian in such a way
that sects from boson states without spin analogs are
suppressed at least at low temperatures. ' Such devices,
while certainly correct in principle, tend to raise more
questions than they resolve. ~ The burden of proof is on
the authors involved to show that the rather singular
interactions introduced do not have unwanted side
eGects. Even such a careful treatment as Dyson's'
suffers from an internal inconsistency (see Appendix A).
Our viewpoint is that the spins themselves do not feel
any singular interactions, and any valid simplifications
which the introduction of such can produce must already
be properties of the unembellished spin system.

Sections 2—4 discuss the mechanics of spin deviations.
Section 2 formulates this mechanics in a straightfor-
ward way, involving no artificial interactions. The nor-
malization of the spin-operator matrix elements dictates
the appearance of certain kinematical projection opera-
tors. In Sec. 3 it is shown that the Schrodinger operator
for the spin problem belongs also to a boson Hamiltonian
H&.' The spin-system energies constitute a subset of the
eigenvalues of H~. The remaining "improper" eigen-
values are kinematically projected out of the exact spin
problem. For a number of bosons greater than or equal
to a critical number e, improper energies lower than the
ground-state energy Eo of the Heisenberg model may
appear. Section 4 is devoted to a connected-kernel
formulation of the spin mechanics which specifically
eliminates improper energies.

Sections 5 and 6 develop and discuss a virial expansion
for the Heisenberg free energy 8'. An exact formula is
derived for the nth virial coeScient b„ in terms of the
connected part of the mechanics. 8' has the form of the
free energy of an assembly of bosons with H& minus a
set of terms involving the kinematical projections, which
serve to exclude improper energies. This form, though
somewhat cumbersome in calculation, allows a trans-
parent distinction between kinematical and dynamical
eGects. At low temperatures the kinematical subtrac-
tions for b„, e&e„are rigorously exponentially small.
This fact serves in Sec. 7 as the basis for an un-
ambiguous asymptotic low-temperature evaluation of
b2, a necessary condition on the correct low-temperature
free energy. '

' For S=~, for example, there exist no states in which two or
more spin deviations occupy a single site. Correct introduction
of a hard core must have eo effect on physical spin states.

8 The Hermitian conjugate of the boson Hamiltonian of Dyson
f. See Appendix A(i).

s Dyson's free energy (Ref. 2) passes this test

Section 8 examines the full low-temperature Heisen-
berg free energy. The evidently paradoxical upshot is
that 8' can be calculated by summing low-density con-
tributions to the free energy of an assembly of bosons
with IIn, thus apparently disregarding property (a).
The numerical result to order T4 in temperature is ob-
tained by directly summing boson "ladder diagrams. "
This "answer" is easy to come by" "; the question is
the logic by which seemingly large kinematical contribu-
tions" are eliminated. There are many ways of sweeping
these terms under the rug (e.g. , by using bosons with a
hard core). The problem is to show why and up to what
power of T they fail to appear (where, for example, does
the presence of the hard core start to make itself felts).
In Sec. 8 improper (kinematical) subtractions corre-
sponding to low-density terms are proved exponentially
small. This proof—the key to our treatment of the
thermodynamics —rests in a very natural way on the
spin kinematics and the values of improper energies for
n(n, (i.e., that they are all finitely above E&). Remain-
ing subtractions, while eat small, cancel against im-

proper energies in boson-like terms whose proper con-
tributions are small. "In Sec. 9 the limit of validity of
the low-density boson picture for calculating the low-

temperature Heisenberg free energy is estimated.
Our development parallels Dyson's' quite closely in

many respects. The relation between them is discussed
in detail in Appendix A. Numerical results are the same
but the logic is quite different, illuminatingly so, we
hope.

2. THE SPIN HAMILTONIAN AND ITS
GREEN'S FUNCTIONS

The Heisenberg model has been defined in detail
elsewhere. "The present paper recapitulates the nota-
tion there introduced only insofar as will be useful for
direct reference herein. The Heisenberg Hamiltonian is
composed of the sum of a magnetic and an exchange
term:

1,2

's T. Morita (Ref. 3); T. Oguchi, Phys. Rev. 117, 117 (1960);
F. Keffer and R. Loudon, J. Appi. Phys. 32 Suppi. 2S (1961);
R. A. Tahir-Kheii and D. ter Haar, Phys. Rev. 127, 95 (1962);
J. Szaniecki, r'6' 129, 1018 (1963.). Aii obtain Dyson's result or
close approximations thereto. See also Ref. 11.

"N. L Greenberg, J. Math. Phys. 4, 405 (1963), formulates
the S=-,' problem in terms of a binary kernel which contains both
dynamics and kinematics. In principle valid, this method, like
the hard core, obscures the simple physics behind the correctness
of the low-density boson picture.

~ An appealing (but wrong) argument: (2S+1) particles
cannot simultaneously occupy a given site. The eGect of this
exclusion should go as the (2S+1)th power of the spin-deviation
density, i.e., as T'&'~+'&)" (Te for S=-,').

» The weak point of the present work (and it is a weakness of
all previous authors, as well) is an inability to estimate these
high-density (intrinsically many-particle) proper contributions
outside of (a highly suspect) perturbation theory. In our develop-
ment it is at least clear that difEculties, if they occur, are associ-
ated with the real complexity of the Heisenberg mechanics.

"M. Wortis, Phys. Rev. 132, 85 (1963).
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l S+(1),s'(2)]= +b(12)S+(2),

Ls (1),S+(2)]=—28(12)s*(2),
(3)

S(1) S(1)=S(s+1), (S'(1))'"'=(S (1))'"'=o (4)

The spin-deviation number operator,

m= 1VS+Qi S*(1),

is a constant of the motion. The spin-deviation vacuum

l 0) is for p/0 the unique ground state of H, satisfies

S*(1)lo)=—Slo), S—(1)lo)=0,

and has energy Eo———pES—dEJS'.
The spin-deviation mechanics is conveniently de-

scribed by a set of vacuum Green's functions:

G (1 n;1' n';t)=( —i)"
n n

x&ol II s-(i; ~)II s+(q'; o) lo)&(~), (7)

where g(t) is the step function,

q(~) =1, t&0
=0, 1&0,

and the Heisenberg time dependence of the spin opera-
tors has been made explicit. Th,e presence of the same
number of S and S+ operators in (7) reflects the con-
servation of spin deviations. The commutativity of the
S 's and S+'s among themselves makes G„symmetrical
separately in its primed and unprimed indices. The
structure of G may be exhibited by introducing a com-
plete orthonormal set of e-spin-deviation energy eigen-

~~Almost all of Secs. 2-5 is formally valid regardless of the
sign of J.J)0 is crucial for our discussion of the low-temperature
thermodynamics.

"This assumption has no bearing on the structure of the
formulation, only on the details of the terminal numerics.

The parameter p, which characterizes the strength of the
external magnetic field and the spin magnetic moment,
may be taken non-negative without loss of generality
because of the freedom of choice of coordinates. The ex-
change interaction is given by

J(12)=J(21)=J, 1 and 2 nearest neighbors
=0, otherwise.

2)

Ke shall assume J)0, so the spins tend to align ferro-
magnetically at low temperatures. "The X individual
spins which comprise the kinematics of the model are
imagined to be arrayed on a simple cubic' lattice of
unit spacing, dimensionality d, side L (l."=Ã), and
periodic connectivity. The spins obey the usual com-
mutation relations and subsidiary conditions:

states ly):

G (1 e;1' .n';(o)

=(—&) Che'"'G„(1. m; 1' I'; t)

=(—&)"2
&ol II s ( )l»&~l II s'(~')lo)

i=1 j=l

(~—(E,—zo)+ ie)

&oI II s (~)II s'(i') lo)
i=1 j=l

=(2S)"(1 ell~l1 ' ' n)h„is'i(1' n'). (9)

The function h„&~' is taken to be entirely symmetrical
in its e arguments. Examples are

S(12)
h, (s& (1) 1. h, is& (12) 1

2S

h(12)+5(13)+8(23) 28(123)
h&is&(123)= 1-

2S (2S)'-

wh, ere 8(123) has the value unity when the sites 1, 2, and
3 are identical and is zero otherwise. The significance of
the h„'~& is perhaps made clearest by the construction

&o
I II s-(i) =

l
(2S)-h„i»(1" n)

x(1 Nl1„l1 e)]'"P & &(1 m)&1 el, (10)

where &1. el denotes the normalized bra representing
the state with units of spin Ripped away from the (ol
alignment on each of the sites 1, ~, e. E„' ', the pro-
jection operator onto the "proper" space of n indices for
spin S, is unity when no single site appears among its
arguments more than 2S times and zero otherwise. Its
presence in (10) is explicit recognition of the subsidiary

The spin operators in (8) refer to t=0 and the ie nota-
tion is shorthand for limo&, 0, which recognizes the q
function in (7).

It will facilitate further development to pause briefly
here to introduce some convenient notation. We denote
by 1 the symmetrical n-dimensional unit matrix. Its
matrix elements, &1 ril1 l1'. .n'), consist in a sum
of nt terms, each of which is a product of n b functions
connecting the unprimed indices with one of the n.
orderings of the primed indices. For example,

(1l l, l
1')=S(11');

(12
l

1g
l
1'2') = 8(11')5(22')+ 8(12')8(21') .

A set of functions intimately related to the spin kine-
matics may now be defined by
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condition (4). Note the factored form,

&-'"(1»)= II (1—~({25+1)))
f 2S+ll

= II I'»+i'"({25+1&) (11)
( 2S+I I

where {25+1)is intended to indicate a particular set of
(25+1)indiceschosenfromamong1» 8({25+1))
is unity when all (25+1) indices are alike and zero
otherwise; and the product is over all possible sets. The
projection I„( ' onto the "improper" space of n indices
is introduced by

P„(&)+I (s) —1
(12)I a &a'(1 (25+1))= 8(1 (25+1)).

Note that I' & ~=1 and I ~ ~=0 for 1&m&25. The su-
perscript indicating the S-dependence of h, I'„, and I„
will be omitted henceforth. Clearly

I'„I„=h„I„=0.

The matrix elements in (8) may now be re-expressed
in terms of the coordinate space wave functions of the
»-spin-deviation states

~ y)

n

(0~ g S (z)~y)=I (25)"h (1»)]"'-P (1»), (14)
i=1

where the/~ are complete and orthonormal according to

Q P,t(1' .»')P,(1») (1»=~ 1.
~

1' »') (15)

Q P,t(1. »)f;(1 . »)P„(1»)=»!h(yy'). (16)
g ~ ~ o g

Equation (15) holds only when both (1 . .») and

(1' »') are proper. We have now established the
representation,

G„(1»;1' »', (o)

= (—z) "(25)"[Iz„(1 . »)h„(1' »')]'~'

P (1»)P t(1' »')
xp (»)

(0 (E& Eo)+z6

The fundamental mathematical expression of the 6nite-
ness of the individual spin magnitudes follows from (13)
and (17):

(a) I„G„=0; (b) G„I„=0. (18)

Picturesquely stated, no more than 2S spin deviations
may occupy a given lattice site at any one time.

It is useful to point out the close parallel which can be
drawn between our treatment of the spin system and
that of a particle-conserving boson system. A set of
boson Green's functions analogous to the G„'s may be
defined by substituting into (7) the correspondences
5 ~ f, S+~ ft. The subsequent relations (8)—(10)
and (14)—(17) remain valid provided that all factors of
(25), Iz„, and P„are stricken out. Equations (18), how-
ever, have no boson analog.

Our program now is to formulate the calculation of
the 6 from the dynamical equations of motion, sup-
plemented by spatial periodicity and the temporal
boundary condition provided by the q function in the
definition (7). To obtain the equation of motion for
G„, commute the product g; i"S (i) with the Hamil-
tonian (1). The magnetic part of the Hamiltonian is
triv'ial. Commutation with the exchange part yields a set
of terms, each of which involves the product of e S 's

and an S'. The S' factor can always be commuted to the
left through the various intervening S 's by using (2).
Once an S' stands on the left, it projects in the formation
of G„onto (0~ by (5). The result is

~~

c! ) 8
i Z~—G„—= i »(p+25—dJ—) G„(1~ »;)+S P P J(iz)G„(1 z ~ »;)

Bt I w i

+ P J(ij)G (1 ~ »;)—P 8(ij)g J(iz)G„(1 z»;) = (2S)"(—i)" b(Z)(1 ~ ~ ~ »( 1„!!)h„. (19)
pairs

st2
pairs

All inva, riant indices have been omitted in (19). The
right-ha, nd side follows from (9) and the step-function
discontinuity in (8). The first two terms on, the left-
hand side of (19) include the effect of the projected
S"s and may be regarded as representing the dynamics
of sz noninteracting spin deviations. The remaining two
terms come from the LS,S*]commutators and have the
form of interactions between pairs of spin deviations. "
"'fhe double commutator, LS,LS,S'jj=o, guarantees that

only pair interactions occur.

This kind of particle terminology is suggestive; however,
it is crucial always to keep in mind that the same param-
eter J measures both the spin-deviation "mass" and the
magnitude of the pair interactions, so that an explicit
symmetry of the problem is obscured whenever the pair
interactions are thought of as perturbations and treated
on a diGerent footing from the "kinetic energy. "

The fundamental kinematical properties (18) must,
of course, be contained in (19). To see them, ob-
serve in (19) that the time derivatives z(8/R)I G and
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i(a/at)G„I„ involve, respectively, only elements of
I„G„and G„I„.The latter is obvious; the former com~s
about by means of a, cancellation between the oG-

dia, gonal second and fourth terms on the left-hand side of
(19). The relation (13) now shows that the equations
of motion for I G„a,nd for G„I„are homogeneous, and
the zt-function condition guarantees (18).

The one-particle Green's function G1 may be obtained
clirectly from (19) for zz= i. The solution dates essen-
tially from Bloch" and has been rederived many times.
In normalized form the result is

I,(1; 1'; t)= —G,(1; 1'; t)
(25)

(—z)
P ai)t ~ (1—1')a—iQ(tt) tzt(t) (20)
kelt'

with

free-particle propagation and the interaction term.
This is another reAection of the fact that J is the only
parameter in the spin problem.

3. THE BOSON GREEN'S FUNCTIONS
AND THEIR HAMILTONIAN

We are now in a position to discuss in a, precise way
those characteristics of the spin mechanics which have
normal boson analogs and those which do not. If one

disrega, rds numerical factors, G„ is the forma, l inverse of
the operator (i(a/at) —2„), multiplied on the right by
h„. Let us motivate the discussion by an analysis of the
role played by this inverse operator. Visite the time
transform of (19) in a notation in which the first row

and column of each 2)&2 matrix refer to proper indices
and the second row and column refer to improper
mdices:

~11 ~12 Gn

0(k) =tt+25J Q (1—cosh, ), (21)

where Ii denotes the first Brillouin zone. It is convenient
now to define ma, trices,

I„h„0
= (25)"(—z)" (26)

0 0

(22)

and
I' =1 (I"i)"=(I'i)"1 (23)

where the matrix indices in (23) have been omitted, as
will often be the practice henceforth. The function I'„
solves an equation like (19) but with the interaction
terms on the left and the factor (25)"h„on the right
omitted. In a sense which will be clarified below, it may
be thought of as the propagator of e nonintera, cting spin
deviations. Note, however, that I'„explicitlv violates
the fundamental kinematical conditions (18). Equa-
tion (19) for zz) 1 may now be converted to an integral
form incorporating the boundary conditions:

G = (25)"I'„h„+,'((i)" '/-(zz 2)!) „I—z„G. (24)

The interaction matrix,

(12
~

z)
~

1'2') = —,
' [3(11')—3(12')]

X Lh(21') —&(22')jJ(I'2'), (25)

as it appears in (24) is to be regarded as a diagonal 3

function in all variables beyond 1 and 2. Note that as a
2&2 matrix ~ is symmetric in primed and unprimed
variables separately but not under interchange. The
matrix product in (24) implicitly includes a time in-

tegration such that, if G (t) is on the left, the interaction
term reads 1'dt'I' (t—t')z)G„(t'). While (24) exhibits the
kinematical property (18b) through (13) and the h„
factor, it e6ectively obscures (18a), which must now

come about through a, complicated cancellation of the

't F. Bloch, Z. Physik 61, 206 (1930); 74& 293 (1932).

Equations (13) and (18) have been used, and the mat:rix

2„ is represented by ( " " . The boundary condi-
21 22

tion, G„(t)=0 for t&0, precludes any homogeneous
solutions, so A» ——0 can be directly inferred. t Note that
this argument wa, s used in reverse in the pa, ragraph pre-
ceding Eq. (20).j Clearly, then, G (a&) depends only on
the inverse of the matrix P„(i(a/at) Z„)P„.In p—ar-

ticular the solutions, ~=8»—Eo, of the determinantal

condition,

det(cd —A)i) =0, (27)

(i(a/at) z„)IJ„=( i)" '3(t)—1—„— (28)

subject to the same boundary conditions as G„. (Ance

H is known,

G„(1 zz; 1' zz')

= (25)"H„(1 zz; 1' zz')h (1' zz'), (29)

where spatial indices have been exhibited to highlight
the asymmetrical relation between II„and G„. Note
that (29) can be inverted only when (1'. I') is proper.
The function I'„may be employed to invert (28)

give the energy eigenvalues of the e-spin-deviation sub-

space of the Hamiltonian (1). The notation L'» has
been used instead of simply L~'~, as in (17), to emphasize
tha, t these eigenvalues belong exclusively to the 1, I
component of (26). Other components of 2 are ir-

relevant to the spin problem.
To make quite explicit the still unused structure of

(i(a/at) —2„) ', let us define a new set of functions H„
by Lc.f. (19)]
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Pc.f. (24)j:
H„=I'„+-((i)" '—/(n —2)!)I" i'; Hi= I'i. (30)

The analog of (26) is

co —Aii —Ai2 P„H„(co)P„P„H (co)I

0 (u —522 I.H„((u)P I„H„(~)I„

0= (—z) "( ), (31)

which implies

(32)

as is also clear from (29) and (18a). In contradistinction
to G„I„,the elements II I„are generally nonvanishing.
Of course, only I'„II„I'„is relevant to the spin problem.
The solutions, M =E»—Eo, of

det(io —522) =0

constitute the spectrum of I,'„II„I„.E» and E» will be
called, respectively, "proper" and "improper" energy
eigenvalues.

So far the functions H„are no more than symmetrical
inverse of (j,(B/Bt) 2„),us—eful auxiliaries Lvia (29)) in
the formulation of the spin problem. However, we noted
after Eq. (18) that the kinematics of bosons is related
to that of spins by the simple omission of factors of
(25), h, and P„. Comparison of the inhomogeneous
terms of (19) and (28) suggests the conjecture that the

are, in fact, vacuum Green's functions for a true
boson system. This is indeed so, as Dyson I was the
first to observe. If boson creation and annihilation opera-
tors are introduced and Green's functions H„are de-
fined in analogy to G„with the correspondences 5
5+~Pt, then the boson Hamiltonian, '

He =&o+(i +25dI)Z 0'(I)0(I)—5 2 I(12)4"(I)4(2)
12

+-,' p lp(I')pt(2')(I'2'~5~12)lp(i)lp(2), (33)
1',2'

leads straightforwardly to (28). The non-Hermiticity of
II&, which follows from the interchange asymmetry of
(25), seems to be an essential feature of the relation be-
tween the spin and corresponding boson problems.
Again, v is a function of J, so perturbation theory ob-
scures important distinctions between proper and im-

proper subspaces, e.g. , (32).
The existence of a boson Hamiltonian corresponding

to a given spin dynamics is not, of course, specific to the
Heisenberg model. So long as the operator n of Eq. (5)
commutes with the spin Hamiltonian, " our construc-

"Even if e is not conserved, a corresponding (now particle-non-
conserving) boson Hamiltonian exists. Both the boson and spin
mechanics are, then, complicated by the nonexistence of simple
invariant subspaces.

tion of 2 holds, although interactions between more
than two particles will appear when the spin Hamil-
tonian has terms higher than bilinear. Given 8, one
can easily write down a boson Hamiltonian with the
proper one-particle, two-particle, etc., parts. The fac-
torization (29) always relates the spin and boson Green's
functions. Equations (18) and (28) hold.

The structure of eigenstates and wave functions of the
non-Hermitian boson system is discussed brieRy in
Appendix B. The main point is already clear from the
analysis of Eqs. (26)—(32):the spectrum of the n-particle
states of H& consists of all the energy eigenvalues E» of
the n-spin-wave states pigs a set of improper energies
I"-» absent in the spin system. The relation between spin
and boson wave functions is given by (B7). The wave
functions belonging to E» are irrelevant to the spin
system and do not appear in 6„.The proper projections
of the wave functions belonging to E» are related by
simple kinematical factors to the wave functions of the
spin system. Special properties of the boson wave func-
tions conspire to project the E~, out of that part H„I'„
of the boson Green's function having to do with spins.

The above is quite general. Let us state the result in
the context of the Heisenberg model. To any eigenstate
of the Hamiltonian (1)—i.e., to any stationary con-
figuration of interacting spin waves —there corresponds
an eigenstate of II& with the same energy eigenvalue
and a closely related wave function. It is sot permissible,
however, to regard the bosons appearing in H~ as actual
spin waves, since they possess configurations with no
spin analogs. The spin system maps onto a sgbspace of
the boson system.

It would be nice to think that the boson corre-
spondence represents real progress towards a solution
of the spin problem. Unfortunately this does not seem
to be so. For small e computations with spins and bosons
are essentially equivalent. ' One might hope, on the
other hand, to use the correspondence to apply known
many-boson techniques to the calculation, for example,
of the spin thermodynamics. "Sadly enough, the pro-
jection out of the improper eigenenergies is not easy to
perform. This point will be expanded upon at some
length, . Let us use it here as a motivation to study a few
of the properties of the improper boson dynamics.

What can be said about the improper spectrum of II~?
The answer is that not much can. The author knows of
no resolution of even such a simple question as the
reality of the E», though the reality of the matrix
elements of II~ in the occupation number representa-
tion does show that complex energies, if they occur,
come in conjugate pairs. Luckily H~ satisfies a simple
selection rule, "which will lead us to some important
observations. Label states according to an occupation

~ Compare, for example, the n=2 calculation of Dyson I with
Ref. 14 or with N. Fukuda and M. Wortis, J. Phys. Chem.
solids 24, 1675 (1963).

"This is what Dyson does (Ref. 2). See also Refs. 10 and 11.
"First noticed in Dyson II, Sec. 3.
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DUIQbcl lcprcscntRtlon. BUc to R CRnccllRtlon of off-
diagonal terms, Hg acting to the left cannot remove a
particle from a site occupied (2S+1) times, Let g rep-
l"cscllt, R sct. of sites occllpied by (25+1) or 11101'c pRl'-

tides; then

&gllIIalgs)=&gila "~'lgs)=0 whenev«gl(t:gs, (34)

a more delicate form of the property involved in the
proof of I G„=O in the paragraph preceding (20). Any
(25+ 1)-occupied site is a stationary feature of the left-
handed dynamics of IIg. Other particles Inove in the
presence of these sites in a manner roughly analogous to
the motion of mobile charges in the Md of a set of
fixed lons.

If we introduce projection operators" Pg onto those
labelings (1 I) in which each of the sites contained
in g occurs (25+1) or more times, then

Ps,II„Ps, 0 if g——i(Lgs. (35)

Fquatlon (32) is R sPcclR1 CRsc of (35), slllcc P~= Ps fol
g=O (the empty set) and I„=P~s P,. The relation
(35) will be useful in sorting out certain combinatorics
ln thel InodynRmlcRl CRlculRtloDs.

The main importance of (34) is that it allows identi-
fication of a small but nonetheless important set of
e~*act improper eigenstates of II~. All left-handed states
consisting sole/y of (25+1)-occupied sites are auto-
matically eigenstates. If q is the total number of such
sites and p is the number of nearest-neighbor pairs of
theme thcQ thc cncI'gy of the stRtc ls

E„Lfs tie+(25+1—)JL2——5dq (25+1)Pj. (36—)

Fol' example, if cvcly site ls (25+ l)-occupied,

E„, E,=A(2+51)(—ti Jd), '(37—)

which for Jd&p, becomes negative and of order sV. It
is clear generally from (36) that lower energies are ob-
tained by putting the (25+1)-occupied sites closer to-
gether and, thus, increasing p relative to q. For p, =O,
which is of most interest th, ermodynamically, the
simplest configuration for which (36) becomes zero is
when a number q= (25+1)"of (25+1)-occupied sites
are arrayed at the vertices of a d-dimensional cubic net,
thus giving p=25d(25+1)" ' nearest-neighbor pairs.
The number of particles required is (25+1)"+'. There
exist„ therefore, bound states of II~ with E»~Et,o. Let
e, be the smallest number of partides for which this
can occur. Surely, '4

(25+2) &n, «(25+ 1)'+' (»)
Now, this is very serious. The E» project, out of the

exact G; however, any scheme of approximate solution

23%e suppress 5 and s dependence,
"We conjecture that e, is, in fact, equal to this upper limit.

It seems overwhelmingly probable that it is at least very close
to it. The lower hmit is provided by the fact that one can solve
the improper (25+2)-particle proMem exactly I'it is essentially
a two-particle problem) and verify that E»&EO.

which destroys (32) will mix the improper mecha, nics of
H~ into the spin problem. Since the improper energies
and wave functions have properties quite diKercnt from
thc propcI' ones, this Inixlng CRQ lcRd to dlsRstloUs errors

l e.g., Sec. 6(i)j.
IQ thc 1cmalning scctloDs of this pRpcr wc shRH

attempt to formulate 6rst the mechanics and then the
thermodynamics of the Heisenberg model in a manner
which is manifestly free of the pitfalls surrounding the
Lt VI. In this& though ODly pRI'tlally SUccessfUl, wc shall bc
considerably Inorc careful than previous authors. It is
hoped. that the insights gained thereby will justify the
endeavor. Our main tool will be the knowledge of boson
combinatorics and the selection rule expressed by (35).

4. THE CONNECTED PART OF THE
GREEN~S FUNCTIONS

Lct Us lctU1Q to thc foI'InulRtlon of thc cvRlURtlon

of G„or equivalently of II„P„.The integral equation
(30) for (24)j and the contraction,

p, r,(1;1;t—t)r, (1;1';t—t')
= r,(1; 1'; t—t')~(» —t)~(t—t'), {39)

arc the natural staltlng point fol RQ iterative solution
for 6„,formally perturbative in v. Hy utilizing the sym-
mctll'g of II~ ln its left-hand lndlccs1 wc CRD rcwrltc
(30) as

II-=1-(rl)"+(2(i)" '!~')(rl) "L2 (»=s) j&- (40)

The notation (ai„s) in (40) symbolizes a matrix in
which v connects a pair of left-hand variables with R

pair of right-hand variables, the remaining (n —2) vari-
ables of each type being connected symmetrically by
the I 2. The summation is over the v-coupling of all
possible left and right pairs. The terms in the iterative
expansion of (40) may be represented diagrammatically
in the usual way, with a directed line standing for each
unperturbed propagator, I'q, and some attractive poly-
gon, for the four-pomt lntcractlon, e. As an organiza-
tion of the calculation, this schema is combinatorically

complicated and severely limited by convergence dif-
6culties associated with the formation of bound states. "
These dI'RwbRcks Rlc cllcUIQvcQtcd when IQcthods of
solution or approximation can be found which apply
dlrcctly to thc lntcgI'Rl cqURtloD. 26 HowcvcI', Wclnberg~~

has shown that for e& 2 the singularity of the kernel of
(40), arising from its lack of connectivity, "makes usus. l

appI'oxlIQRtlon schcIQcs lnappllcRblc. A lcRrrRngcIQent
of (40) involving a manifestly connected kernel is, there-
fore„ indicated. This emphasis on connectivity will be
further justified in Sec. 5, where it will be shown (in a
slightly altered form) to be the key to the correct volume

"See S. Weiaherg, Phys. Rev. 131, 440 (1963).
~6 For example, n =2 in Ref. 14."S. Wemberg, Phys. Rev. 133, 3232 (1964).
» e use "connected" in the sense of hanging together as a

whole (when expressed, e.g., diagrammatically).
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dependence of the extensive thermodynamic functions.
The form of the rearrangement which, we shall use is

due to II|kteinberg. '" Proofs are available in Ref. 27; how-
ever, for the benefit of the uninitiated reader a very
simple a,nd direct alternative derivation is sketched
in Appendix C. The Greens function H„ is divided
into disconnected and connected parts, D„and C„,
respectively,

II„=D„+C„. (41)

C„=K„H„, (42)

where E„ is tota, lly connected and appears as the
kerneP' of the resulting integral equation,

H„=D„+K„H-„. (43)

D can be thought of as the sum of all those pa, rts of H„
which factor into two or more pieces depending sepa-
rately on disjoint subsets of the position indices. C„
contains all of H„which cannot be so factored. D„and
C„may also be identified (disregarding convergence
difficulties) with the totality of respectively discon-
nected and connected terms in the iterative expansion
of (40). C„ is shown to be expressible a,s a, ma, trix
product,

P /&n, xtlmt=n
(44)

2iz!(—i)" iK„=pi CiC„ (45)

The s in (45) connects one right-hand index of Ci with
one of C i. In both (44) and (45) the sum is taken over
all possible l's and ms~'s and over all essentially different
partitions P of the left- and right-hand indices among
the various allowed C's and v. Note that e and the C's
are totally symmetric in both left and right indices. The
wording is intended to exclude terms diGering only in
the ordering of some set of symmetrically occurring
indices. Thus, each term in the summations (44) and
(45) is unique in that it cannot be obtained from any
other term by a permutation either of factors or of the
left or right indices belonging to a given factor. The
numerical coefficients are all unity. For n=2, (43) is
identical to (40). For it=3,

E„contains a description of the intrinsically m-particle
features of H„. By convention Cj ——H j -——I'g, The point
now is that D and E can be written in terms of C~,
l&&s. Appendix C and Ref. 27 derive the expressions,

D3(123' 1 2 3 ) (123
I
(Ci)'1311 2 3 )= Ci(1i 1 )C2(23' 2 3 )+Ci(1' 2 )C2(23' 1'3')+Ci(1; 3')C2(23; 1'2')

+6 other terms from cyclic permutations of (1,2,3), (46)

(—3)Ks(123; 1'2'3') =P Lci(1;0)Cg(23; 1'b) (ub
I
8

I
2'3')+ Ci (1;a)C2(23; 2'b) (ab

I
i

I
1'3')

+Ci(1; a)C, (23; 3'b)(ub
I
e

I
1'2')+cyclic permutations of (1,2,3)j. (47)

Higher D„'s and E 's can be written down by in-
spection. A pictorial representation involving as ele-
ments v and the various C„'s is naturally suggested.
The procedure is inductive in that the C~'s appearing in
D„and E„must be obtained by solving of the l-particle
problem for /(e.

While (43) has all the formal advantages of an in-
tegral equation with a connected kernel, it suffers, as a
formulation of the spin problem, from one major draw-
ba, ck. The improper eigenenergies E» will be projected
out of the exact H„P„;however, they still appear in E
a,nd will, therefore, tend to be mixed up with the proper
energies E» in any approximate solution for H„P„.
Luckily (28) provides a tool for totally extricating the
superfiuous E~, from the spin mechanics. Multiply (43)
on the right by P„and use (32), obtaining

(H„P„)= (D„P„)+(K„P)(H„P„). (48).
We now ha, ve an integral equation for H„P„, the physi-
cal part of H„. Note that the inhomogeneous term
D„P„ is no longer entirely disconnected. It remains to
show tha, t D„P„and the connected kernel E„P„can be

"Our IC„plays the role of steinberg's (Ref. 27) IB(W).

written in terms of the physical functions H~P~ for
l(e. The idempotence of the projection operators and
their product structure tcf. (11)j make it clear that
D„P„and E P„are unchanged if all the C's in the
definitions (44) and (45) are replaced by the corre-
sponding CP's. Finally, the relations (41) and (44) can
be inverted to give C in terms of H~ for l&e, so C„P„
can certainly be written as a sum of products of H~PI, 's,
l(e, and various projection operators and, thus, de-
pends in no way on the unphysical part of the boson
problem.

This, then, is the endpoint of our analysis of the spin-
deviation mechanics. To recapitulate: the schema de-
scribed is inductive. One assumes given the solutions to
the physical spin problem for l spin deviations, l(e.
This means that H~P~ and, therefore, C~P~ are known.
Equations (44) and (45) with C replaced always by CP
are used to compute D P and K„P„.Equation (48)
must then be solved for H„P and C P, and so on.
Contact with the Green's functions G„can be made via
(29) at any stage. In fact, it is clear that by proper in-
sertion of factors of h and 25 the inductive forma, t can
be carried out a,nd could have been derived in terms of
the G„'s a,lone. The detour through the H 's was com-
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putationally convenient but in principle extraneous.
A further observation concerning the C„'s is useful for

future reference. The procedure for calculating higher
C 's from lower ones, though well defined, is, as we
have seen, generally quite complicated. By contrast,
the selection rule (35) provides in certain cases a very
direct evaluation. Consider S= 2 as an example.
Hs(11; 1'2') =0 unless 1=1'= 2 by (35). This implies
immediately,

magnetization

~= (Zi 5'(1))= (iildPii) W = &5+ (&) (51)

where

(52)

unless

Cs(11; 1'2') = —2Ci(1; 1')Ci(1; 2')

(49) with

tre ~—~=e ~s' g (8"Qs/n!)
n=o

(53)

Such relations as (49) may, in turn, be employed to
write a connected-part decomposition of, for example,
Hs(112; 1'2'3') in which Cs's of the form (49) do not
appear. It is always possible to write a connected part
of the form PgiC„Pgs with gi(1 gs in terms of connected
parts not of this form C&, l&e. Any H can thereby be
expressed in terms of connected parts, no one of which
possesses indices of the P„P„, gi(t gs form. This
apparently trivial remark will be of great importance
in Sec. 8.

It must be stated that in one sense all the discussion
since Eq. (40) has been rather metaphysical: the x~3
problems are as yet and as usual unamenable to exact
solution in any form. There are two justifications for
our development. First, it provides, the author feels, a
sound basis for practical approximations to the spin-
deviation mechanics, free of difhculties associated with
the E». Second, in the logic of the introduction and sub-
sequent elimination of the E», the development ex-
hibits explicitly several very important structural fea-
tures of the behavior of spin deviations.

Let us proceed now to apply these insights to the
thermodynamics of the spin-wave system.

~ 5"b„
W—= ln tre s~= —PEe+ Q

=~ et
(50)

The eth "virial coeKcient" b„contains, as we shall see,
all the information of thermodynamical relevance con-
cerning the e-spin-deviation mechanics. The other
thermodynamic functions of the system may be de-
termined from 8' in the usual way. In particular the

3 T. D. Lee and C. N. Yang, Phys. Rev. 1D, 1165 (1959).
Our B„is their 5' . Note from (41) and (44) that our C„ is not
their U„.

S. THERMODYNAMICS: THE VIRIAL EXPANSION

The parameter p in the magnetic term of the spin
Hamiltonian (1) plays a role closely analogous to that
of the chemical potential in conventional many-particle
theory. This observation motivates the expansion of
the free energy 5' or, more precisely, of the sum
(W+PEs) in a Power series" in the "fugacity, "
S=e-» (p= 1/kT):

Q =ri! tr e 8(&exes+tv Jss) (54)

where iV,„,s is (1) with the magnetic term omitted and
tr„signifies the trace over the e-spin-deviation subspace
only, then the b„'s and the Q„'s are related inductively
to one another just as in Ref. 30:

(55)

"C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
3' It is generally the free energy per unit volume which is well

defined as iV, V —+ ~ with iV'/V fixed. Here we have chosen unit
spacing for the sites, so the appropriate limit is 8 /E with E —+ ~ .

n=P bni, .

Each Q„ is expressed as a sum of products, IIi(bi)"'.
The sum is taken over all diferent partitions, 8, of e
into mg groups of /. The associated coefFicient is the
number of diferent ways the partition J' can be realized
for a set of m distinguishable objects. Examples are

Qi bi, Qs ————bi'+bs, Qs ——bi'+3bibs+bs. (56)

Direct summation shows tha, t (55) and (53) pro-
duce (50).

For finite X all the Q„are non-n. egative and finite
(in fact, Q„=O for is) 21VS). W is, therefore, analytic
in 5 for all finite 5 for which Z does not vanish.
There exists an open neighborhood of the positive
real 5 axis in which Z&0. 8' is analytic in this
region, and the virial expansion (50) has a finite
radius of convergence. The analytic continuation
of (50) then give W for all k W is nonsingular
for physical b (b real, 0~5~1). Of course, in ac-
tual calculation we shall be interested in the N —&~
limit. The generally valid though seldom practical
procedure is to calculate the quantity one wants (e.g.,
W/1V or 3I/Ã) for finite S and then take X—&oo. Lee
and Yang" have shown in a somewhat diferent con-
text that the Ã —+~ limit of the thermodynamic
functions" may develop singularities for physical 5,
corresponding to actual phase transitions of the physical
system. In one and two dimensions (d = 1, 2) the Heisen-
berg model very probably does not exh, ibit a phase
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transition, 33 and the S—+~ thermodynamic functions
are accordingly expected to be nonsingular for physical
8 at all temperatures. For d=3 a singularity is antici-
pated as p, —+0+, 5 —+1, for T&T,. Note that for
p=O the spherical symmetry of H guarantees that
M=O. For finite E this value is always reached con-
tinuously Rs p —+ 0. If one cRlculRtes 3II for /+0, then
takes &V~~, and finally p, —+0, one expects M~O
continuously for d= 1, 2 and d=3 if 7&7,. However,
for d=3, T&T„.V ~~, the direction of the external
magnetic field (even as its magnitude goes to zero) de-
termines the direction of a magnetization whose magni-
tude does not approach zero with p. Thus, as p, goes
from 0+ to 0, the macroscopic magnetization Aips dis-
continuously. 3f=0 ls not RpploRched Rs p ~ 0. This ls
the broken symmetry of the ferromagnetic phase transi-
tion. By th, e "zero-field magnetization" we sha, ll mean
first M~oo for 5+1 and then'4 5~ 1 .

Unfortunately manipulations with 6nite E are seldom
feasible, so it is necessary to take iV —&~ at some inter-
mediate point in the calculations. One possibility is to
take the X—+oo limit of ft„/X before summing (50). It
has been pointed out by various authors" ""that these
operations are not necessarily commutative. In order to
use the raw virial expansion (50) with the E +so form-
for b /E, one must assume that (5'+PEs)/S with
)V ~ does possess a valid power series expansion in 5
in some neighborhood of 5=0 for the temperature in
question. "Note, however, that rearrangements of (50)
(such as regroupings and partial summations) may be
carried out for finite E. The E~~ convergence prop-
erties of the new forms thus obtained may be quite
diferent from those of the original expansion. The
thermodynamic coIQputatlon of Sec. 8 perforIQs such R

rearrangement and is implicitly based on the assumption
that afterwards E may validly be taken to infinity
before summation for sufFiciently low temperatures and
5= j..

"For d = 1 this is a consequence of Landau's general argument,
L. D. Landau and E. M. Lifshits, Statsstscat Ekyrsas (Pergarnon
Press, Ltd. , London, 1958), p. 482. The lack of phase transition
is generally believed for d =2 as well. In both cases it is suggested
by the divergence of the free spin-wave approximation to the
spin-deviation density Lace Sec. 6(x)]. Certainly the low-density
spin-wave picture holds for p=0 only if there exists a phase
transition.

3' For p, &0 it is preferable to work away from g =2' rather
than face the convergence questions associated with 5&1. Note
that p —+ —p, changes the direction but not the magnitude of ALL;

however, 5 ~ 5 ' is not a symmetry of (50), since E0 contains p.
3~ S. Katsura and H. Fujita, J. Chem. Phys. $9, 795 (1951};

Progr. Theoret. Phys. (Kyoto) 6, 489 (1951). G. E. Uhlenbeck
and G. %'. Ford, I.ecteres in Sta&'stkul 3fecheeics (American
Mathematical Society, Providence, 1963), Chap. 3. See also S.
Katsura, Progr. Theoret. Phys. (Kyoto) 13, 571 (1955); 20, 192
(1958); Advan. Phys. 12, 391 (1963).The author is indebted to
Dr. Katsura for bringing several of these valuable references to
his attention."J.E. Mayer) in Hued'buck der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1958), Vol. 12, p. 73.

3' The radius of convergence of the series need bear no relation
to the existence of a phase transition (Refs. 31, 35). Note that
for T=O, p&0, (50) holds.

The program now is to relate first the Q 's and then
the b 's to the functions describing the spin-deviation
mechanics. Equations (7), (10), and (29) show that

(').H.(1" tt;1" »)
~
.. .,=.s"~.(1

&&(1 tree t'"-*b~1 n), (57)

wliicli holds olily foi piopci Indices (1 ' ' ' tt) Rnd wlici'c
t:he analytic extension t s iP is—understood to be from
the t& 0 form of H . Converting the sum over states in
(54) to a position representa, tion, one 6nds that

Q =(&)"t» ~
I =s, t--'tt (58)

The trace notation for functions means an unrestricted
sum over diagonal elements, i.e., each of the indices
(1 I) is summed over all lattice sites. The qualifica-
tions tt= 0 and t —& sP—will be left implicit henceforth.
Equation (58) holds for an arbitrary bosots system if the
factor I'„ is omitted.

In passing now from the Q 's to the ft„'s the property
of connectivity will prove. pivotal. Formula (58) refers
only to diagonal elements of H„, IZ (1 tt;1 I).
Coiisidci' tlic cxpRiisioil (41) Rild (44) of tlic diagonal
H„ in terms of C~, l n. An individual term in this ex-
pansion consists of a product, QI~„CI t, where each
argument 1 e occurs once as a right-hand index and
once Rs R left-11Rnd index. Two C) fRctols IQRy 110w be
"linked" by one or more indices, e.g. , C,(1; )
)&Ctt( ~;1 ). When all such linkages have been
taken into account, a given term can be classified as
"disconnected" or connected" according as its factors
do or do not fall into two or more unlinked groups.
Denote the disconnected Rnd connected parts of
H„(1 tt; 1 tt) as, respectively,

$(H ) =D„; 6(H„)=C„; H„=D„+Cn .s (59)

(60)

The general expression is

D =Q g C"', C (1)=C (1;1), (61)
P t &n, Z& hn& =x

where the sum is taken over all diferent partitions I' of
the indices (1 I) into two or more dis)oint sets. Equa-
tion (61) should be compared with (44). For a system of
ordinary bosons we would be finished at this point.
CoilipRI'isoII of (61) Rild (58) (wiittcil foi bosoiis, i.c.
with P„aebst)nwith (53) identifies"

bosons (t)o trp (&)n tr(o(H bosons) (62)

"Our Eq. (62) is Eq. (L14) of Ref. 30.

The operations denoted by e and S may, of course, be
applied to any set of terms involving products of C~'s,
once the indices constituting the links" have been
specified. D„and C„are related but not equal to D„
and C„of (41). For example,

Ds(12) =Ci(1)CI(2)=Ds(12; 12)—Ci(1;2)CI(2; 1),
Cs(12) =Ci(1; 2)CI(2; 1)+Cs(12;12) .
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This result —that the boson virial coefficient is related
to the trace of the diagonally connected part of the
boson Green's function —guarantees that the thermo-
dynamical functions, in particular the free energy (50),
are extensive. " It is natural to conjecture that this
feature persists for the spin system despite the com-
plicating appearance of the projection P„ in (58). This
conjecture turns out to be correct.

The effect of the I'„projection oil the spin problem is
sorted out in detail in Appendix D. The outcome only
is stated below. The fundamental connectivity expressed
by the decomposition (41) involves solely the potential
matrix v. The extra connectivity of the diagonal ele-
ments is given by (59) and comes into (62). In the com-
bination trII„P of (58) the improper projection in
I'„=3 —l„sects still further connections. When I'„ is
multiplied out according to (11), it consists of unity
plus a sum of terms each involving a product of one or
more factors 8((vj), 25+1+v ~n The.arguments of the
6 functions belonging to each term are chosen disjointly
from among (1 m). When P„ is multiplied by the
diagonal H„, these 8 functions provide further "links"
between the various Cg's (or C~'s). Let us extend the
definition of the operations 6 and S to include this kind
of linkage. The result of Appendix D is that,

7„=(~)" tre(II„P„)=(i)"ftrC„P —tre(D„I„)j (63a)

= (i)"ftrC —tre(II„I )]. (63b)

Examples are

b =(i)"trC„, 1&n~2$;

~2S+1 (&)' +'ftrC2S+1 +II2S+1(11. )l. (64)

The evaluation of the free energy supplied by (50) and

(63) is, of course, entirely equivalent to Dyson's, 4'

though our derivation has followed a difI'erent path
a,nd emphasized somewhat dif'ferent points. The reader
is referred to Appendix A for a sketch of Dyson's
development.

6. REMARKS ON THE VIRIAL EXPANSION:
CONTENT AND USES

General Comments

(i) The formulas (63) for b do not contain E». This
is clear, since Q„of (58) is free of reference to the im-

proper subspace and (55) relates Q 's and b 's This.
property holds for the exact functions; however, as sug-
gested in Sec. 3, approximate evaluations of II„P„may
contain improper energies. Formula (36) showed that
there exist E~,~ED. If these are not exactly projected
out, there will be spurious contributions to b„carrying
factors expP(EO —E»). If the associated matrix ele-
ments are not at least exponentially small, such terms
will produce exponentially large errors in the low-

3' In eBect, there is one free coordinate in the trace. The rest
are di8erence coordinates via the connectivity.

40 Dyson I (157).

temperature thermodynamics. Worse yet, as e becomes
of order E, (37) shows the existence of improper states
for which the difference Eo—E» goes as E.Unless these
contributions are eliminated, all hope of making sense
of the S—+~ limit is lost. Luckily the situation is not
as bad as it might seem. See (viii) below.

(ii) When can the virial expansion be expected to be a
useful evaluation of the free energy? So long as (50) con.—

verges to the free energy in the vicinity of 5=0, a given
finite number of terms —for example, two —approxi-
mates W to any desired accuracy, provided 8 is suf-
ficiently small. Unfortunately 5 small requires Pp large.
Normally it is the zero-6eld limit, 5 —+ 1, which is of the
most theoretical interest. Here one must look not to 5
but to the b 's themselves to provide a practically con-
vergent schema for the free-energy calculation. The
schema we shall use in Sec. 8 corresponds to a rea, rrange-
ment and partial summation of selected terms of the
virial expansion. For reasons given in (v)—(viii), it seems
feasible only at low temperatures and for 8=3.

(iii) Equations (63) give two alternatives to the
basic expression for b„.Equivalent in any exact calcula-
tion, they emphasize diferent facets of the problem. In
(63a) each separate term contains contributions only
from proper states. The price paid is the appearance of
the combinatorically complex projections I'„and I„.
In (63b) all the projection is in, the second term. The
E» correspondingly appear in each of the two terms
separately and, of course, cancellingly. Interpretation
of the form (63b) is particularly simple. Equation (62)
shows that (i)" trC„ is just the virial coeScient of the
pure boson problem. The expression (i)" tr6(H„I ) is
the contribution to the virial coefficient from the im-
proper boson states. Its subtraction leaves the property,
spin 6~.

(iv) Even in the form (63a), containing only C~'s,

e, and projection operators, there is an arbitrariness,
associated with the selection rule (35), by which (as
discussed in Sec. 4) all forms P„C„P„,g~gg2, may be
eliminated. This seems all that can be said without
further narrowing the problem.

Syeci6c Remarks

The three-dimensional Heisenberg model at low tem-
peratures has certain simplifying features.

(v) Let us sketch roughly the relevant physics. For
d= 3 (in contrast to d= 1, 2) and at temperatures below
the Curie point, we do not expect M/E ~ 0 as p —& 0
fsee discussion after (56)]. In particular for 2=0,
3E/A = —5, so the spin-deviation density (e) is small
at low temperatures. Since the spin excitations obey
Bose statistics and have a k' spectrum, ' the over-
whelming majority of them have very low momenta.

«' Of course, the one-particle spectrum t,'2i) was only derived
at T=O; however, it is consistent with the low-density picture
that its main properties continue to hold at low but Qnite
temperatures.
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Now, the scattering of spin waves with lorn momenta is
very weak. Physically this feature is connected with the
fact that the zero-momentum mode, involving coherent
I'otRtlon of Rll splns thlough R sIQRll angle~ ls an cxcltR"
tion which, because of the spherical symmetry of the ex-
change interaction, can never cost any energy. Formally
it can be inferred from the structure of the interaction
matrix for a process in which two spin waves of total
momentum K scatter from an initial relative momentum
k to a final relative momentum k' (reading from left to
right): the Fourier transform of (25) is

(k~p(K)~k')=2J p (cos-,'K;—cosk;) cosk
'b—g) g~ Z

so that as K, k ~0 there is no interaction. In effect,
then, the d=3 low-temperature Heisenberg system ex-
hlblts the characterlstlcs of R low-density gRs of weakly
interacting particles, to which known techniques apply.
There are important ways in which this picture must be
qualified on closer inspection Lsee (viii) j; however, the
main lines will remain.

(vi) Continuing this thought for the moment, we can
anticipate the form of the temperature dependence of
the thermodynamics. Equation (21) gives the basic
spin-wave spectrum. " Thermodynamic factors carry
the exponent —PQ(k). At low temperatures only mo-
menta for which this exponent is order unity can con-
tribute appreciably. This means (k~&(T/5J)", thus
effectively limiting k to a region of momentum space of
volume proportional to T'".CoIrections bring in further
factors of ~k~ and, therefore, extra powers of T't'.
Similarly, the average energy, (H)—Eo, has a k' factor
from the spin-wave energy, in addition to the basic
limitation of the CGcctive momentum space, and goes as
T'/2 plus higher corrections. Actually there are always
other corrections duc to Srillouin zone edge CKccts

te g , (ix)] a. n. d to certain" kinematical effects Lsee

(vii)j, which carry factors e &o, 8)0, and are not,
therefore, analytic as functions of T'/'. The low-
temperature thermodynamic results, which we shall
calculate below, will, in summary, have the forIQ of
series in powers of T'/' and are to be regarded as at best
asymptotically valid, neglecting terms like exp( —J/k T).
Such contributions, while small at low temperatures,
render our methods useless in the region of the Curie
point Lsee Sec. 9 (ii)].

(vii) By the definition of Sec. 3, the lowest improper
eigenvalue of the ~-particle boson problem e(e, is
greater than Eo by a 6nitc energy gap. Kacb thermo-
dynamic factor carries this gap, so for e&n, the im-
proper subtraction in (63b) is exponentially small. 4' As
an example, notice that (28) and (36) allow one to write

4' It seems most unlikely that aN kinematical effects are of this
form. See Secs. 8 and 9(i).

48Actually what is obvious is that II+„ is small. That this
implies t'(II I ) small can be proved inductively from the relation
t see (D.3)j, $(HQ„)=D„—Ilgt Cg —6(Hyle) j.

directly

Hoe+i(11; 1 1 ')
I o-o, c- ~p

= (25+ 1) '(—i)'e+' exp( —2P5dJ(25+1))
X~(11')v(t), (65)

from which the subtracted term for b28+~ may be evalu-
ated by (64). The energy gap here is 25'(25+1).
Equation (38) gives inequalities on ri, . For 1 n~25,
there is no improper subspace, and spin and boson virial
coefficients are identical Lsee (64)). For 25&e&n„
spin and boson virial coeKcients are equal to within
exponential small terms, which cannot show up in. low-
temperature asymptotic expansion. Remember that
Dyson II obtained this result for all n but only at the
expense of drastically modifying He (see Appendix A).
In our formulation improper subtractions are essential
for rt I, )see (i) and (iii)j.We shall be able to show in
Sec. 8 by using the arguments of (iv) and (viii) tha, t a set
of apparently large contributions to b, e~m„cancel.
This makes it possible to prove in low-temperature
series and neglecting certain convergence difhculties
(see (viii) j a very limited equivalence between the spin
and boson thermodynamics.

(viii) The thermodynamic calculations which follow
will be carried out with the aid of perturbation theory.
Only in the discussion of b2 (Sec. 7) will we be able to
IQRkc statcIQcllts of Rny sol't of IQRtheIQRtlcRl 1lgoI'.
Generally we must be content with the summation of a
selected subset of diagrams and rough, term-by-term
estimates of the remainder. "Nevertheless, a few words
of physical justification for the vahdity of the perturba-
tion calculation may well be in order. Observe two
things: 6rst, that the validity of the asymptotic low-
temperature series depends only on the correct form of
the dynamics in the immediate neighborhood of I"

0

Lcf. the energy gap argument of (vii) ) and, second, that,
generally speaking, the breakdown of perturbation
theory is associated with the appearance of bound
states. "

Now, there are two sorts of bound states herc, proper
and improper. For m=2 proper bound states aIC
absen. t'4 4' in a region surrounding K (total pair rno-

. mentum) equals zero. Consequently, there is a finite
positive gap, E»—Eo&0, between- the lowest two-
particle proper bound-state energy and Eo. It seems
likely on the basis of the arguments given in (v)
that this result continues to hoM for higher n. If so,
then the proper states do not, in fact, inhuence the low-
temperature thermodynamics. There remains the possi-
bility that perturbation theory attributes spuriously
large contributions to these states. The purely computa-

4'In this we are no worse oG than previous authors. See also
footnote 13.

46 J. G. Hanus, in Quarterly Progress Report, Solid State and
Molecular Theory Group (MIT}, No. 43, p. 96, 1962; No. 44,
p. 38, 1962; No. 46, . 137, 1962 (unpublished); and Phys. Rev.
Letters 11,336 (1963 .
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tional point that all contributions wi11 turn out to in-
volve only low momcnta indicates that this is not so.

Qn the other hand, all improper states, which
according to (i) are projected out of the thermody-
namics, are bound in the sense that they contain
at least one stationary, (25+1)-occupied site. States
with L'r, —E,(25dJ(25+1)—in particular those with

F» E'0—involve additional binding. However, it takes
a rather large number of particles close together to gain
suKcient potential energy to OGset the higher momenta
necessary for localization and obtain energies below Eo.
The number n, measures the crossover point. The
"dangerous" improper bound states only show up in

C„, n~e, . We shall find in Sec. 8 that, to calculate
thermodynamics through order T4, we need deal only"
with Cq Rnd C2 and RI'c, therefore, sRfcly below this
limit.

The logic in both cases is the same: The bound states
do not inHuence the vital part of the spin-wave spectrum
near Eo and, correspondingly, the part of the perturba-
tion series which we shall usc is, to order T', unin-

Quenced by them. The bound states, in short, neither
should nor do RNect the low-temperature thermody-
namics. Perturbation theory correctly represents the

proper, low-lying spin excitations. As a special case, the
presence or absence of improper states is irrelevant to
order T'. The question of the order in T' ' up to which

this I'cIQRlns so ls tRkcn up ln Scc. 9.

For. e& t. th, is is not exact. For iY —~~,

b„t'I/~V= (n —1)!e-'a""«t I,(25nJP) j '.

I{) has Rn Rsylnptotlc cxpanslon fol lRlgc RrguIQcnt)
i.c., low temperature, giving"

b„&'&/cV= (n 1)—!(4rrSJP) '"
1 3 33

+ -+ —+ (70)n'" 8(25PJ)n"' 128(25PJ)'n""

which is exact in the asymptotic sense for b~. The free-
particle approximation to the low-temperature thermo-
dynamics Is ohtMIlcd by sun1111111g (50):

iVs+PRs= 1V(4rrSPJ) "-'

3Zf j2 33Z9 /2
&& ~;is+ + —+ (71)

8(25PJ) 128{25PJ)'
where

~&=~a{&)= Z— t9

3 Zp Zp
85

cycles, so

b„tsI = (i)"(n—1)!trI'I"-——(n —1)!

X p cxpL —npn(l ) ( „=,j; bt«& =b, . (68)

Simyle Calcu2ations

(ix) The form of bt Equati. ons (64), (30), a,nd (20)
glVC

(66)bt ——P exp) —PQ(it)
~
„=s].

FOI' cV ~~
p

/)y ~
—28dJP

dk
&&8Jp thos&

~ 2'
= s 'a~~~[Is(25JP) $", (6—7)

46 Rough]y speaking proper @-particle effects contribute as
T3"I2 (6th power of the spin-deviation density) or smaller.

4'H. 3. Dwight, Tabks of Imtegruls und Other &athenian'cd
Dutu (The Macmillan Company, New York, 1961), formulas 876
and 813.1.

where Io is the zeroth, -order Besscl function of imaginary
Rl'gllnlcIlt. Tllls Is cxRct. Scc (70) fol low-temperature
folIQ.

{x) The simplest approximation to b is to consider

only the zeroth order of perturbation theory, H„= I'„,
and to neglect altogether the projection I'„. This is
equivalent to calculating the. thermodynamics of a set
of free bosons with the spectrum {21) (i.e., IIa with
a =0). The connected part of trF„consists in the (n,—1)!

The ftrst omitted term in (71) is order Ts".
Formulas (70) and (71) have the anticipated form of

power series in T'/'. Note tha, t the boson statistics puts
the one-particle dynamics into b„, so a/l virial coeN-
clcnts hRvclcRdlng I l bchRvloI' FOI' gcnclRl dlIIlcn
sionality the leading term in (70) goes as n-s~', giving a
leading Za~s+I in (71).Thus, for both d= 1,2, the zeroth
approximation to (n) is divergent, suggesting that"
M/1V+& —S as T +0, as mention—ed in Sec. 5.

One might be tempted to try to improve on this ap-
proximation by using H = I'„but putting in I'„prop-
erly, thinking thus to obtain the leading kinematical
corrections to the thermodynamics. This is very mis-
leading. For example S=&, H2=1"~, gives b2=b2&"

2bts/X, an app—arent Ts correction. However, this
correction comes from the lowest approximation to
IIs(11; 11), a function which is actus, lly exponentially
small by (65). This pitfall has lead many authors"

"H. 3.Dwight, I'Ref. 47} formula 814.1.
49 In this and the following formula the equality sign is used in

the asymptotic sense.
»Actually, there are two sources of T' errors. Erroneous

kinematical effects tend to enter as T8{'8+»». Also, the random-
phase approximation of S. V, Tyablikov IUkr. blat. Zh. 11,
287 (1959)g and others (Ref. 5) misestimates the energy spectrum
of the thermodynamic spin waves, neglecting what are essentially
exchange corrections to the Hartree spectrum. Improvement of
the spectrum Liirst understood physicaiiy by Keifer and Loudon
(Ref. 10)j still leaves the kinematical error, T' for g=-', Le.g.,
H. 3. Callen, Phys. Rev. 130, 890 I',1963)g.
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(notably idiot including Dyson) to believe (wrongly)
that To terms are the leading correction to (71). In the
next three sections we shall examine in detail the actual
form of these corrections.

We shall need the dednitions:

K=k'+k", 2k =k' —k",

S(k,K) =Q(k')
l l -o+&&(k")

l -o

(76)

'7. THE d=3, N —+ ~, LOW-TEMPERATURE
SECOND VIRIAL COEFFICIENT

The ca,lculation of the second virial coefficient is free
of combinatorica, l difhculties and depends only on the
mechanics of the m=2 problem, which can be reduced
to quadratures without approximation. ""In Sec. 8 it
will turn out that at low temperatures the complete
thermodynanucs is Lin accordance with Sec. 6(v)]
dominated by the two-particle mechanics. The correct
b2 is, therefore, a necessary, unambiguous, and non-
trivial check on any low-temperature thermodynamic
calculation.

Equations (64) and (65) give,

bo (i)' t——rCo —21'5(2S—1) exp( —2PdJ) . (73)

This is exact at all temperatures. In the spirit of the low-

temperature asymptotic calculation, the second term
will be omitted henceforth. Knowing H2, we should in
principle simply extract the low-temperature behavior
from the relevant integrals. In fact, it turns out to be
easier to find the asymptotic behavior of each term in
the perturbation expansion and then to sum these con-
tributions. Bound states all have finite total pair mo-
mentum K and energies separated from Eo by a finite

gap. Perturbation theory, therefore, converges rigor-
ously in the region near Eo contributing to the asymp-
totic series. In accordance with the logic of Sec. 6 (viii),
the perturbation series should and will show contribu-
tions only from this region. So much for justification.

The calculation now is of a straight boson b2 and
follows conventional lines. Except for the absence of
thermodynamic propagators, it is closely analogous to
Dyson's calculation" of the complete thermodynamics.
It diR'ers in two respects: First, our knowledge of the
m=2 mechanics makes the use of perturbation theory
una, mbiguous and, second, there are no "supplementary
interactions" to be argued away (see Appendix A).

From (30) and (64),

b2 Q bo bo'"' = (i)-' Z(12
l
(~o(oio))

"gaol

12) (74)
n=o 1,2

where appropriate intermediate time integrations a,re
left implicit. In analyzing (74) it will be useful to make
reference to Eqs. (34)—(44) of Ref. 14. Comparison of
(34) there with our (30) establishes the (coordinate rep-
resentation) correspondences

(our) I'o ——I'o/2S (Ref. 14),
75

(oui)I ov= —ICoJ/(2S)o (Ref 14)

"Dyson II, Secs. 7 and 8.

=4SJ P(1—coso~E; cask;), (77)

and the 3X3 matrix, l(k, K),

l l(k, K)]@=cosh, (cosoiE, —cos&,), (78)

where i, j run over the spatial directions. The trans-
forms of Ref. 14 give (io~ 1),

n+1 K k, . ..k~p, o 1

de

— 2'

X [(oo Si+—io)' g (io S,—+io)] ', —
(79)

7=2

where the abbreviations i =/(k, K), S,=S(k,K) have
been used and the momentum sums run over the modi-
fied Brillouin zone F defined by (42) of Ref. 14. For
t) 0 the contour of integration can be closed in the
lower half cv-plane. The symmetry of the numerator in
the k brings about the cancellation (under the mo-
mentum sum) of each of the simple pole contributions
with one of the e terms arising from the second-order
pole. We are left with

g n+I

' See Ref. 6 for further details.

K. k1, ~ ~ knef-;

The term-by-term analysis of (80) is tedious but
straightforward. We shall summarize the salient logic
a.nd proceed to write down the result. "

As E —&~, the momentum sums can be transformed.
to integrals. The exponential factor forces K and k to be
small, in accordance with Sec. 6(v) and in confirmation
of the expectation that all low-temperature contribu-
tions come from the region where perturbation theory is
valid. All dependen. ce on the small momenta (aside from
the leading exponential) can be expanded in even powers
about zero. The finite limits of integration can be ex-
tended to infinity with exponentia, lly small error. Phase
space arguments (see Sec. 6(vi)] show tha, t the result-
ing expression is a power series in T' '. The leading de-
pendence might seem to be T' (P and two volume
elements); however, the weakness of the interaction
(Sec. 6(v)] and a certain formal symmetry between the
appearances of k1 and ~K give T4. Denominator singu-
larities occurring when other k, e/1, are small do not
contribute before T'/'. The leading contri. bution, which
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is all we shall calculate, is

M I C I3 A E I. W 0 R T I 8

This relationship can be used to write

where"

b2t."&/E=
16m'(25) (25PI)'

&o"'=&o"'5 'L31"+A—3],

b, ~"'=-', bo~'&(I"/25)" ' n) 2,

t (dX)/Q(1 —cosX;)]=0.505,

(81)

(82)

(83)

(84)

Ho(113; 1'2'3') =Co(113; 1'2'3')

+2LCo(13; 1'2')Cg(1; 3')+Co(13; 1'3')Cg(1; 2')

+C2(13; 2'3')Cg(1; 1')]. (89)

Of course, Ho(113; 1'2'3')=0, giving an equality be-
tween C3 and a sum of terms C2C~. However, even
assuming that we were ignorant of this, (89) can be used
to simphfy the expression for 8(HoIo) occurring in bo.
Io&'"'(123) equals 5(12)+h(13)+8(23)—28(123), so

trCo —(—i)'bo ——tr6(I/oIo) =3 Q LC,(112;112)
12

P(dX) cosXy(1 —cosX2)/Q (1—cosX )] (85)

and was proved by Dyson'4 to lie between 0 and 4.
Summation of (74) now gives the complete asymp-

totic low-temperature b2 through order T',

& =& "'+&o"'Lo(1—r /25) '—-' —(1/5)(A —-,')]. (86)

The "free" term 62&'& is given to the same accuracy
by (70),

3 33
b, ~o)/iV (8m5PJ) a~to 1+ —+ (87)

2'(25PI) 2'(25PJ)'
There are corrections to (86) of order To". Our result
agrees with the coefticient of (—2Pe '~z) in Dyson's
expressions for the free energy. "

8. LOW-TEMPERATURE THERMODYNAMICS
FOR d=3, N —+ ~

In this chapter we shall calculate the asymptotic low-

temperature free energy through, terms of order T'.
The standard of rigor of Sec. 7 cannot, unfortunately,
be maintained. The work falls into two parts: first, the
qualified elimination of eGects due to improper projec-
tions; second, the selection and summation of important
terms from the resulting boson problem. The central
argument of the first part is exact. In the second part
we shall rely on perturbative estimates and calculations
without justification beyond that given in Sec. 6.

From (32) Lor (35)] and Sec. 6(vii) we know that
I„H„~~;z is either zero or exponentially small, so long
as n&n, . In the spirit of the low-temperature calcula-
tion we may use this fact to derive relations among the
C, n&n„which in turn serve to simplify the form of
the thermodynamic subtractions, 6(H I„) Lcf. Eq.
(49) and Sec. 6(iv)]. Let 'us illustrate for +=2,3 and
S=~. The equality sign will be used below in the sense
of "equal to within exponentially small terms. "Now,

H2(11; 1'2') =0 implies C2(11; 1'2')

+2Cg(1; 1')Cg(1; 2') =0. (88)

+2Co(12; 11)Cg(1; 2)+4C2(12; 12)C,(1; 1)]
—2 Z LCo(111;111)+6C2(11;11)Ci(1; 1)], (90)

C.(11;)+P C((1;)C i(1;)=0,
l&n

(91)

which is actually exact, since it only depends on
I2P2P2 ——0. Again, the right-hand side is actually ex-
ponentially small by Sec. 6(vii). The point here is that,
by using only (88), we have eliminated all (C&)' terms
from (90). One such term would have been g q, 2 C~(1; 2)
XC~(2; 1)C~(1; 1), an apparent T' contribution. This
cancellation was 6rst mentioned in Sec. 6(x). It will be
shown to be quite general in what follows.

Any improper state has at least one (25+1)-occupied
site. I.et this site be 1. Remember the symmetry of
H„'s and C„'s in left (and right) indices. Write the ex-
pansion of H (1 ~ ~ .1(25+2) .I; 1'. rl,'), 25(n(N„
in terms of products of C~'s, l~n. Pick from this ex-
pansion only those terms each C& of which has at least
one 1 as a left-hand argument. In particular no such
term has more than (25+1) factors Cg. One can prove
by induction tha, t the sem of sech termsis zero. Equation
(88) is a special case. So is (89), when it is set to zero.
The heart of the proof is the observation that one may
employ a shorthand in which all arguments other than
the (25+1) improper 1's are dropped. Thus (88) be-
comes Co(11;)+C~(1;)C~(1;)=0, where the second term
stands for all (two) terms in the expansion of Ho(12; 1'2')
which have the indicated form when 1=2. Similarly

Ho(113; 1'2'3') =Co(11;)+Co(11;)Cg(;)
+C.(1;)C (1;)+C (;)K' (1;)],

which immediately yields (89) in the form

Co(11;)+Co(1;)Cg(1;)=0.

Th,e point is that when this notation is used the com-
binatoric takes care of itself. The general expression
for S=-,', n(n„ is

"G.N. Watson, Quart. J. Math. Io, 266 (1939),
54 Dyson I, Eq. (89).
"Dyson II, (131). The extra factors arise because of slight

dennitional differences.

«which (88) and (89) are special cases. Analogous equa, -

tions hold for 5)~, n(n„ in accordance with the rule
given above.



Now let us use these results to rewrite

H (1. 1(25+2). e; 1' e') for e&rc,

Again employ the shorthand to expand in terms of suc-
cessively more complicated connected parts:

[C~(1')3'"'[C~(')3"" '+C2(11)[C~(1)j" '

&[C~()1"" '+C~(1')[C~(1;)j"[C~()l"" '

+Cm()[C~(1)l'"'[C~()1" " '+" . .

By using (91) or its analog for higher spins, we may
cancel all terms in which the sum of the orders of those
C~'s containing the argument 1 is less than e,. If, as con-
jectured, m, is actually equal to the upper limit provided
by (38), then every term in the remaining expression
fol Hg(1' ' '1(25+2) ' '5) 1 ' ' 8 ) must contalI1 a't
least one Cq with /& (25+ 1)'. The same is true generally
of I„H„and, therefore, of tr8(FI„I„).We do not em-
phasize the precise value of m, or the precise degree of
cancellation. "What is important is that the improper
subtractions in (63b) do not involve terms g~ C& with
all low l's.

Note that we do sot argue that the terms remaining in
trt'(H I,), e~e„are actually smaIL On the contrary
there are exponentially large improper contributions
[Sec.6(iii)j.The point is that the large improper terms
in tr8(H I„) exactly cancel corresponding terms in
trC . Appreciable contributions to the low-temperature
thekmodyIkaIQkcs coIQe fkom pI'ocesses knvolvkng ln an
intrinsic way only a small number of particles, i.e., from
terms involving C~'s with only low /. What we have
proved is that there are no such terms in, tr6(H„I„).

We expect perturbation theory to be valid for the low-
order C~'s, which do contribute. In fact, perturbation

terms involving higher numbers of particles seem to get
smaller roughly as T"" [Sec. 6(vi)$. Despite the~e
term-by-term estimates, lt;ls hkely. [Sec. 6(vill) j that
there are divergences for l~e, due to bound improper
states. We need not worry, however, since the improper
divergences of the two terms in (63b) must cancel,
while associated proper contributions for large l re-
main small. "

We have arrived at what we shall call the "Dyson pre-
scription" for calculating the low-temperature free en-

ergy: treat the problem as a set of true bosons governed
by H~, calculate in perturbation theory, and do not
worry about higher-order divergences. This receipt cer-
tainly works through order T4 and almost certainly does
rot work to all orders in T'~'. The limit on its validity
is discussed in Sec. 9. In the remainder of this section
we shall accept it without further question.

There are many elegant methods for treating the
low density, weakly interacting Bose gas, with which we
are now faced. '~ This is exactly the problem which Dyson
solved. "Our formulation in terms of the virial expan-
sion is not economical at this point. Rather than be
either apish or cumbersome, we choose to sketch the
virial procedure and jump immediately to an inter-
mediate point which can be attained by any one of the
sevek al methods.

The terms in the free energy involving only Cq were
summed in Sec. 6(x) to give Wo, Eq. (71).The class of
terms next in importance consists of traces of products
of C2's and Cj's linked sequentially as "ladders":
C2(;o&)(olCa l~&(&IC,aid&C, (cd;). Each Cu is now ex-
panded perturbatively in r. Terms of each order in s
are summed in the virial expansion (50) with appropriate
multiplicity and fugacity factors. The resulting free-
energy contributions are

Wg~" &/Ã = (—P) (2I)"(1/&7"+')
11m(-,'K+k, )+n(-,'K—k,)-

e(-', K+kg)e(-,'-K —ki) tr j|l
a=i p=~ (5~—5~)

Wg ——Q Wg'"', (93)
as compared to (80). The 6nal result is

Wi= 2Ãv~(~)782 —&2"')

where

~(l ) =[as"&"~—11-'=(a-~ exp+a(k)
~ „,j—1}-~. (94)

This expression should be compared with (80). The
asymptotic evaluation proceeds as previously. There is
an over-all factor of two different, since it is 5'b2/2! that
is a term in the free energy. The e(-', Kak, ) in the nu-
merator of the product all lead to contributions of
order higher than T4. The factors e(-,'K+kq) play the
role of exp( —P5q) in keeping K and k~ small. They in-
troduce an extra factor of (Zs~~)' in each term of (92)

"Equation (35) is valid for all N. Much of it remains unused
so far and may provide further cancellation.

which is accurate through order T'.
Terms in the virial expansion having C~'s and Cq's

not in the ladder configuration and terms including one
or more C~, t'& 2, are all smaller than T4 in perturbation
estimate. The author cannot claim to have made a
systematic and rigorous examination of the general
term; however, the arguments of Secs. 6 and 7 are easy
to apply to any given term. "The divergences associ-
ated with n&N, are probably a property of sums of

'7 For example, see L. P. Kadano8 and G. Baym, QNu@t@es
SIIIHsIicel 3fechugics (%. A. Benjamin, Inc., New York, 1962).

58 Dyson II, Secs. 5—10.
~ This is, of course, consistent with Dyson's estimates of higher-

order regular terms.
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terms rather than individual terms. In any case we
have already dealt with them.

The upshot of our evaluation, valid through T', is

where (71), (72), (86), and (95) are the needed refer-
ences. This agrees with Dyson. "' The corresponding
magnetization follows from (51) and (52).

9. CONCI UDING DISCUSSION

(i) Up to what order in TI~' can the "Dyson pre-
scription" for calculating the low-temperature thermo-
dynamics be expected to remain valid? It is mathe-
matically conceivable that the failures of perturbation
theory are such as miraculously to ignore all (bound)
improper states, while treating proper states correctly.
If so, then the prescription is asymptotically exact. This
seems unlikely. We adopt the more pedestrian philoso-

phy that there is no reason to trust boson results beyond
the point at which trt'(H„I„) starts contributing. "
There is no reason to believe that perturbation theory
does not err in treating processes involving more than
e, particles. Furthermore, finite kinematical effects
may show up even before this point. In either case we
assume that the perturbatively calculated boson terms
are in error. At what order in T'~' do these terms 6rst
enter) Three factors conspire to help the "Dyson
prescription": (a) Improper projections tend to dis-

courage "ladder" structure, thus making temperature
dependence additive over the various connected parts;
(b) Sec. 8 uses only a sma. ll part of the full (35); there
may well be further cancellations in trt'(H I ); (c) the
weakness of the interaction v gives powers of T' ' be-

yond those due simply to density factors. All in all it
seems likely that the "Dyson prescription" is asymp-
totically valid up to roughly T'"' '=T~&' +')"+' but
not beyond. This is, evidently, a very strong statement.

(II) Tile fact tlIRt, tllc DysoII plcscl'IptloII ls RBVIIIp-

totically valid to a high order in the temperature does
rot mean that it can be expected to be good near the
Curie point. There are several reasons. Most simply,
contributions which we have neglected as exponentially
small are appreciable at T,. More importantly, the
physical picture on which we have based our arguments
fails to hold: when ALII=0, (n)=S, so there is a very
large density of spin deviations, and low momenta do
not necessarily dominate the mechanics. " Interactions
are strong at higher momenta, so the system is no longer
effectively weakly-interacting. Stated otherwise, one
has no rationale for believing that spin waves remain

Note that Dyson's proof of the smallness of kinematical
effects is for a di8erent Hamiltonian and does not apply here.
See Appendix A."The author feels that this and the following points cast doubt
on Kittel's argument that the magnon description is valid near
the Curie Temperature LC. Kittel, in I'roceeChNgs of the Ekvenlh
CollogQe A'P1$pcte, L~$RNsoMN) 196Zp edIted by J. SQlldt (North-
Holland Publishing Company, Amsterdam, 1963), p. 80,

the dominant excitations of the system. Purthermore,
regardless of dynamical interactions, I.„H„I„may no
longer be neglected even for n&n„so 6(H I„) sub-

tractions are import;ant, The finiteness of individual

spin magnitudes must make itself felt at high spin-
devlatlon dellslty,

(iii) The consequences of the close relation between
the Heisenberg and corresponding boson problems can
also be translated into the language of thermodynamic
Green's functions. '7 Note, for example, that the spec-
trum of the Green's function, ( i)—((5 (1; t)5+(1'; 0))+),
collslstlllg of cllclgy differences between tI Rnd-(B+1)-
spin-deviation states, must differ from the spectrum of
the corresponding boson Green's function (with Hs)
only through the omission of those diikrcnces involving

improper energies. The singularities in the energy vari-
able of the spin and boson functions are the same. The
difference in kinematics only aR'ects the relative weight-

ings. At low temperatures and for small momenta and
energies sharper statements are presumably possible,
corresponding to the simpliflcations we have noted in
the thermodynamically important features of the
behavior.

ACKNOWLEDGMENTS

I wish, to thank Professor Kurt Gottfried for much
assistance and encouragement. I am indebted to Pro-
fessor Robert A. Harris. It is a pleasure to acknowledge
the hospitality of the Aspen Institute for Theoretical
Physics and financial support from the Miller Institute
for Basic Research in Science and the National Science
Foundation.

APPENDIX A: DYSON'S CALCULATION

Let us sketch the logic of Dyson's calculation, ' com-

paring it at each stage with ours. There are three steps:
(i) Dyson manufactures a boson Hamiltonian LDy-

son I (57)j whose action (in an occupation number rep-
resentation) onto right-hand boson states simulates the
action of (1) onto right-hand spin states. Our operator
($(8/N) —2 ), wlllcll wRs used III Scc.. 3, Rcts oil icft-
hand indices, so it is not surprising that Dyson's boson
Hamiltonian turns out to be H~~. With the aid of a
"kinematical Green's function, " which plays a role

closely analogous to our /, Dyson formulates the free
energy of the spin system as LDyson I (157)1

where Wg is the complete boson free energy and I Vl cor-
lesponds to our improper subtractions. This ls a precise
parallel to our (50) and (63b).

(ii) Dyson observes that the peculiar properties of
the improper energies for N~n, Le.g. , our (36)—(38)j
means that Ws and Wr contain (cancelling) exponen-

tially large contributions at low temperatures. He
chooses, therefore, to add to his Hamiltonian an infinite
set of "supplementary interactions, "H, I Dyson II (26)
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a,nd (123)], with the properties that (a) they have no
effect on the proper spectrum of Hat and (b) all im-

proper eigenenergies of (Hat+H, ) are separatei from
L~'0 by a positive energy gap. The spin free energy can
now be written,

(A2)&&= &a' —&r',

corresponding to the boson free energy with (Ha'+H, )
minus associated improper subtractions. Property (b)
now allows Dyson to prove (Dyson II Sec. 4) that Wr'
is exponentially small at low temperatures, so the spin
problem is asymptotically exactly equivalent to a boson
problem with (Ha"+H, ).

By contrast, we use the fact that property (b) holds
for Ha so long as»(», . This and the selection rule (35)
allow us to demonstrate (without introducing any
supplementary interactions) the low-temperature can-
cellation of all terms in 8 z involving only connected
parts C~ with low l. Higher terms in 8"y cancel against
terms in 8'~ whose proper parts are small. "%e are
left with the task of computing terms in 8'~ involving
C& with only low /. Dyson also arrives at essentially this
point, as we shall now see.

(iii) Dyson solves the boson problem (Hp"+H, ) by
perturbation theory away from free spin waves [Sec.
6(x)]. There are two kinds of interaction, H, and the
four-point matrix v in H& . Dyson denotes as "regular"
all those perturbation terms involving only e~. Terms in-
cluding one or more H, are called "irregular. "Thus,

Wa'= Wp+ Wz+ Ws, (A3)

corresponding to free, regular, and irregular terms, re-
spectively. Dyson now argues [Dyson II Sec. 9] tha, t
8', is exponentially small at low temperatures and is
lead to conclude that (l'Vp+Wa) is the a,symptotically
exact Heisenberg free energy. He accordingly sums terms
to T'.

Now, there is clearly an inconsistency: Wa ——Wp+ Wa,
so comparison of (A1)—(A3) gives

WB+Wr= 0

at low temperatures to within exponentially small
terms. 8'z, however, contains exponentially large terms,
so 8", cannot be small. Of course, TVg contains ex-
ponentially large counterterms from improper states,
since (A1) holds and Ep is the true ground state of the
spin system. The extent to which 6nite terms remain
from this cancellation is not made clear. Dyson was
aware of this inconsistency [Dyson II after (125)] but
conjectured that it would not affect T' results.

The author discusses in Sec. 9(i) the limit of validity
of the "Dyson prescription" (W= Wp+Wzp). It seems
likely that the prescription fails somewhere near T'"'".
The fact that it is good to such a high order in T' '
testifies to the validity of the physical picture on which
it is based [Sec. 6(v)]. However, Dyson's introduction
of H, is certainly unnecessary and can be argued to pose
more difhculties than it solves.

Neglect problems of degeneracy and note that the left
and right eigenvectors corresponding to the same eigen-
value can be paired "' Re.member tha, t in (B1) l y& is»ot
generally the Hermitian adjoint of (y l. An elementary
argument shows that (ply'&=0 for pity'. The possi-
bility (y l

y&=0 is excluded by the assumption of linear
independence, so we can normalize according to

The completeness assumption implies that an arbitrary
left or right vector has a unique expansion in the cor-
responding basis of eigenvectors, so the unit operator
can be exhibited as usual,

1=2 Iv&(vl

Wave functions for the boson system are defined by
[cf. (14)]

n

&&l II Pz(z) lO)=„z(1 "»)
i=1

(B4)

and satisfy (15) and (16) with the projections omitted.
Of course, p~~ is not the adjoint of q ~.

The boson Green's function H, has the representation,

H (1» 1'. »'p))

= (—z)"
v [(u (8, Ep)+z p]— —

This should be compared to (17). The energies L~"» do
not appear in (17), so

E„q~,~=0. (B6)

Equations (85), (17), and (29) relate the spin and boson

"Left- and right-eigenvalue equations are identical.

APPENDIX 8: THE CORRESPONDING
BOSON PROBLEM

The fact that H~ is not Hermitian will ma, ke it dif-
ficult unambiguously to exclude certain types of patho-
logical behavior in what follows, Our purpose here is
merely to delineate the structure of the connection be-
tween the boson and spin problems; therefore, we shall

assume at the outset a number of hypotheses sufhcient
to prohibit anomalies. Should these hypotheses prove
wrong upon closer examination, it is hoped that the
relevant structure will persist. In any case the boson
subspace related to H„E„must by (29) be well behaved.

Assume, then, that H~ possesses complete sets
of linearly independent left and right e-particle
eigenvectors,
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wave functions belonging to proper eigenenergies:

~„=(h-)"V„, P ...'={h.)- V„'. (fl7)

Equations (86) and {37) may also be obtained by
writing the Schrodiiiger equation in the matrix form(31).

APPENDIX C: THE CONNECTED KERNEL FOR H.

The proof of Eqs. {35)—(37) of the text may be
approa, ched in several diR'erent ways. Weinberg's
paper'~ contains a very general constructive demon-
stration. 1A'e shall here adopt the far more pedestrian
philosophy of simply observing that the H which
solves (35) WItll tile dcfIIlltlons (36) Rnd (37) docs, 111

fact, satisfy the original differential equation of motion.
It is convenient to use not (26) but the corresponding

right-hand equation of motion, which may be written
symbolically

II-(~(~/~~) —~.)= (—~)" '~(&)1- (C1)

A couple of remarks are required. II~ is non-Hermitian,
so the Heisenberg representation boson held operators,
p(t) and QI(t), are not Hermitian conjugates. To get
equations of motion for the indices occurring in the PI
operators, one must de6ne a Green's function of two
time variables, h and t', associated with P and ft, re-
spectively. After computing equations of motion, one
may use the observation that II„ is a function only of
(3—3') to eliminate 3'. Similarly, when the operator
(i(8/Bt) —2„)is applied on the right of a matrix product
which includes integration over an intermediate time
variable Lc.f. after Eq. (25)], it must be understood to
take the equation of motion with respect to the farthest
right time and then to employ the time difI'erence de-
pendence to involve the integrated, intermediate time.
With these provisos, then, take {i(B/R)—2„) from the
right onto (35) and invoke the symmetry of K„ in its
r1ght-hand lnd1ces:

-,'(—i)"-Ie!E.=-,'(II.—D„)(i(B/Bt)—a.). (C2)

Given (C2) for all orders l(II, (C1), and the defini-

tion (36), one must verify inductively that (C2) repro-
duces (37) fol order B.By dcfinlt10n D„RlwRys coIltMIis
1', so (II D„) has no di—scontinuity at 3=0 The.
typical term in D„ is a product of connected parts,
IIC. Resulting from such a term in D„, there are two

types of contribution to the right-ha, nd side of (C2):
(a) terms of the form (IIC)e, where the potential v

connects two of the C's appearing in the product, and

(b) terms of the form —(II'C)( i)' 'l!KI, w—here

(i(B/R) ZI) opera—ting from the right has replaced
some givcll CI by KI, according to (C2) foi l(II. EqilR-
tion (37) for l(N allows the type (b) terms to be re-

written, 2(II'C)C—CI s The (a) a.nd (b) terms now

have the same form. Finally, group the terms on the
right of (C2) according to the number of C factors.
Type (a) terms with two C's give just (37) to order e,
where the extra factor of two arises from the symmetry
of v in its left-hand indices. There are no type (b) terms

with two C's. For each higher number of C's, the reader
will readily convince himself that the (a) and (b) type
terms exactly cancel one another.

The result towards which we are aiming is

II-P-=Z L II f~(&IPI)j"'j.
l &&s, Zflm]=e

(D3)

To obtain (D3) from (D1) we need only show that the
over-all effect of the projection P„ in (D1) is to turn
each CI into the associated 6(IIIPI). Let us do this.
Choose son1e paltltlon I. A paltlal decomposition of

(D1) including all but not only those terms conforming

to I' is performed as follows: let the sets of arguments
associated with I' be g;; e; will denote the number of
elements (arguments) in g;; p; is the set of partitions of

g;. Pick out from H„ the subset of terms,

II LZ II (C;)"-]=IIII-" (D4)
i I's lit, Zfs lfmfs =tsar

Observe that (i) all terms in (D4) do appear in II~, be-

cause of the PI in the structure of II„and (ii) no term
in 8' and rot in (D4) can lead to terms in (D1) con-

forming to I', since all other terms already contain viola-
tions of I'. Finally, write P„as
P =HI( II P2S+I)1III' P2S+I]

i «Psi,
= III P-;jLTI' P»+Il, (D5)

wlml e II(I,! dcIlotcs tllc pl odiic t ovci. Rll fRC toi's

APPENDIX D: VIRIAL COEFFICIENT FOR
THE SPIN PROBLEM

In order to establish Eq. (63) we begin by analyzing
the structure of the diagonal II„P„appe Rri ng in (58).
Equations (59), (61), R,nd (11) give

II-P =2 L II (CI)"'j
I' l &n, Zg lmf =)z

X Ir (1-I-"(&»+»)), (»)
«28+1~

where the term m„= I, ngl ——0 for l&n has been included.
A typical term in (Dl) involves the product of a number
of Cl factors with a number of I2g+~ factors. The Cl
factors are, by the de6nition (59), unlinked. We con-

sider, however, the extended definition Lgiven above

(63)j, whereby an I2s~i ma, y connect two C&'s in the
sense C (1 )Cs(2 )I2&+I(12 ). Take some par-
ticular term in the expansion of (D1).Form ail hnkages.
The sets of arguments belonging to factors not connected

by a series of links are disjoint. Th, refOre, , the linkage
analysis defines a partition of the indices (1 .e). Now
collect all terms in (D1) corresponding to each partition
I . 01M such part1tlon cons1sts of coIQplete connect1V1ty
of all the arguments. The associated terms in (D1) are
e(II„P„),
e(II„P.)=C.P,

+ terms involving two or more CI's
and associated connecting I~s+I's. (D2)
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Pss+r((25+1}) with indices, (2S+1},contained in g;
and Q' is the product over all other (2S+1)-tuples of
indices. The leading term in the expansion of Q' in 1
and I2~+& is just unity. All further terms violate P.
The full contribution of P to (D1) is thus contained in

Q;H„,P„,. a. nd is simply given by Q;8(H„,.P,.). The
contribution of any partition P to (D1) may be obtained
in this way, so (D3) holds. When the trace of (D3) is
taken to evaluate Q„by (58), the equivalence in the

trace of different distributions of the arguments (1 I)
for fixed m& provides the numerical factors necessary to
identify b& from (55). Equation (63) results.

The above argument is general enough to prove
the structure (D3) for the full H„(1. rr; 1' I')
XP„(1' n'). This is of some interest, since it allows

(48) to be converted into an integral equation directly
for 8(H„P„).Note in passing that $(H P )= $(D„P„),
so (48) is certainly consistent with (D3).
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Superconducting and Normal State Properties of Dilute
Indium-Tin Alloys: Bulk and Thin Film
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Measurements are reported of normal-state and superconducting-state properties of bulk and thin-film
indium-tin alloys. For the bulk samples, whose compositions were in the range 0—5.8 at.% tin, the residual
resistivities, critical magnetic fields, and critical temperatures were measured. It is shown that both similarity
conditions are well obeyed for the critical Gelds of samples containing 0—1.8 at.% Sn, for which detailed data
were taken. High-purity films were produced containing up to 5 at.% tin. From resistance measurements, the
critical temperatures, critical fields, thicknesses, and residual resistivities of the Glms were obtained. The
formula for boundary scattering due to Fuchs has been recast into a more convenient form from which one
may calculate the intrinsic mean free path and intrinsic resistivity directly from the measured resistivity and
thickness. From the resistivity measurements, one may infer a value for the product of intrinsic resistivity
and mean free path, pl, of 1.6)&10 "0cm'. The critical-temperature measurements indicate that bulk and Glm
specimens having the same composition do not have the same critical temperature. On the basis of a model
which attributes the shift in critical temperature to stress eGects, formulas are derived from which one
may calculate the stress in a Glm as well as the equivalent (i.e., stress-shifted) bulk critical Geld for any
film. However, the stress-shifted bulk critical-Geld curves obtained in this way for the indium alloy films are
nearly the same as one would have obtained under the assumption of similarity. Analysis of the critical-
temperature results indicates that while stresses in the most dilute Glms are probably relieved by ordinary
dislocation Qow, some other mechanism, perhaps twinning, dominates in the more concentrated alloys. The
largest uniaxial stress calculated for the films studied was 2.6&(10g dyn/cmg, which was obtained for a film
of indium containing 2.6 at.% tin.

INTRODUCTION

ITH a view tn studying and understanding mean-
free-path effects upon the critical fields of super-

conducting alloy films, a study was undertaken of
dilute alloys of indium containing tin. The indium-tin
system was chosen for several reasons. First, the critical
temperatures of the dilute alloys, i.e., 0-5 at.% Sn, lie
in a temperature range which is convenient for measure-
ment, 3.4—3.9'K. Second, both constituents have low
boiling points, which makes for ease of evaporation.
Third, since the self-diGusion of indium and the dif-
fusion of tin in indium are both relatively large at room
temperature, well-annealed, homogeneous alloy Glms
are readily obtained. Finally, previous work on indium
Glms' had demonstrated that their superconducting
properties are well behaved and indicated that indium
alloy Glms might also have well-behaved properties.

*Present address: IBM Components Division, East Fishkill,
New York.

t Present address: United Aircraft Research Laboratory, East
Hartford, Connecticut.' A. M. Toxen, Phys. Rev. 123, 442 (1961).

To properly analyze film critical-Geld data, one must
know the critical fields of bulk samples having the same
compositions as the Glms. For this reason, a careful
study of bulk indium-tin alloys was also undertaken.

The work to be reported falls naturally into two
parts: that related to measurements on the bulk speci-
mens, and that pertaining to the evaporated Glms.
Therefore, the paper will be divided into two sections.

In Part 1, measurements of the residual resistivity,
critical temperature T„and critical field B,of the bulk
alloys are reported. The composition range studied was
0—5.8 at.% tin in indium. The concept of similarity is
discussed and it is shown that both similarity conditions
are quite well obeyed for samples containing 0—1.8
at.% Sn, for which detailed data were taken.

In Part 2, the film measurements are discussed. The
discussion includes the preparation of the Glms, their
compositions, the electrical measurements made upon
them, and their critical temperatures. From the elec-
trical measurements, the intrinsic residual resistivity
(corrected for boundary scattering) is obtained and
together with the critical temperature measurements,


