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The augmented-plane-wave (APW) method has been used to calculate energy bands for a number of V,X
compounds having the P-wolfram structure, including hypothetical V3Al, V3Si, V3Co, V3Ga, V3Ge, and
V3As. These calculations have been carried out at symmetry points in the Brillouin zone for all the above
compounds and, in addition, along symmetry lines for V3Ga so that a rough density of states could be con-
structed for this compound. It has been found that: (a) the calculated density of states is in qualitative
agreement with the schematic model proposed by Clogston and Jaccarino to explain the temperature de-
pendence of the Knight shifts and the susceptibility for VBGa; (b) the Fermi energy for VIGa coincides with
a peak in the density-of-states curve which is due primarily to the vanadium 3d bands; (c) the APW wave
functions at the Fermi surface for V3Ga contain an admixture of gallium 4p character which is an order of
magnitude smaller than that predicted by Clogston and Jaccarino to account for the negative Knight shift
at the gallium site; (d) to a good approximation, a rigid-band model can be used to represent the variation
in the density of states at the Fermi surface for the series of compounds V&Ga, VqGe, and VqAs; (e) the
energy bands for hypothetical V3Al and V3Si are very similar to those obtained for V3Ga and V3Ge, re-
spectively; (f) the gross features of the energy bands for these compounds are relatively insensitive to the
potentials used in these calculations, though the width and position of the vanadium 3d bands relative to the
other pertinent bands is potential-dependent; (g) the linear chain model for these V~X compounds provides
an inadequate description of their energy-band structure.

I. INTRODUCTION

'HE binary intermetallic compounds having the
AQ composition and the P-wolfram structure

are of some theoretical interest and practical importance
because they include materials with the highest super-
conducting transition temperatures that have been ob-
served to date. Matthias, Geballe, and Compton' have
tabulated the forty-odd compounds with this structure
that have been prepared thus far and this information
is summarized in Table I. In this table the compounds
are divided according to the atomic number of the 8
atom; for those compounds which have been found to
become superconducting, the transition temperatures
are given in parentheses. According to Table I, the A
atom is always a transition element, while the 8 atoms
can be either transition or nontransition elements.
From an energy-band point of view, it is reasonable
to divide these 238 compounds into two categories,
depending on whether the 8 atom is a transition or
nontransition element. If gold is included with the
transition elements, then those compounds in the first
four columns of Table I fall into one category while
those in the last three fall into the other.

Some of the interesting electronic properties which
these compounds possess, in addition to their high-
superconducting transition temperatures, have been
summarized previously by Clogston and Jaccarino. '
These properties include:

(a) A large low-temperature electronic specific heat
for U3Si and VSGa';

(b) strongly temperature-dependent Knight shifts

'B. T. Matthias, T. H. Geballe, and V. B. Compton, Rev.
Mod. Phys. 35, 1 (1963).' A. M. Clogston and V. Jaccarino, Phys. Rev. 121, 1357 (1961).'F. J. Morin and J. P Maita, Phy. s Rev 129, 1.115 (.1963).

A

and susceptibilities for those compounds with high
superconducting transition temperatures",

(c) positive vanadium atom Knight shifts which de-
crease with decreasing temperature;

(d) negative 8 atom Knight shifts, the magnitudes
of which increase with decreasing temperature;

(e) susceptibilities which increase with decreasing
temperatures.

To explain these experimental results, Clogston and
Jaccarino' have proposed a rather schematic energy-
band model for V3Ga. They assume a conduction band
formed principally from vanadium 4s and 4p and
gallium 4p-type atomic states which overlaps a narrower
band formed mainly from the vanadium 3d-type states.
The gallium 4s electrons are assumed to occupy a
band far below the Fermi energy. The Fermi energy
for VSGa is assumed to coincide with a peak in the
density-of-states curve which is due primarily to vana-
dium 3d- and gallium 4p-type atomic states. From the
temperature dependence of the susceptibility, they esti-
mate that this peak has a characteristic width of
approximately 0.04 eV. The negative Knight shift at
the gallium sites is attributed to core polarization by
the gallium 4p electrons at the Fermi surface. At the
vanadium sites, the positive Knight shift is explained
in terms of a combined temperature-independent orbital
paramagnetism' and temperature-dependent core polar-
ization by vanadium 3d electrons at the Fermi surface.

In order to determine the validity for this model,
the augmented-plane-wave (APW) methodr has been

4 W. E.Blumberg, J.Eisinger, V. Jaccarino, and B.T.Matthias,
Phys. Rev. Letters 5, 149 (1960).

5H. J. Williams and R. C. Sherwood, Bull. Am. Phys. Soc.
Ser. II, 5, 430 (1960).

6A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Yafet,
Phys. Rev. Letters 9, 262 (1962).' J. C. Slater, Phys. Rev. 51, 846 (1937).
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TAszz I. Summary of the A38 compounds having the P-wolfram structure, divided according to the atomic number of the 8 atom.
The superconducting transition temperatures are given in parentheses in those cases where they have been measured.

26 Fe

CrlRu (3.3)

76 Os

NbaOs(1. 05)
Mo~Os (7.2)

27 Co

VBCo

45 Rh

VIRh (0.38)
Cr3Rh
NbsRh(2. 50)

77 Ir

Tiqir (5.4)
V3Ir
Cr3Ir (0.45)
Nb 3Ir (1.7)
Mohair(8. 8)

28 Ni

46 Pd

78 Pt

TigP t (0.58)
VsP t (2.83)
CrIPt
NbgPt(9. 2)

29 Cu

47 Ag

79 Au

TigAu
VIAu (0.74)
Zr)Au (0.92)
NbgAu (11.5)

30 Zn

48 Cd

80 Hg

13 Al

Nb3A1 (17.5)
Mo Al(0.58)

31 Ga

VEGa(16.5)
Cr, Ga
NbsGa(14. 5)
MosGa(0. 76)

49 In

Nb 3In (9.2)

81 Tl

14 Si

VBSi (17.1)
Cr3Si
Mo3Si (1.30)

32 Ge

V Ge(6.O1)
Cr3Ge
Nb3Ge (6.90)
Mo3Ge (1.43)

50 Sn

V3Sn (7.0)
Nb3Sn (18.05)
Ta&Sn (6.4)

82 Pb

ZrqPb (0.76)

15 P

33 As

V3As

51 Sb

Ti3Sb (5.8)
v sb (0.8o)
NbgSb

83 Bi

used to calculate energy bands for several Var com-
pounds having the P-wolfram structure, where X=A1,
Si, Co, Ga, Ge, and As. (Hereafter, VsX will be used
to designate those A38 compounds with vanadium
atoms at the A sites. ) The basic APW computer
programs, originally written by Saffren' and Wood' for
monatomic crystal structures, have been extended by
Switendick ' to handle structures containing two differ-
ent types of atoms per unit cell. Only minor modi6ca-
tions to Switendick's general program were required to
handle the P-wolfram structure.

The results of the APW calculations for VSGa agree
qualitatively with the schematic density-of-states model
proposed by Clogston and Jaccarino. A pair of bands
which are predominantly gallium 4s-like in character
are found to lie well below the Fermi energy, separated
by an energy gap from the overlapping conduction
bands. The vanadium 3d bands are found to have a
width of approximately 0.5 Ry and lie in the midst of
bands which represent the vanadium 4s-, 4p-, and
gallium 4p-type states. These vanadium 3d bands
exhibit considerable anisotropy and are divided roughly
into two sub-bands, separated by a minimum in the
density of states, similar to that found by Wood' for
body-centered cubic iron. The gross features of these
3d bands are fa,irly insensitive to the potentials used
in these calculations as well as to the particular atom
at the X site, and are qualitatively similar for V3Ga,
VSGe, V3As, and hypothetical V3Al and VBSi.

The calculated density of states for V3Ga exhibits
considerable structure in addition to the minimum de-

s M. M. SaiIren, Bull. Anr. Phys. Soc. 5, 298 (1960).
9 J. H. Wood, Phys. Rev. 126, 517 (1962).
'0 A. C. Switendick, Solid-State and Molecular Theory Group,

Massachusetts Institute of Technology, Quarterly Progress Report
No. 49, p. 41, 1963 (unpublished).

scribed above. There is a peak in the density of states
just before this minimum, and the Fermi energy for
Vsoa falls at this peak. Assuming a rigid-band model,
the Fermi energy for V30e falls near the leading edge
of this peak. , while that for V3As lies near the minirnurn
in the density-of-states curve.

Analysis of the APW wave functions for V3Ga in the
vicinity of the Fermi energy suggests tha, t they are
predominantly vanadium 3d-like in character, the ad-
mixture of gallium 4p character being less than 5%.
Clogston and Jaccarino have estimated that approxi-
mately equal amounts of vanadium 3d and gallium 4p
character are required at the Fermi surface to account
for the temperature-dependent Knight shifts at the
respective sites. Limited studies indicate that the ad-
mixture of gallium 4p character at the Fermi surface
is not enhanced appreciably by reasonable variations
in the vanadium or gallium potentials used in the
present series of calculations.

The most striking feature of these V3X compounds
is the high density of states at the Fermi energy N'(0)
which is inferred from the low-temperature electronic
specific heat and susceptibility measurements. In the
case of V3Ga, the specific heat and susceptibility meas-
urements yield values for X(0) of 7.1 and 5.6 spin
states per eV-vanadium atom, respectively. The latter
result is only approximate since it is obtained by cor-
recting the measured susceptibility for orbital effects,
as estimated by Clogston et a/. s These values for X(0)
are two or three times larger than those found in
transition metals. They are several times larger than
the value of 1.3 spin states per eV-vanadium atom
which results from a crude density-of-states calcula-
tion for VSGa, based on the present APW results. This
situation has led Clogston" to suggest that the sus-

"A. M. Clogston, Phys. Rev. 136, A8 (1964).
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ceptibilities and specific heats for these VSX compounds
are strongly affected by exchange and electron-phonon
interactions, respectively. Using reasonable estimates
for these interaction parameters, Clogston has shown
that the effect of such interactions is to exaggerate the
temperature dependence of the susceptibility and to
enhance the low-temperature specific heat. As a result
of this proposal, a less severe peak in the density of
states at the Fermi surface is required to interpret the
specific heat and susceptibility data for U3Ga.

Recently, Weger" has proposed an energy-band
model for VSGa and V3Si which emphasizes the one-
dimensional chains of atoms which exist in the P-
wolfram structure. He points out that the nearest-
neighbor vanadium distance, d is somewhat smaller
than the distance between vanadium atoms belonging
to different chains, (-,')'"d. Using a tight-binding ap-
proximation and considering only nearest-neighbor in-
teractions, he 6nds 3d energy bands and a Fermi surface
which reQect these one-dimensional properties. A similar
analysis, carried through during the present investiga-
tion, indicates that this linear chain model predicts an
oversimplified 3d energy band structure for these VSX
compounds.

A detailed discussion of the symmetry properties of
the p-wolfram structure is contained in the following
section. This section also includes a description of the
APW method as it is applied to these compounds and
a discussion of the methods used to calculate the po-
tentials used in the present series of calculations. Sec-
tion III contains the results of these APW calculations,
an analysis of the wave functions in various energy
ranges, and a description of the density-of-states calcu-
lation. The linear chain model for the P-wolfram com-
pounds is treated in Sec. IU. The last section contains
a general discussion of the APW results and their
relation to experiment.

II. DESCRIPTION OF THE CALCULATION

The space group for the 238 compounds having the
P-wolfram structure is Os'(Pm3e), which is a non-
symmorphic space group with a simple cubic Bravais
lattice. The distribution of atoms in the simple cubic
unit cell is shown in Fig. 1, where the A atoms are
represented touching spheres and the j3 atoms are
shaded. The 8 atoms occupy body-centered cubic
positions while the A atoms are situated on the faces
of the simple cube. The point-group symmetries at the
8 and A atom sites are Ts(m3) and Dss(42m),
respectively.

The nearest neighbors to an A atom are two other
A atoms at a distance of 2'a, where a is the cube edge.
These atoms form chains parallel to the coordinate
axes. The second neighbors to an 2 atom are four 8
atoms, at a distance ~r+Sa, while the third neighbors
are eight 2 atoms at a distance sr+6a. These third

"M. Weger, Rev. Mod. Phys. 36, 175 (1964).

FIG. i. Distribution of atoms in the unit cell for the A 38
compounds having the P-wolfram structure. The A atoms are
represented by touching spheres on the surface of the simple-
cubic unit cell while the 8-atom spheres occupy body-centered
cubic positions. These 8-atom spheres are shaded and are not
drawn with maximum radii.

neighbor atoms belong to chains perpendicular to the
chain containing the atom at the origin. The nearest
neighbors to a 8 atom are twelve 3 atoms at a distance
~QSa, which indicates the close-packed nature of this
structure.

The unit cell for the P-wolfram structure contains
six A and two 8 atoms, so that one expects a large
number of valence electrons per unit cell and a corre-
spondingly large number of occupied energy bands
below the Fermi energy. For example, in V&Ga, the
gallium 3d bands are occupied and well below the
energy range of the 4s-4p bands. Since each vanadium
atom has five electrons in the 3d-4s atomic states, we

expect 30 electrons per unit cell in the corresponding
energy-band states. Similarly, each gallium atom con-
tributes two 4s and one 4p electrons for a total of six
electrons per unit cell. This yields a total of 36 elec-
trons per unit cell for V3Ga, so that the Fermi surface
must fall somewhere in the vicinity of the 18th band,
assuming each band is doubly occupied by electrons
of either spin. The situation for V3Al, V3Si, V3Ge, and
VBAs is analogous. In the case of VSCo, each cobalt
atom contributes the nine electrons associated with the
3d-4s atomic states, yielding a total of 48 electrons per
unit cell.

The symmetry properties for the space group 0&'
have been investigated independently by Gorzkowski"
and the present author. " Although the irreducible
representations for this space group are available in the
literature, we shall summarize these results here for
convenience. As usual, the irreducible representations
for points inside the first Brillouin zone can be ob-
tained rather simply from those for the corresponding
point group. On the surface of the Brillouin zone, the

"W. Gorzkowski, Phys. Stat. Soiidi 3, 910 (1963).
'4L. F. Mattheiss, Solid-State and Molecular Theory Group,

Massachusetts Institute of Technology, Quarterly Progress Re-
port No. 51, p. 54, 1964 (unpublished).
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FIG. 3. The free-election energy bands for the p-wolfram structure along symmetry directions in the Brillouin zone.
The energy is in units n'= (e/m. )'k'.

is necessary to know which spherical harmonics are
contained in an APW wave function of a given sym-
metry. This information is summarized in Table IV for
the irreducible representations at symmetry points in
the Brillouin zone for the P-wolfram structure. This
analysis is best understood in terms of the tight-
binding approximation. It specifies which tight-binding
functions (formed from the various atomic orbitals) are
associated with a given irreducible representation of the
space group Oq' for the P-wolfram structure.

Slater, in his original formulation of the APW method,
treated a general crystal structure containing an arbi-
trary number of atoms per unit cell, ~ although the
first applications of the method have been to the body-
and face-centered cubic structures. '' In applying the
method, it is convenient (though not necessary) to
approximate the actual crystal potential by a "muf6n-
tin" potential. This "muffin-tin" potential consists of
spheres surrounding each atomic site in which the
potential is assumed to be spherical and regions be-
tween the spheres where the potential is assumed to
be constant. Different atoms can have different sphere
radii, though it is advantageous to make the spheres
as large as possible for a given structure. The value
chosen for the constant potential between the APW
spheres is generally the average value of the potential
in this region.

The manner in which symmetry has been incorpo-
rated into the APW method for the body- and face-
centered cubic structures has been described by Wood.
The extension of Wood's symmetrization techniques to

Point I'
8 Atoms

/=0 /=1 /=2
A Atoms

/'=0 /= i /=2

~1
~1~
r2
I 2I

~12

~25
I 25'

~15
~15'

Point X
X1
X2
X3
X4

Point 3f
3f1
3II2
3f3
314
3EI5

Hap3'
DES

Mg
3I1P

Point R
R1
R2
R3
R4

3p
P

2p
3p

P
P
P
P

3p
2p

2d

2d
2d
2d
d

Sd
3d
4d
3d

2d
2d
2d
2d
3d
2d

2d
4d
3d

TABLE IV. The occurrence of low-order spherical harmonics in
the APW wave functions for the P-wolfram structure at sym-
metry points in the Brillouin zone. Blank entries represent
spherical harmonics which are absent by symmetry.
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a compound containing Fatoms per unit cell is straight-
forward. . Switendick has written general APW computer
programs which can handle structures containing two
different types of atoms per unit cell, ' provided the
structure has inversion symmetry. (The Hamiltonian
matrix can be made real for structures with inversion
symmetry. ) Switendick's programs are readily adapted
to any such compound by introducing the appropriate
structure factor plus some other minor changes.

Aside from the ease with which the APW method
can be adapted to a particular crystal structure, the
method has another advantage which favors its appli-
cation to compounds of the P-wolfram type. Namely,
the method converges fairly rapidly, not only for broad
plane-wave type bands, but also for narrow d bands.
One possible drawback to the method, as it has been
applied here, involves the "muon-tin" potential ap-
proximation. The use of a "muon-tin" potential for
these V3X compounds is clearly less satisfactory than
in the case of the transition metals since the V atoms
are situated at sites of rather low symmetry. The as-
sumption of a spherically symmetric potential inside
the APW spheres is probably quite reasonable for X
atoms, though it is more questionable in the case of
the V atoms. Furthermore, one can expect signifj. cant
differences between the actual potential and the con-
stant value that is assumed in the region between the
APW spheres. Since the vanadium 3d wave functions
have their maxima inside the APW spheres and only
their "tails" extend into the region between spheres,
the 3d bands are probably less affected by this ap-
proximation. Thus, one might expect that the principal
errors introduced by the "muon-tin" approximation
affect the 3d bandwidth and the positioning of the 3d
bands with respect to the plane-wave and other types
of bands. This is not a serious limitation since these
parameters are uncertain in all energy-band calcula-
tions which involve d electrons; in the case of the
transition metals, the correct s-d energy separation is
usually inferred from experiment.

For these V3X compounds, one can construct touch-
ing APW spheres around the V atoms with radii E.„
=a/4. This is shown in Fig. 1. The APW spheres
around the X atoms will touch the V atom APW
sPheres when R,=sr(+5 —1)a. In this case, aPProxi-
mately 64% of the total volume of the unit cell is
contained within the six V atom and two X atom APW
spheres. This compares favorably with the 74 and 68%
which result from touching spheres in the face-centered
and body-centered cubic structures, respectively.

The approximate crystal potentials used in the pres-
ent calculations have been obtained in a manner analo-
gous to that described earlier for calculations on transi-
tion metals. ""The method involves the superposition
of Coulomb potentials and charge densities of the
appropriate Hartree-Fock atomic solutions situated at

' L. F. Mattheiss, Phys. Rev. 133, A1399 (1964)."L.F. Mattheiss, Phys. Rev. 134, A970 (1964).

their appropriate sites in the lattice, spherically aver-
aged to yield spherically symmetric functions inside a
given APW sphere. Exchange has been introduced by
means of the Slater free-electron exchange approxima-
tion, ' being proportional to the cube root of the super-
imposed charge densities. Thus, the vanadium po-
tentials for the various VSX compounds differ slightly,
these differences being due to small changes in the
lattice constants and differences in the tails of the X
atoms which extend into the vanadium APW spheres.

Unpublished calculations on several transition metals
by the author indicate that equivalent energy bands
are obtained if one uses the Hartree-Fock-Slater atomic
solutions as obtained by Herman and Skillman" in-
stead of the Hartree-Fock solutions, and these have
been used in the present series of calculations. Also,
the APW sphere radii for the X atoms have not been
taken as the maximum value R,= re(/5 —1)a in these
calculations. Rather, these radii have been determined
by the condition that the potential at the X atom
sphere radius equal that at the vanadium sphere
radius, R, =4a. Table V contains the values of R, used

TABLE V. The assumed atomic con6gurations, the number of
electrons per unit cell, the lattice constants a (in atomic units),
and the X atom sphere radii (also in atomic units) which have
been used in the present series of APW energy-band calculations
for the V3X compounds, where the X atoms include Al, Si, Co,
Ga, Ge, and As.

V3X

VRA1
V3Si
V3Co
VSGa
VgGa
VgGe
VIAs

Configuration
V X

(3d)'(4s)' (3s)'(3P)'
(3d)4(4s) ~ (3s) (3p)
(3d)4(4s)' (3d)'(4s)'
(3d)'(4s)' (4s)'(4P)'
(3d)'(4s)' (4s)'(4P)'
(»)'(4s)' (4s)'(4P)'
(3d)'(4s)' (4s)'(4P)'

No. of
electrons
per unit

cell

36
38
48
36
36
38
40

Lattice
constan. 't

a (atomic
units)

9.038
8.923
8.835
9.127
9.127
9.012
8.976

Rg
(atomic
units)

2.383
2.463
2.049
2.380
2.166
2.482
2.499

"I.C. Sister, Phys. Rev. 81, 385 (1951)."F.Herman and S. Skillman, Atom& Structure Calculations
(Prentice-Hall, 1nc., Englewood Cli6's, New Jersey, 1963).

~ W. B.Pearson, A Handbook of Lattice Spacings aed Structures
of Metals and Ailoys (Pergamon Press, Inc. , New York, 1958).

in the calculations for the various VSX compounds, as
well as other pertinent information such as the assumed
atomic conhguration, the number of electrons per unit
cell, and the lattice constant a. These lattice constants,
with the exception of that for hypothetical V3Al, were
the room-temperature values tabulated by Pearson. "
These were found to di6er in some cases from the
values quoted by Matthias, Geballe, and Compton. '
However, since the results appear to be insensitive to
small changes in the lattice constant, these diGerences
are not very significant. The lattice constant for hypo-
thetical VsA1 has been estimated by comparing the
lattice constants for V3Si, Vaoa, and Vaoe and carrying
out a reasonable extrapolation.
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III. APW RESULTS

The energy bands E(k) for VsGa are plotted along
symmetry directions in the simple cubic Brillouin zone
in Fig. 4. The energy is in Rydbergs, and the zero of
energy has been chosen to coincide with the energy
eigenvalue for the state with I'r symmetry, E(I'r.).
Since the APW calculations have been carried out
only at symmetry points and at the midpoints of the
symmetry lines for V3Ga, the smooth curves in Fig. 4
represent a free-hand interpolation between this limited
set of points such that the compatibility relations are
satisfied. Convergence studies indicate that the APK
energy eigenvalues are converged to within 0.01 Ry at
symmetry points in the Brillouin zone. For reasons of
economy, this accuracy was sometimes reduced to 0.02
Ry along symmetry lines and this has undoubtedly
introduced some structure into the E(k) curves shown
in Fig. 4. Along the symmetry line 5, it proved to be
very impractical to calculate results which were con-
verged to 0.02 Ry; as a consequence, the curves along
the S direction in Fig. 4 are merely sketched in, using
the unconverged results as a guide.

In the energy range of 1.2 Ry which is spanned in

Fig. 4, there are approximately forty bands. These
have been identified only at symmetry points, for
obvious reasons. The identification of bands along
symmetry lines can usually be accomplished by means
of the compatibility relations of Table III, though
some ambiguities exist. Since we shall concern our-
selves only with the gross features of these results,
these ambiguities are not important in the following
discussions.

Before attempting to comment on these results in

any detail, it is useful to compare these calculations
for V3Ga with the analogous results for the other V3X
compounds. This is done in Fig. 5. Here, the energy-
band results at the symmetry points F, X, iV, and E.
are plotted as a function of the X atom for a number of
VSX compounds. At each symmetry point, the left-
hand results represent the energy-band states for V36a.
These have been calculated using two diQerent vana-
dium potentials. These potentials have been obtained by
assuming diRerent atomic configurations for vanadium,
namely (3d)'(4s)' and (3d)4(4s)'. The notation VsGa-
(II) and VsGa(I) is used to distinguish between these
two calculations, the Roman numeral in parentheses



indicating the number of vanadium 4s electrons. The
energy bands shown in Fig. 4 correspond to VpGa(I).
In Pig. 5, the results to the right of those for V3Ga are
those for V36e, V3As, V3Si, and hypothetical V3Al,
respectively. These latter results have all been obtained
using a vanadium potential which corresponds to a
(3d)'(4s)' atomic configuration and the appropriate
con6guration for the corresponding X atom.

The combined results of Figs. 4 and 5 permit one
to understand some of the gross features of these
rather complicated energy bands. The lowest pair of
bands (I'&,F2., X» Mp, Rp) are presumably associated
with the X atom s electrons, the next six bands
(P2p, ? ip,' Xi,Xp X4', Mp, Mp, Mip, Mi, Mp,' R4) with the X
atom p electrons. The next group of bands which are
connected by the approximately parallel lines in Fig. 5
correspond to the vanadium 3d bands. This interpreta-
tion is consistent with the results of the group-theo-
retical analysis which are summarized in Table IV. In
plotting Figs. 4 and 5, the zero of energy has been taken
at E(I'i ) since there is a single vanadium 3d-band state
with this symmetry and there are no other states
of the same symmetry in the immediate energy range.
It therefore represents a convenient reference energy
for comparing these different V3X calculations.

An interesting feature of the vanadium 3d bands is
the fact that they appear to be divided into two sub-
bands, separated by a minimum in the density of
states. This division occurs in the energy range from
0.1 to 0.2 Ry in Figs. 4 and 5. It occurs at the symmetry
points F, X, and E. in the Brillouin zone, though not at
M. From Fig. 4 it is seen that there are no states
crossing from one sub-band to the other along the 6
direction in the Brillouin zone. Energy-band states do
pass through this energy range along other symmetry
and nonsymmetry directions in the Brillouin zone.
However, since these bands have appreciable slope in
this region, their contribution to the density of states
is expected to be small.

This division of the vanadium 3d bands into two
sub-bands is an important feature of the P-wolfram

structure since the Fermi energy for V3Ga falls near
the top of the lower sub-band. In view of this striking
result, an attempt has been made to isolate those
interactions responsible for this 3d-band structure. One

aspect of this investigation involves a series of calcula-
tions for V3Ga in which either the vanadium or gallium
atoms have been omitted from the P-wolfram structure.
With the vanadium atoms omitted, the gallium atoms
form a body-centered cubic lattice. The eigenvalues
for body-centered cubic gallium have been obtained
using the P-wolfram APW program, modified to omit
the vanadium atoms. The gallium potential and lattice
constant were identical to those used in the VpGa(I)
calculation. When these same potentials and lattice
constants were assumed in a similar calculation using
Wood's body-centered APW program, ' identical results

were obtained. This agreement constitutes an excellent
test of the P-wolfram APW program and an over-all
check on the group-theoretical analysis for the space
group 0&'. The energy bands for body-centered gallium
are found to be rather free-electron like, the energy
gaps introduced by the Fourier coefficients of the
potential being of the order of 0.1 Ry.

The more interesting results are those obtained from
calculations on hypothetical U3 in which the gallium
atoms are omitted from the P-wolfram structure. In a
series of such calculations on V3, the constant potential
between the APW spheres U, has been varied from
—1.39 Ry (the value appropriate for VpGa) to —0.89
Ry and finally to —0.39 Ry. The results of these
calculations are presented in Fig. 6, where again the
zero of energy has been taken at E(I",). In this figure,
the energy bands for U3Ga are compared with those
for V3 at the various symmetry points in the Brillouin
zone as a function of V„ the constant value of the
"muon-tin" potential between the APK spheres. The
first interesting point to be noticed from this figure
is the fact that the 3d bands are not greatly affected
by the absence of the gallium atoms. This result pre-
cludes the possibility that the 3d structure is due to
interactions between the vanadium 3d and gallium 4s
or 4p bands. This result may also be inferred from Fig.
5, where the 3d-band structure is relatively insensitive
to considerable variations in the s-d or p-d energy
separations. Secondly, the 3d bands narrow as the
constant potential between the APW spheres is raised.
This is an expected result since raising the potential
outside the vanadium spheres places the 3d electrons
in a deeper and deeper potential well, and this causes
them to become more localized. Third, since the 3d-
band structure is rather insensitive to the vanadium
s-d energy separation, it is probably not due to vana-
dium s-d interactions. Finally„ the energy separation
between the two vanadium 3d sub-bands is approxi-
mately proportional to the total 3d bandwidth. This
result suggests that the division of the vanadium 3d
bands into two sub-bands is due to vanadium d-d
interactions. Since we shall show in the following sec-
tion that nearest-neighbor interactions cannot account
for this division, we must conclude that it is due to
second- or higher-neighbor interactions.

It is interesting to contrast the energy bands shown
in Figs. 4 and 5 with those obtained for VSCo. The
latter results are presented in Fig. 7. Since these
calculations have been carried out only at symmetry
points in the Brillouin zone, the bands along symmetry
lines are merely sketched in such that they are con-
sistent with the compatibility relations. The high
density of energy-band states prevents any serious
errors in such a free-hand interpolation process. These
energy bands for V3Co differ from those shown in Figs.
4 and 5 in three respects. First, the thirty vanadium
3d bands are now overlapped by the ten cobalt 3d
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bands. By comparing Figs. 4, 5, and 7 it is clear that
the cobalt 3d bands lie near the bottom of the vanadium
3d bands, as they should. Second, it appears that the
interaction between vanadium and cobalt 3d bands is
stronger than that between vanadium 3d and X atom
s and p bands. Third, the bands above and below the
combined cobalt and vanadium 3d bands are more
free-electron like in character than those shown in
Figs. 4 and 5. This is evident from a comparison be-
tween Fig. 7 and free-electron bands shown in Fig. 3.

Of course, the separation of the energy-band results
of Figs. 4 and 5 into X atom s and p bands and
vanadium 3d bands should not be taken too literally,
since there will clearly be mixing between the various
bands. The extent to which this mixing occurs in any
given band can be determined by examining the corre-
sponding APK wave functions. These AP% wave
functions are composite in nature, being expanded in

terms of spherical harmonics inside the APK spheres
and plane waves in the region between spheres. When
the APW function is normalized over a unit cell, the
normalization integral yieMs the fractional charge as-
sociated with each spherical harmonic inside the six
V atom and two X atom spheres as well as the frac-
tional charge between the spheres.

Some typical results that have been obtained from
a wave function analysis for V3Ga(I) and V&Ga(II) are
included in Tables VI and VII. Table VI contains some
limited results for V3Ga(I), including states which
transform like I'~, I'2, and I'~ . In Table VII the wave
functions with Xz symmetry for V3Ga(I) are compared
with those for V~Ga(II). The entries under PW repre-
sent the fractional charge contained in the plane-wave
region between the AP% spheres. Similarly, the entries
under Ga and V represent the fractional s, p, or d
charge that is contained within the two gallium or six
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TABLE VI. Analysis of V3Ga(I) APW wave functions for states
with I'1, I'2, and I'& symmetry. The entries under PW represent
the fraction'al charge in the plane-wave region between the APW
spheres. The entries under Ga and V represent the fractional
charge inside the two gallium and six vanadium APW spheres
that is associated with a given spherical harmonic in the APW
expansion.

State Energy
Ga

PW 4s 4p 4d

r2

Il
I 1

r2
F2

—0.646—0.456
0.000
0.008
0.344
0.367
1.067

0.488
0.342
0.279
0.152
0.345
0.029
0.358

0.320
0.493

~ ~ ~

0.014
0.362
0.114
0.046

0.187

~ ~ ~

0.049
0.171

~ ~ ~

0.035

~ ~ ~

0.004
0.546

0.004
0.128
0.712
0.780
0.089
0.852
0.009

vanadium spheres. A total of 13 spherical harmonics
have been included in the present series of calculations.
Those fractions which do not add up to 1.0 contain
some admixture of these higher spherical harmonics,
which in general proves to be small. Blank entries
represent spherical harmonics which are absent because
of symmetry (see Table IV).

While the results contained in Tables VI and VII
represent only two points in the Brillouin zone, limited
sampling at other points suggests that these results
are fairly representative examples of the wave-function
character in any given energy range. These results
indicate that there is considerable admixture in the
bands which previously have been identified as gallium
4s and 4p and vanadium 3d bands on the basis of
group-theoretical arguments. The lowest pair of bands
(I"&,

I"&., X&), which previously have been associated with
the gallium 4s electrons, are found to contain significant
fractions of vanadium 4s, 4p, and even 3d charge. The
same situation exists for the next group of bands that

have been associated with the gallium 4p electrons.
The second state with X& symmetry in Table VII
contains only 15% gallium 4p character in the case of
VsGa(I) and 5% in the case of VsGa(II). To a certain
extent, the differences between the results for VsGa(I)
and VsGa(II) are due to the fact that the gallium
sphere radius is about 10%%uo smaller in the latter case.

As one moves into the energy range of the vanadium
3d bands, the fractional vanadium 3d charge increases
noticeably, especially near the center of the band.
There is a corresponding decrease in the fractional
charge outside the spheres. This reQects the fact that
the vanadium 3d functions are more localized than the
4s- and 4p-type functions. The radial 3d functions
have their maxima inside the vanadium APW spheres,
and only their "tails" extend into the regions between
spheres. The outermost maxima for the vanadium and
gallium 4s- and 4p-type functions occur in the plane-
wave region, and this accounts for the increased charge
in this region when the admixture of these functions is
increased.

These limited results concerning the APW wave
functions for VSGa provide additional insight into the
nature of the energy bands for these V3X compounds.
For instance, they suggest a reasonable explanation
for the behavior of the state with I'& symmetry which
cuts through the energy range of the vanadium 3d
bands in V3Ga, V3Ge, and V3As, as shown in Fig. 5.
According to the results of Table VI, this state contains
approximately the same admixture of gallium and
vanadium 4s-type charge as the lowest I"& state. As the
X atom 4s band becomes more tightly bound, this
upper F& state presumably drops below the vanadium
3d bands and becomes the bottom of the vanadium 4s
conduction band. Comparison of the results for VsGa(I)

TABLE VII. Analysis of the V~Ga(I) and V~Ga(II) APW wave functions for states with Xq symmetry.

Energy

VgGa (I) —0.546—0.225
0.019
0.024
0.0/6
0.217
0.316
0.497
0.65
0.799
0.999

V Ga (II)—0.392—0.144—0.016
0.041
0.059
0.151
0.302
0.523
0.755
0.856
1.096

0.448
0.438
0.337
0.234
0.248
0.105
0.170
0.231
0.282
0.366
0.395

0.532
0.398
0.128
0.265
0.239
0.083
0.266
0.215
0.367
0.450
0.437

0.371
0.063
0.013
0.003
0.001
0.000
0.033
0.109
0.066
0.006
0.000

0.254
0.037
0.000
0.017
0.006
0.000
0.065
0.062
0.112
0.032
0.000

Ga
4p

0.009
0.128
0.037
0.001
0.013
0.008
0.004
0.005
0.184
0.016
0.082

0.007
0.054
0.005
0.027
0.000
0.005
0.020
0.013
0.155
0.005
0.108

0.000
0.003
0.009
0.000
0.020
0.008
0.030
0.029
0.004
0.053
0.070

0.000
0.002
0.001
0.003
0.005
0.002
0.017
0.015
0.005
0.033
0.044

0.107
0.113
0.045
0.019
0.015
0.006
0.041
0.114
0.087
0.142
0.072

0.130
0.097
0.011
0.009
0.019
0.005
0.053
0.107
0.086
0.165
0.060

V
4p

0.039
0.012
0.072
0.037
0.055
0.028
0.045
0.069
0.071
0.101
0.271

0.040
0.006
0.002
0.048
0.059
0.020
0.099
0.052
0.103
0.124
0.258

0.026
0.240
0.480
0.700
0.644
0.836
0.670
0.433
0.279
0.279
0.056

0.035
0.405
0.851
0.625
0.667
0.878
0.474
0.532
0.146
0.155
0.040
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and hypothetical V3 in Fig. 7 supports this interpreta-
tion. In general, the wave-function analysis of Tables
VI and VII suggests that there is considerable ad-
mixture in the bands which previously have been
identiaed as X atom s and p and vanadium 3d bands
on the basis of group-theoretical arguments. The charge
distributions for either V3Ga(I) or V3Ga(II) are roughly
consistent with our initial assumption of neutral vana-
dium and gallium atoms in the calculation of the po-
tential. Finally, these APW calculations for V3Ga(I)
and V3Ga(II) predict that the admixture of gallium

4p wave function in the vicinity of the Fermi energy
is small. This result is at variance with the energy-band
model for VSGa that has been proposed by Clogston
and Jaccarino to explain the negative Knight shift
at the gallium site. The amount of gallium 4p character
at the Fermi energy is not enhanced appreciably by
small adjustments to the vanadium and gallium po-
tentials or changes in the APW sphere radius at the
gallium site.

A rather crude density-of-states calculation has been
carried out for V~Ga(I), using the results of Fig. 4.
Graphical interpolation has been used to obtain ap-
proximate eigenvalues at more general points in the
interior of the Brillouin zone. In view of the large
number of bands involved and the uncertainties in-
herent in such an interpolation procedure, this density-
of-states calculation has been limited so as to include
only 514 points in the Brillouin zone. This is equivalent
to subdividing the Brillouin zone into cubes whose

edge dimensions are ~~(7r/a). Such a density-of-states
calculation is expected to be crude, though it should
reAect some of the gross features of these energy-band
calculations for V3Ga(I).

The density-of-states curve for VEGa(I) which re-
sults from this calculation is shown in Fig. 8. This
curve is in the form of a histogram, using an energy
mesh DE=0.02 Ry. This figure includes a total of 36
bands and extends over an energy range which includes
most of the gallium 4s and 4p bands as well as the
vanadium 4s, 4p, and 3d bands. The dashed line in

Fig. 8 indicates the number of electrons per unit cell
that are available at a given energy. From this figure,
the Fermi energy for VSGa(I) is estimated to be 0.10
Ry. Assuming a rigid-band model, the Fermi energies
for V3Ge and V3As are estimated to be 0.11 and 0.14
Ry, respectively. The Fermi energies for V3Ga and
V3Ge coincide with the peak in the density-of-states
curve which occurs just before the minimum at 0.15
Ry. The Fermi energy for V&As falls near the minimum
itself.

Weger" has proposed a simple Fermi-surface model
for V3Ga and V3Si. From his tight-binding analysis, he
finds a 3d Fermi surface which, in an extended zone
scheme, corresponds to closed, cube-shaped. hole sur-
faces about the point E in the Brillouin zone. Although
the accuracy of the present APW calculations is sufFi-

ciently uncertain to discourage any detailed description

0
& 1.75

2
P( 1.50
z

& 1.25

1.00

0.
z 0.75
Q

z 0.500
0
& 0.25
l-

o

160

140

Z

&120
UJ

~ 100
03
O

80

60

+ 400
0
Q 20

o

r
/
fJr'

L~~ I ~ I I t t

-0.2-0.6 -0.4 0

/IIII
//

I
I

0.2

—60

—55

—40~
Z
D

— 35 ~
Ul

—30~
V)
Z

—250
I-

20O

—15

10

0
0.4

Fxo. 8. Density-of-states curve for V&Ga, using an energy mesh
of 0.02 Ry. To the left, the units are spin states per eV per vana-
dium atom and spin states per Rydberg per unit cell, respectively.
The dashed line is the integrated curve, the scale to the right
indicating the number of electrons that can be accommodated at
a given energy.

of the corresponding Fermi surfaces, it is perhaps
worthwhile pointing out that a total of six Fermi sur-
faces are predicted. The first surface consists of hole
pockets around R. The second contains hole pockets
at the points R and M, which may or may not be con-
nected along the line T. The third and fourth Fermi
surfaces contain similar hole pockets at R and M which
are connected along T, resulting in hole tubes along
the edges of the Brillouin zone. The fifth and sixth
Fermi surfaces consist of electron pockets around I'
which may or may not be connected to similar pockets
at X, the center of the BriH.ouin zone face. If the Fermi
energy has been chosen correctly, the volume of the
electron pockets for the last two Fermi surfaces will

equal the combined volumes of the hole pockets for
the first four Fermi surfaces. An interesting feature of
these Fermi surfaces is the fact that open orbits are
possible along the (100) axes for the third and fourth
Fermi surfaces and perhaps some of the others. %cger's
model does not predict open orbits.

The APW results described in this section have been
obtained using approximately 200 unsymmetrized AP W
basis functions. This corresponds roughly to all those
plane waves whose square magnitude e'= k'(a/n)'&50.
Convergence studies indicate that this number of basis
functions is sufhcient to insure convergence to approxi-
mately 0.01 Ry. Table VIII contains the results of
some convergence studies which have been carried out
at the point I' for VBGa(I). These results indicate that
some eigenvalues converge faster than others. This can
be understood in terms of the relatively poor conver-
gence of states associated with the 3d bands as compared
to s- or p-band states. For calculations along symmetry
directions, the increased size of the secular equation
made it desirable to sacrifice some accuracy in the
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TxnLE VIII. Convergence of APW energy eigenvalues at the point I' in the Brillouin zone for V&Ga(I). The quantity a' is (o/~)'k',
the corresponding entries under No. represent the total number of unsymmetrized APW basis functions which are associated with a
given value of g,'.

rb2

No.

r2

100
515

—0.6462
0.0010
0.3421

90
461

—0.6462
0.0016
0.3422

80
389

—0.6462
0.0019
0.3422

—0.4561
0.3618

—0.0715
0.0861
0.3020
0.7286

70
305

—0.6462
0.0042
0.3426

60
251

—0.6462
0.0082
0.3435

—0.4556
0.3672

—0.0686
0.0921
0.3066
0.7300

40
147

—0.6461
0.0115
0.3436

—0.4547
0.3739

—0.0665
0.0990
0.3128
0.7319

20
57

—0.6459
0.0806
0.3506

—0.4502
0.4487

—0.0222
0.1281
0.3589
0.7737

interest of program efficiency and economy. An extreme
situation arises along the 5 direction in the Brillouin
zone, where it is necessary to solve a 75)&75 secular
equation in order to obtain results which are converged
to approximately 0.01 Ry. Although such a secular
equation is not beyond the capabilities of Switendick's
APW program, it would have required an estimated
three hours of IBM 7094 time to carry it through. By
comparison, the calculation of all the energy-band
states at the four symmetry points F, X, 3f, and E for
a given V3X compound required approximately one
hour of IBM 7094 time.

IV. THE LINEAR CHAIN MODEL

A distinctive feature of the p-wolfram structure
V3X is the existence of V atom chains along axes
parallel to the edges of the cubic unit cell. The nearest
neighbor distance between V atoms along these chains
is about 10% smaller than the second-neighbor dis-
tance between V and X atoms and about 20% smaller
than the third neighbor distance between V atoms
belonging to different chains. This aspect of the P-
wolfram structure has led to the suggestion that the
electronic properties of these VSX compounds can be
interpreted in terms of a one-dimensional or linear
chain model. Weger" has described the results of a
tight-binding calculation for the vanadium 3d bands
in which only nearest-neighbor interactions have been
included. It is interesting to study the results predicted
by this model and compare them with the APW results
described in the previous section.

Slater and Koster" have analyzed the tight-binding
method and have shown how it may be applied as an
interpolation scheme. In the two-center approximation,
the nearest-neighbor d interactions can be represented
in terms of three parameters, (ddo), (ddz. ), and (ddh).
The parameters (ddo) and (ddt) are expected to be
negative while (ddz. ) is positive. The relative magnitudes
of these parameters are such that for our purposes we
c»»sume ~(ddt) I

=2~ (dd~)l =~~(dd&)l.
Associated with each of the six V atoms in the unit

cell, there are five d functions whose angular dependence
can be described by the polynomials (3z' —r'), (x'—y'),

dp —E
2(ddt) cosk R

2(ddt) cosk R
1c

do —~
There are a total of three equations of type (1a), six
of type (1b), and six of type (1c). In these equations,
dQ represents the diagonal, one-center matrix element
that is common to all thirty d functions and E is a
vector from one V atom to its neighbor. The secular
equations of Eq. (1) can be solved to yield the follow-
ing eigenvalues:

Eg'= dp&
~
2 (dda) cosk R ~, (2a)

(2b)

(2c)

E~ =do+ ~2(ddt) cosk. R~,

8+p=dp+ i2(ddt) cosk Ri .

The corresponding eigenfunctions are the sums and
differences of the original basis functions.

By examining the eigenfunctions which correspond
to a given eigenvalue in Eq. (2), it is possible to de-
termine those linear combinations of degenerate func-
tions which transform irreducibly under the operations
in the space group OI, . In this manner, it is possible to
determine which irreducible representations are to be
associated with a given eigenvalue. The results of such
an analysis at the point I' in the Brillouin zone are
summarized in Table IX. According to this table, the
linear chain model for the p-wolfram structure predicts
that at F, the lowest d-band states have an energy
8 and transform like I'~ and 2~2, the next group of
states transform like F25 and I"~~, and so on.

xy, ys, and sx. A total of thirty Bloch-type tight-
binding functions can be formed from these orbitals
so that the corresponding secular equation which in-
cludes their interactions is a 30X30 equation. How-
ever, in the two-center, nearest-neighbor approxima-
tion, this 30)(30 secular equation factors into fifteen
2)&2 equations, of which only three are distinct. These
are given by Eq. (1a), (1b), and (1c), respectively.

dp —E 2(ddo) cosk R
2(ddo) cosk R d,—E

dp E 2(dd7r) cosh R
2(ddz. ) cosk R dp —8
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Tmr. z IX. Correspondence between the d-band eigenvalues
predicted by the linear-chain model for the P-vrolfram structure
and the transformation properties of the corresponding eigen-
functions at the point F in the Brillouin zone.

Energy

E+

E+
E
E
E

Symmetry

I 25

~15') ~25'
I 1'p I 12'p I 15
I'2, I'12, I'25

I'25, ~15
~ly ~12

Degeneracy

1.0
0)

(2) () y &as

0.8

0.6

0.4

(2)

()'

0.2

N
do

IX
lU
Z -0.2
Ill

(2)

(4)'

F

00)
(2O)

(4) /
(2)

-0.4

-0.6

-0.8
0)

(2)'
(2) T$ yT$g

I' 6 X M I'
-1.0

Fzo. 9. Et'k) for the V atom fg bands along the symmetry
directions 6, Z, and A in the tight-binding, two-center, nearest-
neighbor approximation.

The energy bands predicted by this simplified tight-
binding analysis are illustrated in Fig. 9, where the
energy is plotted as a function of wave vector along the
6, Z, and A directions in the Brillouin zone. The de-
generacy of the individual energy-band states is indi-
cated by the numbers in parentheses. Comparison of
these results with the distribution of levels in Figs. 4
and 5 suggests that this two-center, linear chain ap-
proximation provides an oversimplified representation
of the vanadium 3d bands in these V3X compounds.

The symmetrical nature of the bands shown in Fig.
9 is a result of the two-center approximation for oO-

diagonal and one-center approximation for diagonal
matrix elements of the Hamiltonian operator in Eq.
(1). The!ow point-group symmetry at a V atom site
permits the fivefold degeneracy of the d levels to be
removed by crystalline Geld effects. In the cubic transi-
tion metals, this splitting is typically a few hundredths
of a Rydberg. In these V3X compounds, this splitting
may be two or three times as large, due to the small
nearest-neighbor distance and the low symmetry at a

V atom site. The number of disposable parameters in
the tight-binding analysis can be increased substan-
tially if the energy integrals L~'„, (p, g, r) (as defined by
Slater and Koster") are considered and the two-center
approximation is not introduced. However, even with
these additional parameters, the nearest-neighbor ap-
proximation does not appear to yield an adequate
representation of the vanadium 3d bands, as calculated
by the APW method.

Nevertheless, this linear-chain model does suggest
reasonable explanations for some features of the APW
results shown in Figs. 4 and 5. For instance, the fact
that the 3d bandwidth is smaller at E than at other
points in the Brillouin zone is probably due to the
fact that this splitting results from a combination of
crystalline-field effects and second- or higher-neighbor
interactions. Similarly, a simple extension of this tight-
binding analysis suggests a reasonable explanation for
the occurrence of rather narrow X atom s and p bands
in these compounds. These narrow bands cannot be
attributed entirely to the relatively large separation
between the X atoms in the P-wolfram structure since
calculations on body-centered gallium, using the lattice
constant for V3Ga, predict nearly free-electron bands.
If the 30&&30 Hamiltonian matrix for the V atom d
bands is augmented by the 6)&6 and 2)&2 matrices for
the X atom s and p bands, then with the inclusion of
nearest-neighbor interactions, the s and p bands re-
main sixfold and twofold degenerate. The introduction
of second-neighbor interactions produces off-diagonal
matrix elements connecting the 3d band states with
the X atom s and p bands, so this degeneracy is pre-
sumably removed. Third-neighbor interactions are
between V atom d states. Direct interactions between
X atom s and p electrons result from fourth-neighbor
interactions, which presumably are not large enough
to broaden these bands appreciably.

It has been possible to establish contact between the
APW results and those predicted by the linear chain
model by means of the calculations on hypothetical
V3, which have been described in the previous section.
In these calculations, the X atoms have been omitted
from the P-wolfram structure and the constant po-
tential outside the APW spheres has been varied. The
results are shown in Fig. 6. Additional calculations
where the constant potential outside the APW spheres
has been raised another 0.39 Ry yield results at I'
which are in good agreement with those predicted by
the linear-chain model. However, the d bandwidth at
R is still appreciable, being approximately one-quarter
the total bandwidth of 0.2 Ry found at the other
symmetry points in the Brillouin zone.

V. DISCUSSION OF THE RESULTS

The current body of experimental results for these
P-wolfram compounds is limited to Knight shift, sus-

ceptibility, specific heat, and superconducting transi-
tion temperature measurements. The data on super-
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r,=aD expL —1/X(0) Vj. (4)

Using measured values of T„8~, and $(0), they have
shown that the interaction parameter, U is roughly
constant over a wide range of materials. Since 8~ is
found to be rather constant, this implies that the super-
conducting transition temperature is controlled to a
large extent by the density of states at the Fermi
surface. Other experiments on transition metal alloy
systems include cases where the assumption of a con-
stant interaction parameter U is justified as well as
cases where it is not. '7 As a result, the accuracy of
either Eq. (3) or (4) and the assumption of a, constant
interaction parameter is still uncertain.

'3 B.T. Matthias, I'rogress in I.om Temperature Physics (Inter-
science Publishers, Inc. , New York, 1957), Vol. II.

"D.Pin.es, Phys. Rev. 109, 280 (1958)."J.Bardeen, L. N. Cooper, and J. R. Schrieifer, Phys. Rev.
108, 1175 (1957).' P. Morel, J. Phys. Chem. Solids 10, 277 (1959).

"See for instance the proceedings of the International Con-
ference on the Science of Superconductivity as published in
Rev. Mod. Phys. 36, 134-168 (1964). Also, Proceedsngs of the
Eighth Internatsonal Conference on Lo7o TemPerature Physics
(Butterworths Scientiic Publishers, Inc. Washington. , 1963), p.
135-167.

conducting transition temperatures is by far the most
extensive and will be considered first.

The eQects of band structure on the superconducting
properties of elements and cornpounris have not yet
been settled. Matthias" has discovered empirical rules
for predicting the occurrence of superconductivity in
elements, alloys, and compounds. According to these
rules, the transition temperature of a given material
depends critically on the average number of valence
electrons per atom. In the case of the transition metals
and their alloys, the high-superconducting transition
temperatures are found to exist in systems containing
either 5 or 7 valence electrons per atom. A plot of
measured transition temperatures as a function of the
average number of valence electrons per atom yields
sharp maxima at 5 and 7 valence electrons per atom.

Pines'4 has attempted to interpret these empirical
rules in terms of the 8ardeen, Cooper, SchrieBer
(BCS)" theory of superconductivity. Using the ap-
proximate BCS relationship between the transition
temperature, T, and the density of states at the Fermi
surface 1V(0),

kT, = 1.14(bw), expL —1/E(0) Vj, (3)

Pines concluded that the interaction parameter, V was
essentially constant for the transition metals. He sug-
gested that variations in the transition temperature as
a function of the average number of valence electrons
per atom were due to structure in the density-of-states
curve. Recently, Morin and Maita have shown that
if Eq. (3) is simplified by assuming that (hto), (the
average energy of phonons which scatter electrons at
the Fermi energy) is proportional to the Debye tem-
perature 8~ 26 then

Roberts" has made a rather comprehensive study of
the correlation which exists between superconducting
transition temperatures for these A38 compounds and
their mean atomic volume, electron density, and aver-
age number of valence electrons per atom. Included in
this survey are the results of alloying experiments in
which various atoms have been substituted into either
the A or 8 atom sites. The most interesting result of
this study is a plot of superconducting transition tem-
peratures as a function of the average number of
valence electrons per atom. This plot reveals a large
number of high-temperature superconductors for ma-
terials with 4.5 to 5.0 valence electrons per atom.
There are indications of a second peak. centered at
6.5 valence electrons per atom, though the data for
this second peak is much more limited.

If it is assumed that the transition temperatures for
these A38 compounds are determined mainly by the
density of states at the Fermi surface, then it is possible
to interpret this correlation between high-supercon-
ducting transition temperatures and the average va-
lence electron number per atom ratio in terms of these
APW calculations. First, it is necessary to point out
that the transition temperature maxima at 4.7 and
6.5 valence electrons per atom are due to 238 com-
pounds having nontransition and transition element 8
atoms, respectively. According to the present results,
the energy bands (and therefore the density of states)
for these two types of A&B compounds diRer signifi-
cantly, so these two peaks should be analyzed separately.

In the case of A38 compounds having nontransition
8 atoms, the results of Fig. 5 suggest that a rigid-band
model is appropriate, For those compounds where the
A atom contains partially 6lled 4d or 5d bands, the
d bandwidth is expected to increase somewhat, but
the relative distribution of levels is expected to remain
essentially unchanged. Assuming such a rigid-band
model, the tendency toward high-super conducting
transition temperatures for systems containing 4.5 to
5.0 valence electrons per atom correlates well with the
peak. in the density of states at 0.1 Ry, as shown in
Fig. 8. The Fermi energies for systems containing 36
to 38 electrons per unit cell coincide with this peak in
the density of states. These values are equivalent to
4.5 and 4.75 valence electrons per atom, respectively,
in good agreement with the experimental transition
temperature data.

For those A38 compounds having transition element
8 atoms, the assumption of a rigid-band model is less
certain due to strong interactions between the over-
lapping 8 and 2 atom d bands. The increased number
of valence electrons per atom for these compounds
results from the 8 atom d electrons. Thus, the second
peak in the transition temperature at 6.5 valence

'8 B. W. Roberts, General Electric Research Laboratories
Report No. 64-RL-3540M, January 1964 (unpublished), and
Intermetaltsc Compounds, edited by J. H. Westbrook (John Wiley
8z Sons, Inc. , New York, to be published).
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electrons per atom is probably due to the combined
density of states which results from the overlapping 8
and A atom d bands. An interesting consequence of
this distinction between compounds containing transi-
tion and nontransition 8 atoms concerns those com-
pounds with gold 8 atoms. Although the gold Sd bands
are occupied, they undoubtedly overlap the correspond-
ing 2 atom d bands. Therefore, it is reasonable to
expect that gold should be considered a transition
metal in these compounds, with a valence of 11 rather
than j.. Roberts has found that the data for the gold
compounds is more consistent with the other results
when a valence of j.j. is assumed. Matthias" has
arrived at a similar conclusion in connection with other
gold compounds.

More direct information concerning the energy-band
structure for these P-wolfram compounds has been
extracted from the Knight shift and susceptibility data
by Clogston, Jaccarino, and co-workers. "Blumberg
et al. ,

4 observed a correlation between the temperature
dependence of the Knight shift and the superconducting
transition temperatures for a number of these P-wolfram
compounds. Those compounds with high-supercon-
ducting transition temperatures exhibited strongly
temperature-dependent Knight shifts. Williams and
Sherwood' observed a similar correlation in the sus-
ceptibility. On the basis of these results, Clogston and
Jaccarino have proposed an energy-band model for
V3Ga. A striking feature of this model is that it predicts
a high, narrow peak in the density of states at the
Fermi energy for VSGa. Subsequent measurements of
the electronic specific heat by Morin and Maita'
yielded a very large value for y (the coeKcient of T
in the power-series expansion of the heat capacity), a
result which is consistent with the Clogston-Jaccarino
model.

Clogston, Jaccarino, and co-workers have interpreted
the Knight shift and susceptibility data for V3Ga in
terms of this simplified energy-band model. 2' Using
atomic estimates of the hyperfine fields due to un-
paired vanadium 3d and gallium 4p electrons at the
Fermi surface, they find that approximately equal
fractions of vanadium 3d and gallium 4p wave-function
character are required at the Fermi surface to explain
the Knight shift data in terms of a core-polarization

O'B. T. Matthias, J. Phys. Chem. Solids 10, 342 (1959).

mechanism. A limited sampling of the APW wave
functions in the vicinity of the Fermi energy indicates
a rather small admixture of gallium 4p-type character,
amounting to approximately 5/~. This result has been
found to be insensitive to reasonable variations in the
vanadium and gallium potentials, the gallium APW
sphere radius, etc. This discrepancy is at present not
understood.

One difficulty with the rigid-band model for these
V3X compounds having nontransition X atoms con-
cerns the differences in the density of states at the
Fermi surface E(0) for VSSi and V3Ge, respectively.
From the low-temperature specific heat measurements,
Morin and Maita obtain values for 1V(0) of 5.5 and
2.1.4 spin states per eV-vanadium atom for V3Si and
V3Ge, respectively. These vah&es are considerably
larger than the value of 1.3 spin states per eV vanadium
atom that has been obtained from the crude density-of-
states calculation described in Sec. III. If a rigid-band
model is valid, these differences must be due either to
fine structure in the density of states which is beyond
the accuracy of the present calculations or to phonon
enhancement of the specific-heat density of states, as
Clogston has suggested. "

Clearly, the experimental results for these P-wolfram
compounds are rather limited so that the accuracy of
the present calculations remains somewhat uncertain.
In view of the complicated nature of the calculated
energy bands, it is encouraging to find at least qualita-
tive agreement between the Clogston-Jaccarino model
and the APW results. Hopefully, the results of these
calculations will stimulate additional experiments on
these compounds that will elucidate their band struc-
ture more precisely.
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