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We investigate how conduction electrons in dilute alloys are aAected by the exchange interaction with
localized spins of impurities. It is shown that, if the interaction is antiferromagnetic, the perturbational
treatment breaks down below a critical temperature, and that near the Fermi surface there appears a quasi-
bound state between the conduction-electron spin and the localized spin. Because of the appearance of this
quasibound state, the resistivity increases with decreasing temperature, but has a 6nite value at T=0.
There is no logarithmic term in the resistivity at low temperatures, in contrast to Kondo's theory of the
resistance minimum. There also appears an anomaly in the specific heat at low temperatures.

between localized spin and conduction-electron spin.
Naturally there is also an essential difference between
these two cases, i.e., in our problem one of the inter-
acting particles is localized at the impurity site, and so
the interaction does not conserve momentum. There-
fore, some results, for example the energy spectrum of
conduction electrons, are expected to be quite diferent
from those in the case of superconductivity.

In this paper we shall investigate, by a method similar
to the theory of superconductivity, how the conduction-
electron states are modified by the s-d exchange inter-
action, by taking a very simplified model for dilute
alloys. In Sec. 2, the problem is formulated and some
approximations are introduced. It is shown, in Sec. 3,
that the usual perturbational treatment breaks down at
low temperatures if the interaction is antiferromagnetic.
In Sec. 4 the problem is solved in a self-consistent way
for the case of antiferromagnetic interaction, and it is
found that at low temperatures there appears a quasi-
bound state between the localized spin and the con-
duction-electron spin. In Sec. 5 the resistivity and the
specific heat of dilute alloys at low temperatures are
calculated using the results obtained in Sec. 4. Some
discussions are given in the last section.

I. INTRODUCTION

'ANY authors' have investigated how conduction
~ ~ electrons are affected by the exchange interaction

with localized spins of impurities, i.e., by the so-called
s-d exchange interaction in connection with various
properties of dilute alloys such as Cu-Mn alloy. Recently
Kondo' explained the phenomenon of the resistance
minimum in dilute alloys by this interaction. Calcu-
lating the transition probability of conduction electrons
to the third order of the interaction, he showed that the
transition probability has a logarithmic anomaly at the
Fermi surface, and that in the resistivity there appears
a term proportional to lnT. According to Kondo, the
resistance has a minimum at low temperature if the
interaction is negative (antiferrornagnetic). The theory
is in good agreement with experiments.

From the theoretical point of view, however, there
remains an essential difhculty in Kondo's theory; the
lifetime of conduction electrons obtained by perturba-
tion diverges at the Fermi surface in the third order

Lsee Eq. (17) of Ref. 2j, and, as will be shown later,
even becomes negative if higher order terms are taken
into account. This means that the perturbational treat-
ment breaks down there, and that the unperturbed
state of conduction electrons becomes unstable.

The situation seems to be quite similar to the case
of superconductivity, ' in which the perturbatio~al treat-
ment breaks down at the transition temperature. Prom
the similarity between the two cases it is reasonable to
expect that, in the case of dilute alloys, there appears
some correlated state, or a kind of bound state, between

localized spin and conduction-electron spin at low tem-

peratures corresponding to the Cooper pair. In the
theory of superconductivity, we solve the problem in a
self-consistent way, taking into account the correlation

between electrons. Similarly in solving our probelm of

2. FORMULATION AND APPROXIMATION

I.et us consider a system of conduction electrons and
an impurity on which a magnetic moment is localized.
The so-called s-d exchange interaction acts between the
conduction electrons and the localized moment. The
Hamiltonian of the system is given by

J
Ij'=Q et Cs,re,— Q ((CsttCt, t —Ct ttCt t)2S»'

XS,+Ct, ttCt, tS +CsttCt tS+}, (2.1)
ilute allovs we have to take into account the correlation

where Cl„t and Cl, are the usual creation and annihila-
+ Supported by U. S. Air Force Contract No AF-AFoSR-6&o- tion operators of the conduction electron with wave

h I t,t„t f F„„d „t I vector sr and spin o, en is its one-electron energy, S, and

Physics Kyoto University. Kyoto Japan. S+ are the components of the spin operator associated
~ For example, K. Yosida, Phys. Rev. 186, 893 (1957). with the impurity. E is the total number of atoms in the
e J. Kondo, progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
I J.B d, L. N. Cooper, and J.R. Schriefter, phys. Rev. ].08 crystal and J is the strength of the exchange interactio

A]75 ($957). which is assumed to be independent of k and k'. In the
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following calculations, we assume that J is small so
that

I JIp/Ã«1, p being the density of state of the
conduction electrons at the Fermi surface, and we con-
sider the case S=—,'for simplicity.

To investigate the eGect of this exchange interaction
on conduction electrons, we use the method of the re-
tarded double-time Green's function, 4 which is defined by

In the following we suppress the su%x co of the Fourier
transforms for simplicity. Using (A

I 8), we can obtain
the average (BA) by the formula

(BA)= {—2 fm(A I 8))f&or)dor, (2.4)

with

(A IB),=—
s&I A&t),8(0)3,) for t)0,

0 for t&0. (2.2)

f(~)= 1/&e""+1) . (2.5)

Here we took A= 1 and Boltzmann constant k~= 1.
Introducing

where ( ) denotes the statistical average, A and 8 being
operators. Its Fourier transform is given by

Gkk &~)=(Ck tICkt')

I'kk &or) = (Ck tS*+Ck tS
I Ckt"),

(2.6)

(2 7)

(A I
8)re' ' v'dt(A

I
8)„= lim-

2x &-'+
&2 3) we set up the equations of motion to be satisied by

these functions in the usual way. 4 We have

(or fk )Gk—k (or)+ &J/2)V) Q I'kt(or) = &1/2rr) bkk, (2.8)

&~—k')(C'tS*I C-t'&+&J/2&)Z {(C»S.'I C't'&+-'(CrtS-I C»')}

+(J/2$)Q {—(Ck tctttcr tS Icktt)+(Ck tctttct tS+Icktt)) = &1/2rr)&S, )bkk. r (2.9)

&~—4)&ck ~S Ickt'&+(J/2&)Z {s(crtIckt') —(CttS.'Ickt')+-', &CrtS Ickt')+&CttS. Ickt'))

+(J/2&V)p {(Ck tctttct tS Icktt) —(Ck tcrttcq tS Icktt) —2(Ck tctttcr tS, Icktt)) =0, (2.10)

where $k ——ek —er, with es denoting the Fermi energy, and use has been made of the following relations which are
valid for S=-', :

SpS.= Ws'Sg, S.Sg= ~-',Sg, S+S =-,'+S.—S,'. (2.11)

To solve Eqs. (2.9)-(2.11), we must approximate higher order Green's functions appearing in Eqs. (2.10) and
(2.11).We shall take an approximation in which some combination of operators is replaced by its average value.
In doing so, we should notice that only the average of such combinations that conserve the total spin does not
vanish. For example (Ckttck tS+) should vanish, but (Ckttck tS,) should not. Thus we put

(Ck tert Ct tS Ickt )—(Ck tert )(Ct gS Ickt )+(Crt Ct tS )(Ck tIckt ), (2.12a)

(Ck.,C,ttC, .,S,
I
Cktt&=(C, t tC,.tS,&(Ck, , I Cktt& —(C,ttCk. tS,)(C, t I Cktt&, (2.12b)

(Ck bett CvtSs I Ckt ) (Ck'gelt )(CvtSsI Ckt ) (Ctf Ck'$Ss)(cvt I Ckt ) (2.12c)

(Ck.tctg CvtS I Ckt )= (Ctt Ct t&&ck tS
I
Cktt)+(Ck tcttt)(ct tS

I
Ckt ). (2.12d)

This approximation is quite similar to the approxi-
mation used by Zubarev' in his treatment of super-
conductivity by the use of the double-time Green's
function, which gives the Bardeen-Cooper-Schrie6er
(BCS) results. The approximation is reasonable and
seems to be the simplest way to take into account the
correlation between the conduction electrons and the
localized spin in the calculation. The averaged quantities
of the type (CtcS), which are closely related to the
correlated spin polarization of the conduction electrons
around the impurity, play an important role in our
treatment.

' D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :
Soviet Phys. —Uspekhi 3, 320 (1960)j.

'See Sec. 6 of Ref. 4.

Now it is easy to see that the average values appear-
ing in Eqs. &2.12) are connected with each other by the
following relations which come from the symmetry of
the system:

(Ctttcr t)= &Crt'Ct s),
(Ctt'Cr tS )= &Crt'Cr tS+)=2(Crt'Cr tS.)

= —2(ctttct tS,). (2.13)

Further& we have (S,)=0.'
By the use of the approximaion (2.12) and the relation

(2.13), the equation of motion for I'kk (or) can be ob-

' It must be remarked here again that ( ) means the statistical
average, and not the expectation value at one of the degenerate
ground states. Therefore, even if there exists a localized spin,
(S,) should vanish while (S,') should not.
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Ql (Cit Ck't) y (2.15)

mg ——3 Pi (CigtCg )5 ). (2.16)

Equations (2.8) and (2.14) are to be compared with
Eq. (6.14) of Ref. 4.

Now that we have obtained a set of simultaneous
equations for G~~ (&o) and r~q (co), i.e., Eqs. (2.8) and
(2.14), it is easy to solve them, and the solutions are
found to be

1
Gkk' (~)

27i' G7 $g 41V (N $k) ((0 $ti)

F a)

(2.17)
()

1+JG(&v)+-,' J'F((o) r((u)

tained from Eqs. (2.9) and (2.10) as

J(.-~,,)r„,(.)+—(., —;)2r„(.)
g

J
+ (-' —~')ZG ( )=o (2 14)

2g
where

Now Eqs. (2.24)—(2.27) form a set of simultaneous
equations which is to be solved in a self-consistent way.

~~= f~—= f(&~) (3.1)

in Eq. (2.17), and obtain

3J
Gkk' (&) +

2m. a&
—

$g 16'
1 F((u)X-- (3.2)

(~—tk)(~ —(') I+JG'(~)

and, in particular, we have

3. PERTURBATIONAL TREATMENT: SOLUTION
AT HIGH TEMPERATURES

Before looking for self-consistent solutions of the
equations obtained in the last section, we shall try to
solve them perturbationally. Then we can replace ek and
mk by their zeroth-order quantities with respect to J,
because they app ar only in higher order terms. There-
fore we put

J 1
rm'(&) =

2m 2$ (io—&g)((o—&g )

(~„,—;)LI+JG()j—(~,,——;)Jr( )
X (2 18) where

1+JG((o)+-,' J'F(cu) r((o)
where

1
G1tk(&)

2m

3J' F(co)

16% 1+JG'((u)
(3.3)

(3.4)

(2.19)

(2.20)

(2.21)

or, introducing

we have

Gg((u) =Pg Gg g(a)),

r~(~) =pa r~ ~(~),

(2.22)

(2.23)

1 1 1+JG(M)
Gg(M) =——— (2.24)

2ir co—&g 1+JG(co)+-,'J'F(M)r((u)

1 JF(s&) (mj, f)f1+J—G(&o)] (eq ', )—Jr(u)—-
r~(~) =-

4m o)—$g 1+JG(&o)+—,'J'F((o)r((u)
(2.25)

By the use of Eq. (2.4), e& and m& are obtained from

F(ra) = Arp/E, — (3.5)

p denoting the density of states of conduction electrons
of pure metal near the Fermi surface.

Let us examine the self-energy part in Eq. (3.3).
We put

G'(a)) =K(a)) iL((v), — (3.6)

where K(&o) and L(co) are real functions of cd defined by

k
K((o) =—P F

1V &

(3.7)

and higher order terms were neglected in the
denominator.

In the following discussion it is assumed for simplicity
that the real part of F(co) can be neglected, and that its
imaginary part is independent of &v; that is F(ar) is
replaced by a pure imaginary constant as

L(~)=~~Lf(~)—2j. (3.8)
Sk {—2 ImGg((o) )f((o)da), (2.26)

{—4 Imr~(o)) )f(a))d(u. (2.27)

In calculating K(&a), we replace the summation over
k by the integration over $z. Then, if we assume the
density of states to be independent of co, the integral
diverges. Therefore we should cut o8 the integration at
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some energy. We calculate E(co) as follows:

" f(~)—;
p(k)dk

f(e)—.'I' d$
hl —$

I' tanh ld(,
2X D (o—$ 2T)

(3 9)
mg ——,

' = n (eg—-', )/Pg, (n &0), (4.1)

discussed in the last section, m~ is expected to be quite
large near gq=O. In fact it will be shown later that mq
has a logarithmic singularity at )~=0 at T=O. Because
of this singularity of mq, I'(&o) is also expected to be
anomalous as a function of ~ near ~=0. By the use of
these properties of mq and I'(a&), we can 6nd an approxi-
mate solution of Eqs. (2.24)—(2.27) which is valid near
the Fermi surface.

Let us assume the relation'

It should be noticed here that, if J&0 and the tempera-
ture is low enough, the imaginary part of the above
expression, which is equal to the inverse of the lifetime
of conduction electrons, becomes negative near ~=0.
This means that the conduction-electron states become
unstable near the Fermi surface. The critical temperature
T, below which this instability arises is determined by

&2r,i
(3.12)

where the cutoff energy should be of the order of band
width. In paltlculRr Rt T=0 we have

1~(~)= (pl&—)»
l
~/D

l
(3 1o)

Although the approximation taken above is rather
crude, it does not seem that inclusion of actual band
structures and k, k' dependence of J Rejects, at least
qualitatively, the behavior of K(a&) near ~=0, which
is our main interest. At finite temperatures IC(co) has a
sharp maximum at ~=0.

By the use of Eqs. (3.5) and (3.6), Eq. (3.3) becomes

1 3n.J'p JL (cv)—G~~(~) '=~—4—
16X2 [1+JK((o)j'+ [JI.((v)]'

3~J'p 11M(~)
+i (3.11)

16~2 [1+J~(-)j'+[JL(-)j'

where 0. is a parameter to be determined in a self-con-
sistent way. Then G(M) becomes

Sk—
2
1

G(~) =-I'(~)—Z
n

l Jl Ng--',
1+ Q =0,

1V
(4.2)

we have a simple expression for G~.

where

67

Gg((o) =-
2s (co—Pi-.)(co+i&)

a=(~/4N)
l Jl pa&0

(4 3)

(4.4)

l Jlpmg ——,
'

I'g(ru) =i
4X (a+id

(45)

From Eqs. (2.26) and (4.3), we obtain

1
(f~ k)+-

$g'+LB n $s'+dP

and we have made use of Eq. (3.5). Simila»y Eq. (2.25)
becomes

or

with
T,=1.1450 (3.13)

t' 1 ~ ) 1
dco, (4.6)

ru'+ 6'I e"~~+1

~o=D exp( —&'/I J I p). (3.«)
It should be noticed that the expression for T, is quite
similar to that for the transition temperature of super-
conductors. If D 5 eV and

l Jlp/iV 10-', we have
2.5& j.0 ' ev and T,~3'K.

%hen J&0 and T&T„@rehave to solve the equa-
tions more carefully. In th, is case vs~ is expected not to
be small, but to have a quite large value near the Fermi
surface.

4. SEJ.F-CONSISTENT TREATMENT: SOLUTION
AT LOW TEMPERATURES

Now we shall consider the case J&0 and T&T„and
solve Eqs. (2.24)-(2.27) in a self-consistent way. As was

1 ~h
mg —-' —— (fag

——,')+— — ln —,
$~2++2 s. (~2++2

at T=O, (4.7)

where we have taken the same approximation as we did
in calculating Eq. (3.9).

~ The parameter + has been taken to be positive; for, if other-
wise, ~{co)has a pole in the upper half-plane of complex ap, which
contradicts the required analytic property of Gg(cy). However,
negative o. can also satisfy the self-consistent condition, because
Eq. (4.8) determines only the magnitude of 0, and not its sign. It is
not so clear what this unstable solution means physically.
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I, O

0.5
Fio. 1. Tempera-

ture dependence of
D. 5 is normalized by
its value at T=O.

0
0 0.5

Ti Tc
l.O

Substitution of Eq. (4.6) in Eq. (4.2) gives

$2+ Q2 &2Ti

f2+ Q2
tanh id),

2Ti
(4.8)

which determines 6 as a function of T.
tni, is calculated by Eqs. (4.1) and (4.6). We have

4A $g 1
mk k

~lilp/AT P, '+A2

1 (o ) 1
X P —

l
& (4 9)

~2+ A'ie ~'+1

and, in particular,

1 a& ~ 1
I —

l
dCddf.

$2++2 ( ~ $ ~2+ A2i gralT+ 1
-D

The integral of the last term is shown to be of the order
of (A/D) in(A/D). It will be shown later that A/D«1,
so we can neglect the second term of the above expres-
sion. Thus we have a relation

at —h&$~&A. If we confine our calculation to this
region, we can neglect 4 in Eq. (4.11) compared with

m~. Then Eq. (4.11) reduces to Eq. (4.8) which was
already obtained. This means that Eqs. (4.6) and (4.9)
together with Eq. (4.8) are the self-consistent solution
of our problem which is valid near fq=0.

It should be said, however, that there remains some
ambiguity. In the above discussion we used the relation
(4.1) in the whole range of k in calculating G(a&) and
I'(co), while Eq. (4.1) has been proved to be valid only
in the region near the Fermi surface. However, it can
be seen from Eqs. (4.6) and (4.9) that, as

l $q l
increases,

mq and mq tend to their zeroth-order values (3.1)
rapidly. It seems that a deviation of ek and mk from
Eqs. (4.6) and (4.9) in the region

l $j, l
&6 does not acct

G(a&) and I'(~), in particular their behavior near or=0,
seriously.

Equation (4.8) has a solution when T&T,. Inparticu-
lar we have

A=AOL1 —6n'(T/Ao)'] at T 0, (4.12)

A (4/vr)(T,—T)—at T&T„ (4.13)

1 bkk 1 1
G~~ (~)=— +— , (4.15)

2il M —$g 7l'p (M —)g)(GO —fg~) CO+ZA

1 J mk~

I gg~(N) =
2n 2)V (a) fg)((o+ih—)

(4.16}

in particular, we have

where 60 and T, are given by Eqs. (3.14) and (3.13),
respectively. l

Calculation of Eqs. (4.12) and (4.13) will

be given in the Appendix. ) T dependence of A is shown
in Fig. 1. Although Eq. (4.8) has a solution as long as
T& T„we must notice that the inequality

l
m&

l
»~3 does

not hold when lT—T,
l

T.(l Jlp/1V). Therefore the
solution obtained above is meaningful in the region

I
T—T.l»T.(l ~ le/A') (4 14)

By the use of the above results Eqs. (2.17) and (2.18)
are reduced to

4 (T)
mq —

~~
——— lnl —l, at $q

——0, (4.10)
s'l Jlp/. V ETi

1—Gxw(~)
2' irp (a+iA

(4.17)

where T, is given by Eq. (3.13). [The calculation of
Eq. (4.10) will be given in the Appendix. ] From Eq.
(4.10) it can be seen that

l (m~)~„ol&&f except in the
regioll

l
T,—T

l
& T,(Jp/S).

Next we consider Eqs. (2.27) and (4.5). Inserting
Eq. (4.5) in Eq. (2.27), we have

r~
teq= tanhl d$ (m~ —~) . (4.11)

cV 0 @+A' (2T

From Eq. (4.17) it can be seen that the lifetime of
conduction electrons is positive in the whole region of
energy.

The physical meaning of the additional pole ~= —ih
becomes clear if we examine how conduction-electron
spins are polarized around the impurity. The behavior
of the conduction-electron spin polarization is seen by
calculating the quantity

P(R) =P (CgitCg iS )e' " "' '

At first glance, Eq. (4.11) is inconsistent with Eq. (4.9),
However, it can be seen from Eq. (4.9) that lm~l&&1 kk'

dM f(ar)( 21mi'~~ (a&))e'o' "'i'—" (4.18)
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For simplicity we consider the case T=O. Then after
some calculations we get

A. Resistivity

The static conductivity 0 is calculated by the formula

p(R) = (4—~&'/3~p) L~(R)j'
1

o(R) =—2 —(f"—k)
1V & fg'+6'

+— —ln
s &k'+6'

elk R (4 19)

2e Bf
0' = — — tg'Vg p«g &

3 cigar

(5.3)

where e& is the velocity of the conduction electron with
wave vector k and 7~ is its mean free time. If we use
Eq. (5.1) for the Green's function, ~& is given by

If R«eg/6, ep being the Fermi velocity, k dependence
of the exponential factor in Eq. (4.19) is slower than
that of the factor in the wavy brackets, and hence, the
former can be replaced by its average over the Fermi
surface. Then we obtain

3m J'pc 1

161V 1—)J(Z(g,)

Then 0. is calculated as

(5.4)

p(R)~—(61V'/3~ J'p) (sinks R/k pR)'
for R«ep/d . (4.20)

2e'pep' 16K

3 3xJ2pc
«-

I
JIR(~))j —I«

t' ~fi

a]i
For R)e&/6, p(R) will vanish more rapidly. Equation
(4.20) is compared with the usual Ruderman-Kittel-
Yosida type polarization, ' which is proportional to
sin(kqR)/(k~R)' when k~R))1. First of all we see that
the polarization has a much longer range in this case,
and that it is negative, or antiparallel to the localized
spin, in the whole region of space rather than oscillating.
If 6 5&(10 4eV, ep 5 eV, and k~ 10'cm ', wehave
ep/6 —(ep/A)kp ' 10 ' cm.

Thus it is concluded that, when the temperature be-
comes lower than T„ there appears a quasibound state
around the localized spin, whose range is of the order
ee/A. However, it should also be remarked that T, is
not a transition temperature in an ordinary sense, be-
cause, if T, T&T,(~ J~p/1V), —the quasibound state
obtained here is no longer stable. Although we could not
get the solution in this transitional region of temperature,
it seems that the quasibound state appears gradually
rather than suddenly at T= T,.

S. RESISTIVITY AND SPECIFIC HEAT

So far we have considered the case of one impurity.
It is not dificult, however, to extend the result to the
case of many impurities, if their concentration c is small
enough and the interaction between them can be
neglected. In this case we have only to multiply by cE
those terms which come from the interaction with the
impurity. Thus we have from Eqs. (3.11) and (4.15)

ne' 16
ln

m*3~~ J)c 0.68T,
(5.5)

m' 3~~J(cp T
(

ln
ne' 16 E 0.68T, i

(5.6)pres =

If the temperature is high enough above T., Eq. (5.6)
reduces to

pres =
m* 3s J'pc

i Jip 0.77D
1+ ln

ne' 16% X
(5.7)

which is essentially the same as the result obtained by
Kondo. ' It should be noticed, however, that Eq. (5.7)
is correct only at high temperatures. Equation (5.6)
itself diverges at T=0.68T, and becomes negative for
T&0.68T„which corresponds to the instability men-
tioned before.

For T& T„we should use Eq. (5.2). Then we have

1 cX

rz sp (g'+6'
(5.8)

where n is the total number of conduction electrons and
we put p= 3n/2m*ex', m* denoting the effective mass of
conduction electrons. Thus we get the resistivity
pres= 1/e' as

1 3m J'pc—Ggg(co)
—'=

a&
—tg+i

2~ 161V 1+JX(co)

ne' sp- vr')T~'-

m* c1V 3 E ai
(5 9)

m* clV- s't'T '- —'
1+—~—

ne'~p 3I a
for T)T„(5.1)

for T&T.. (5.2)
(5.10)—Ggg((u)-' =co—(g-

21r np o)+iA
It should be noticed here that p„, tends to a finite value,

n Eq. (5.1) we have neglected higher order terms of J. which is independent of the magnitude of J, as the
By the use of Eqs. (5.1) and (5.2) we shall calculate the temperature decreases, and that there is no term pro-
resistivity and the speci6c heat of the system. portional to lnT at low temperatures. The T dependence



YOSUKE NAGAOKA

I.O of the Fermi surface, as if it were correct over the whole
region of M. Such extrapolation is allowed only when the
integral to be calculated converges rapidly. In the
second integral contributions come from the whole
region of cv to the same order. Therefore, to calculate
it precisely, we have to know Gqq(4e) in the whole region
of ~. Instead of doing so, we estimate it by cutting o8
the integration at co ~h. The second term then gives a
contribution of the order p'ii'/X, which is at most of
the same order of the 6rst term. Thus we have

0.5
T/Tc

I"n. 2. Temperature dependence of resistivity. p„, is normalized
by its value at T=O. Curve 3 is calculated by Eq. (5.10) and
curve 8 by Eq. (5.7) (~ 2 ) p/ll7 =0.01). For T T„we interpolate
these two curves.

of Eqs. (5.10) and (5.6) is shown in Fig. 2. For T T„
we interpolate the two expressions, because both of them
are incorrect there. If we 3.dd the contribution from the
electron-phonon interaction to the above result for the
resistivity, it is clear that there appears a resistance
mlnlIQum neal T= Tc.

8E= +2
~2

I
J

I (p/g)4
(5.14)

2A'

T A(h/T)
(5.15)

where I' should be considered as a parameter of the
order eg

The contribution to the speci6c heat is given by
BC=8(BE)/BT. To calculate the derivative of 5 with
T, we differentiate both sides of Eq. (4.8) with T and
obtain

x x
tanh —dx.

o (x'+B')'
B. SyeciQc Heat

A(B) =2B' (5.16)

(5.11)p(4e) =Qg {—2 ImGgg(4e) ) .
A(B)=1—(~2/3)(1/B2), for B»1,

= (e./4) B, for B((1. (5.17)Inserting Eq. (5.2) in Eq. (5.11), we get the change in
density of states as

Thus we obtain the anomalous part of the speciic heat,
which is due to the appearance of quasibound states, asxp'

(5.12)
4e'+6' E 4e'+6' cÃI' 2A'

m'I J
I (p/N)' T A(a/T)

—1, (5.18)
where the derivatives of I(re) =ReF(&e) and p(a&)
= —(X/s. ) ImF(a&) with respect to 4e have been replaced
by their values at the Fermi surface, I' and p'.

The change in the total energy of the system is
calculated as

particular,

8C=- T
~

I
~

I (p/&)'
for T 0 (5.19)

The appearance of quasibound states changes the
density of states of conduction electrons, which is
given by For the cases B))1 and B((1,A(B) becomes

BE.= &oBp(oi)f(4e)dre
32cÃI

Bc=—— (T. T), for T T, . (5—.20)
s4I JI(p/S)'

cE'
62I'. f(oi)dre

4em+ iV

The T dependence of 8C is shown in Fig. 3, where I' is
assuIQed to be negative.

f(oi)de . (5.13)
re 2+Q2

By the use of Eq. (4.8) the first term in the brackets
reduces to I'6'/J(p/E). In the calculation of the second
term there remains some ambiguity. In the above we
used Eq. (5.11),which is valid only in the neighborhood

0.5
T/Tc

FIG. 3. Temperature
dependence of the anom-
alous part of the specific
heat in an arbitrary
scale.
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The order of magnitude of 8C is (cE/~ J~)T, for
I' ep ' and p Esp ', while the specific heat of pure
metals is of the order (E/ep)T. Therefore the relative
magnitude of bC is of the order (ce&/I Jl) =10 ' if we
t»«= 10-' and

I ~l/~r = 10-' The con«»«i» to the
specific heat seems to be rather small.

6. DlSCUSSION

As was suggested in Sec. 1, our problem has been
solved by a method similar to the theory of super-
conductivity. The results, however, have some diRer-
enees from the case of superconductivity. In the energy
spectrum of conduction electrons appeared an anomaly
near the Fermi surface, corresponding to the quasi-
bound state, rather than an energy gap. Further, th, e
appearance of the quasibound state seems to take place
gradually in a transitional region of temperature,
although we could not determine the behavior of the
system in the transition.

Our model treated in this paper looks oversimplified
compared with the actual case of dilute alloys. First of
all we neglected Coulomb interaction between the con-
duction electrons. To see the eRect of Coulomb inter-
action, wc calculate the charge density of electrons
associated with the quasibound state, It is calculated
from Eq. (4.15) in a way similar to the calculation of
Eq. (4.18), and is found to be smaller than the spin
polarization density by a factor (J/&~)'&(1. This means
that the bound state is essentially a bound state of
electron-spin density, and not that of electron-charge
density. Therefore it cannot be destroyed by Coulomb
interaction as long as Coulomb interaction is taken into
account in Hartree approximation. Our theory is not
applicable to the case where the exchange interaction
between the conduction electrons plays an important
role.

If we do not neglect ReF(a&) $i.e., if we do not assume
Eq. (3.5)j, 6 becomes complex and the energy of the
quasibound state shifts upwards or downwards from
the Fermi surface according to the sign of Rel'(I). Some
of thc cxpI'csslons will bc a llttlc Inolc eoIQplleatcd but
the main results are not modifmd, at least qualitatively.
In addition, it ean be seen that, if this is the case, there
appears some space charge around the localized spin.
It is, therefore, expected that 6 effectively becomes real
if the Coulomb interaction is taken into account.

There is no essential difhculty in generabzing the
treatment to the ease 5&~, although it might be much
more complicated. It is quite reasonable to believe that
the main result obtained here, i.e., the appearance of
the quasibound state at low temperatures, is not
modified even in the case 5& ~~.

The main defect of our theory seems to be that the
equations are solved only in the neighborhood of th, e
Fermi surface and the solution is extrapolated to the
whole region of energy when vre calculate some integrals.

Because of this approximation we could not see how the
quasibound state appears in the transitional region of
temperature. It is very desirable to refine the treatment
of this point.

The same problem of Kondo's eRect has also been
treated by Suhl' by the method of Chew and Low in
scattering theory. Though his result seems to have some
similarity to ours, it is not so easy to see the relation
between these two treatments.

There also remains an interesting problem of the
magnetic susceptibility at low temperatures. The polari-
zation of conduction-electron spins associated with the
quasibound state is expected to behave as a part of
localized spin, and hence, the c6ective magnitude of
localized spin will be reduced at low temperatures.
However, the calculation of the magncti. c susceptibility
is beyond the scope of this paper, because it requires
calculation of the two-particle Green's functions. In
addition the interaction between localized spins, which
we have neglected throughout this paper, will play an
important role there. This problem will be left for
future investigations.

Note added ~N proof. It should be said that the calcu-
lation in Sec. 3 for the case of high temperatures has
only a qualitative meaning. The lifetime of conduction
electrons obtained in (3.11) differs from that of the
perturbational calculation' in thc third order of J, when
the former is expanded in powers of J.This is because
we put mI, ——0 in (3.1), which is correct only to the
zeroth order. From Eq. (2.18) we get to the lowest
ordci of J

I'g.,g (co) = —(3J/167rÃ) L(&o—$y) (co—$1, )j '.
It is then easy to see that rNI, is proportional to J log

~
$q ~

in this order (for T=O). From this term there arises
another contribution to the lifetime which is propor-
tional to J' log ~or

~
(for T=0), and the final result is,

as it should be, the same as Kondo's.
A different expression for the lifetime of conduction

electrons has been obtained by Suhl' by a dispersion
theoretical method. His expression gives no negative
ljtfetime even near thc Fermi surface. However, as
pointed out by Suhl himself, it has a pole in the upper-
half plane of complex frequency at low temperatures.
The existence of such a pole usually means that the
unperturbed Fermi surface has some instability. In this
case it is expected that the Fermi surface is unstable
locally, in the vicinity of the paramagnetic impurity. If
this is the case, the self-consistent treatment in Sec. 4
has an essential importance in the present problem.
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pppmgDIX

4 g0 ~ putting 4 ;„F . 4.9),(g) Proof of Eq ( '

we have

(A6)
252

1
'

the last express'o
'

n wecanIn ca cu a
f integration

l ulating thein«gra '" .
b (0 ~), for there lace the region 0

))j.Thus we haved nishes rapidly fo Xintegrand vanis e

3(tnt 4& tk

4
I ~I P

P d
~'(&p/»'

~'(Jp/N)'

d,.nto two parThe integral is d&v& e

DIT f
—tanh —dx ~

2D/Tc X

DIT. f X—ta~-dx+
x 2

DIT

0

E . 3.12)b E . ( .13).Bytheuseof Eq.
es N/

~
J

~ p, while in the secon
integral tanh( —' ) can be approxuna e

/T&)1. Thus we have

(A2)—t nh —dx=1+— l
2 E0 X

A2 in Eq. (A1) gives Eq. (4.10).Substitution of Eq. ( )
(Z) Proof of Eqs. (4.12) aid . : '

4.8 is
rewritten as

f Eq (A5), tanh(2x) is app o 'In the second integra o
ated by unity, an

A'
~ln2"=

I ~&x'+~'
(A7)

D/T

(A&)

ll obtain Eq. (4.12).
b &1 We di ide the in

y

the 6rst integral tanh 2x is exp
becomes

0 2

A x
dx———8.

0 X'+P 2 4
(A9)

(A6) (A7), and (A5) E . (A3)the use of Eq
becomes

x )x
tanh( —dx,1——

&20 X

8= 6/T.

(A3)

(A4)

D/T D/T g
—tanh —dx

A 2

m ared with x'ral b2 is neglected compI the second integra i
and it is calculated as follows:

6 tends to a finitehave 8))1, for
th t 1 Evalue or —+T~o. In this case e

is devi ed d into two parts as

D/Tc 1
—tanh —dx+
X

x—tanh-
DITc X 2

D/T

0 x'+&'

x
tanh —dx

2

A g
—tan-dx.
X

bv the use of Eq. (4.4.8 .x ecomes N/( J(p y
1 andx'+~'A

as 1«A«8. In the 6rstwhere A is a cconstant suc as 1«
d compared wit1 ' can be neglecte cointegra X ca

becomes
)T~ A

ET& 2
(A10)

A ] A

g2

x

2
tanh —dx A9, (A10), and (A5) in Eq.E. A3), weInserting Eqs. (A9),

have

A'1
tanh —1 ~dx+i$2

6= (4/m. )T In(T,/T), (A11)

. 4.13 for ~T T.(&&T.. —which becomes Eq. (4. o


