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vI. coNcLusloNs

The primary purpose of this paper has been to gen-
eralize the Ginzburg-I. andau phenomenological theory
to include the Josephson effect, and in this way develop
a tool which will be useful in dealing with problems diK-
cult to handle with existing microscopic theories. The
primary contribution of this paper has been to show
that self-consistent solutions do exist to the equations
of the model, provided that the current does not exceed
a ccltain critical currcDt ldcDtl6cd w'lth thc maximum
Josephson current.

There are several other treatments of the Josephson
CGect in existence Rll of which have two important points
in common: The properties of the oxide are lumped into
a single number, the transmission coefficient; and the

type of con6guration which can be handled conven-
iently is limited to the one-dimensional problem treated
in Sec. III.The present approach, being based on a phe-
Domenological theory, divers from the earlier models in
just these respects. This tends to give the present model,
if not a fundamental, at least a very distinct practical
advantage. For it is applicablc to more complex con-
6gurations, as shown in Sec. IU; and the description of
the oxide in terms of an CGective potential, as pointed

out ln Scc. U leads to RD cstlmRtc of thc effective
current carrying area of the junction.

The present model, in addition, leads to a useful
physical interpretation of the Josephson effect: In
certain respects, a nonsuperconducting gap placed
between two superconductors behaves like a weak super-
conductor allowing smRH noDdlsslpatlvc curl ents to
pass; the maximum Josephson current being associated
with the critical current for the weak supcrconductors.

Finally, it must be stated that the development of the
model suggested by Maki' is far from complete. There
remain several problems which need to be investigated,
of which only two mill be mentioned. First, there needs
to be an accurate determination of the CGectivc po-
tential. Until this is done„ it will only be possible to
make order™of-magnitude calcujations for the quantities
of interest. Second, it is essential to be able to include in
a self-consistent manner the CGcct of both electric and
magnetic external 6elds. Vfork is now in progress on
both of these problems.
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The collective excitations of a dense electron gas containing a fixed point charge with neutralizing positive
background are investigated. A dielectric formulation, evaluated in a self-consistent-field approximation,
yields a single-particle SchrMinger equation describing the collective modes. This equation has solutions
belonging to the continuous spectrum (free plasmons) and to the discrete spectrum (bound plasmons). A
cross section is derived for scattering of free plasmons by the point charge. The bound plasmon, representing
a density wave trapped at the impurity site, has no counterpart in the uniform gas; it exists only for
negative impurity charge and has an excitation frequency lying in the range a~/42 &~&~» where co~ is the
plasma frequency. The bound plasmon appears to be a reasonably well-defined excitation with a lifetime
~10 "sec in metals. A simple hydrodynamical model provides further physical insight. The experimental
detection of bound and free plasmons in metals and the relationship between surface plasmons, experimentally
observed in many metals, and the predicted bound plasmon are discussed.

~. rm RODuCTION
' 'N modern many-body theory attention has been eon-
' - 6ncd almost exclusively to uniform systems. This
may be attributed, 6rst, to thc mathematical difhculties
associated with nonuniform systems and, secondly, to
the hope that most important many-body c6ects are
exhibited by uniform and nonuniform systems alike, and
the treatment of the latter would add only mathematical

~ This work is based on a Ph.D. dissertation submitted to Vale
University and was supported in part by the U. 3. Air Force
OfBce of Scientific Research.

complexity. Nevertheless, while the uniform system
serves as a useful model for many problems, it is de-
sirablc to have at least a qualitative understanding of
the CGccts that may be introduced by nonuniformitics.
The present paper is devoted to that end.

As a simple departure from a uniform system, wc
consider a dense electron gas immersed in a static
electric 6cld duc to the presence of a single 6xcd point
charge. A uniform background of positive charge pro-
vides over-al1 electrostatic neutrality. This ideal model
is not without practical interest. The point charge
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2. SCF THEORY AND DIELECTRIC FORMULATION

We treat a system of X electrons contained in a large
volume Q. An external static field due to a uniform posi-
tive charge density ((N—s)/Q]e and a single 6xed point
charge se, located at the origin of coordinates, acts on
each electron. Since Q~ implies E—+00 for fixed
electron number density E/0, it is clear that E»s
for finite s.

The Hamiltonian for the system may be written

—z Q e,p «+2 Q v«[ p«p «
—Nj,

q&0 g+0
(3)

' A. J. Layzer, Phys. Rev. 129, 908 (1963).' D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951); SS, 338
(1952); 92, 609, 626 (1953).

3 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).' M. H. Cohen, Phys. Rev. 130, 1301 (1963).

represents roughly an impurity atom or ion in a metal.
In a previous study I.ayzer' has investigated the

quasiparticle excitations of this system. He finds for a
positive point charge a discrete spectrum of bound
holes, finite in number, which vanishes at sufficiently
high electron densities. In contrast, we examine the
collective excitations of the system. For a uniform elec-
tron gas the dispersion relation for collective oscillations
is given by'

cu'=or~'+Sop'k'+0(k4),

where &d~ is the usual free-electron plasma frequency,

(u = (@re'n/m)'I'

m is the electron number density, and ep is the Fermi
velocity. In brief, we wish to determine how Eq. (1) is
modified by the presence of the point charge.

Our approach is an adaptation of the work of Khren-
reich and Cohen, ' later generalized by Cohen. 4 In the
former study a time-dependent self-consistent Geld

(SCF) is employed in a dielectric formulation of the
many-electron problem. The SCF theory provides a
simple means for calculating the longitudinal, wave-
vector and frequency-dependent dielectric constant for
a uniform gas, and from this the properties of the system
may be deduced. In the subsequent study by Cohen this
treatmen~ is generalized to include nonuniform systems.

We apply a modified version of the Cohen-Ehrenreich
theory to the particular system under consideration. In
Sec. 2 a brief description of the SCF approximation is
given, and the linearized dielectric response of the
system to a weak external perturbation is computed in
this approximation. In the absence of external perturba-
tions, the dielectric response furnishes the desired con-
dition for self-sustained oscillations or normal modes of
the system.

In Sec. 3 the results of the microscopic theory are
considered in the light of a crude hydrodynamical
model, and experiments in solids relevant to the theory
are briefly discussed.

where e~ and p~ are the Fourier transforms of the
Coulomb potential and the electron number density, i.e.,

v«=4ne'/Qq',

N

p«=g exp( —iq r;). (s)

The q=0 terms, missing from Eq. (3), cancel exactly
against the term containing the uniform background of
positive charge.

SCF Approximation and Linear Response

Following Ehrenreich and Cohen' and Cohen, ' we
define a self-consistent field (SCF) approximation to the
true Hamiltonian. The time-independent SCF Hamil-
tonian is given by

p.2

—2 ~«Es —&«I p«l « o&jp—«
2m

and satisfies the time-independent Schrodinger equation

& 'I «.&= h.
I «-&

Equation (6) is obtained from Eq. (3) by means of
a variational principle in which the approximate
factorization

&«I&«ti—«I «&=&«I&«l «&&«I&—«I «&

is made. Since H, can be written as the sum of identical
single-particle operators, the eigenstates j q „)are Slater
determinants.

Having defined a set of SCF states, we wish to
examine the linear response of the system to a weak
external time-dependent Geld. First, a simple generaliza-
tion of Eq. (6) is required to incorporate time depend-
ence into the formalism:

&.(t) =2 —2 ~,Ls—8 lt, lf&jt-, .
i 251 qwo

8
a, ~p&=«h-)p).

Bt

(7)

where for all q

Hi(t) =p«U«(t)P «,

U (t)~e(—i(a+a)t (10)

Here, we depart from Cohen, who considered a pertur-
bation having a single spatial Fourier component. This
modification will prove necessary in the subsequent
analysis. The parameter n is a positive infinitesimal

Eq. (7), called the time-dependent SCF Hamiltonian,
follows from a time-dependent formulation of the
variational principle. 4

The following time-dependent perturbation is
considered:
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which serves to turn on the perturbation adiabatically
and to ensure that the response of the system is causal.

To determine the linear response, we consider a
classical test charge located at the position r. The po-
tential V(r, ],')/ —e measured by this test charge is given
by Poisson's equation. Fourier transformation in space
gives

V,(t)=s»LQ Ip»IP) —s7+U, qao. (11)

The change in Vq when the perturbation H~ is turned
on constitutes the response of the system. At t= —~ the
system is assumed to be in the SCF ground state

~
&p]&).

dv =V (/) —V (— )= A&p )+U (12)

~&&») = &4 IP»lf) —&«I~»I «). (13)

Equation (12) relates the response AV» to the applied
potential Uq. To proceed further, we must express
6&]]&») in terms of U».

Application of first-order, time-dependent perturba-
tion theory (equivalent to the use of a linearized density
matrix) gives

Z [B»» —&(q,q', ~)~» 7~6»)
qf go

=P n(q, q'; ar)U, , qWO (14)
ql

which defines the dielectric matrix

e= I —vQ. (22)

Q»»(q, q';(o)hV» =0. (25)

In component form Eqs. (21) and (22) are written

U, =P». »(q, q'; a))hV, . (23)

»(qq i&)=B ' i' &(qq~i~) (24)

The physical significance of Eq. (23) is this: An

applied potential U with single wave vector q gives rise
to a response AV having many Fourier components
4Vq. In other words, an input wave is scattered by the
nonuniform gas. For a uniform gas «(q, q', a&) is diagona, l,
and the wave vector of the response is identical to that
of the input. The need to include all Fourier components
in the perturbation, Eq. (9), follows from the fact that
in deriving the dielectric matrix, we solve first for a
single Fourier component of the response, AVq. For a
nonuniform gas this necessarily involves all Fourier
components of the applied potential.

Of paramount importance are the conditions under
which a response exists in the absence of a perturbation.
Such conditions describe the normal modes of the sys-
tem. Normal modes exist for certain frequencies or

such that

where

i0»o+iu

&« I]] » I »].)&»]~lp»l «)
~+&no+»]]'

and
L)„p——8„—$0.

1 &» oI~»l ».)&» -I]-» I»»)
n(q, q'; o)) = +-

~A

(15)

(16)

This expression, with»(q, q'; &o) defined by Eq. (24),
yields a dispersion relation for co whose form we seek for
the collective modes of the system.

Equation (25) is in general complex. If the collective
modes are assumed to be reasonably well defined, i.e.,
~2«co&, ~& and cv& being the real and imaginary parts of
co, then a Taylor series expansion of Eq. (25) is
permissible:

For a uniform gas X)(q,q'; &u) is "diagonal" since for such
a system the states

~ p„)are momentum as well as
energy eigenstates.

The formal solution of Eq. (14) for A&p») may be
written in matrix notation

aq= mnU,

where Ay and U are vectors whose components are &&p»)

and U»; S is a matrix whose components are X)(q,q'; ~);
and 5E is a matrix whose inverse is defined by

(~ ')- =B»'—&(q:q'; ~)~»" (18)

Similarly, Eq. (12) can be written using Eq. (17)

ch V= s-]U

61(q,q, M)+] 62(q,q, 0])+%2
B»i(q]q ] G7)

AVq =0.

(26)

P»»i(q, q';(u)AV»&"=0 (27)

a&»
———LP AV»i'&*»2(q, q'; co)AV» &'&7

BE](q]q j 07)

P AV»&'&' B,V» ]'&, (28)
q, q'

Here, ~~ and e2 are the real and imaginary parts of e.
First-order perturbation theory gives

where the inverse dielectric matrix a ' is defined

s i= 1+v OR X) .

where AVq('~ is the zeroth-order approximation to AVq.
Equation (27) determines the normal modes ~ =coi, and

(20) Eq. (28) the lifetime r 1/
~

co ~2of these modes.

Here, I is the unit matrix, and v is a diagonal matrix
with components ]]»h»» .Equation (19) is easily inverted
with the use of Eqs. (18) and (20). The result is

Evaluation of the Dielectric Matrix

Further progress can be made only by detailed
examination of e& and e2 for the system in question. For

(21) this purpose we evaluate K)(q, q'; s&), defmed by Eq. (15).
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Since the eigenstates
l oo„)are Slater determinants in

the SCF approximation and pq is the sum of single-parti-
cle operators, the AT-particle matrix element (ooo l ps l

(pp, &

reduces to a single-particle matrix element. The single-
particle states satisfy the following Schrodinger equation

k2

& —P o [z—(«lpol«&]exp(iq r) u;(r)
2m

The static dielectric constant for the uniform gas is
well known in the SCF approximation'

kFT( g' g+2kF
o(q,0)=1+ -+—

l
1— In . (36)

q' 2 2q 5 4kF' q
—2kF

Here kp and k~T are the Fermi and Fermi-Thomas wave
vectors, the latter defined by

= o,u;(r) . (29) kFT ——(4kF/ora )'I' (37)

f; is a Fermi factor defined by

i=1 Gi+ 6F

=0 6s%6F) (32)

and ep is the Fermi level of the states c;. The factor 2

appearing in Eq. (30) accounts for spin, degeneracy.
As written, Eq. (29) must be solved self-consistently

for the lowest 1V/2 (~10")states in order to determine
the SCF ground state

l «). Fortunately, this tedious
task can be avoided by virtue of a simple physical
argument.

From Poisson's equation the Fourier transform of the
induced electron density due to the presence of a fixed
weak point charge se is given by

&p%'"'&= z(1—Lo(q, 0)r'), (33)

where o(q,0) is the static form of the wave vector and
frequency-dependent dielectric constant for a uniform
electron gas. The expectation-value symbol is used here
to denote a thermal average over the states of the system
in the presence of the point charge. In the SCF approxi-
mation for a dense electron gas, we may take

&p.'"&=&o olp. l«& «0
Thus, Eq. (29) becomes approximately

(34)

A2 Vq
V' —z P — exp(iq r) u;(r)=o,u, (r). (35)

2m ohio o(q,0)

In effect, the Coulomb potential of the fixed point charge
is shielded by th,e dielectric constant of the electron gas.
This could have been written down on physical grounds
at the outset. It is more reassuring to find, however, th, at
it follows directly from the SCF approximation of Cohen

and Khrenreich.

In terms of these states $(q,q', ~o) becomes

$(q,q'; io)

(u;l exp( —iq r) lu;)(u, l
exp( —iq' r) lu;)*

=2
koo+ oj Ej+zAEx

X(f,—f,), (30)
where

(u;l exp( —iq r) lu, )= dru, *(r) exp( —iq r)u, (r), (31)

where uo is the Bohr radius.
The potential appearing in Eq. (35) becomes a

Yukawa potential with shielding length 1/kFT lf tile
long-wavelength approximation to o(q, 0) is employed,
viz. )

o(q,0) = 1+kFT'/g'.
q~0

(38)

Equation (35) has a finite number of bound states.
One can show by means of a WEB calculation' that for
metallic densities s must be greater than about 2 if
bound states are to exist at all. In the high-density limit,
the number of bound states drops to zero for finite s.

In evaluating X)(q,q', oo) to determine the collective
modes, we will find that the bound-state solutions of
Eq. (35), even if present, can be ignored. Hence, we may
confine attention to the scattering (continuum) states
of this Schrodinger equation.

Roughly speaking, the first Born approximation to a
scattering state is valid throughout the entire continuous
spectrum if the scattering potential is too weak to
support a bound state. In the high-density limit this
condition is satisfied by the potential in Eq. (35). For
the intermediate densities characteristic of metals, the
validity of the Born approximation is not assured for
all e;&0. Nevertheless, this approximation is made here
with the hope that results will be at least qualitatively
correct in the intermediate density region.

In the first Born approximation, we find for the
matrix element

(uk I exp( —iq r) lu

Vk' —k—q—hk', k+o z (1—8k~ kyo)
o(k' —k—q, 0)

XUok ok o'o—p) (ok+o okij8) j (39)

~h~~~
l uk) denotes a scattering state of Eq. (35) labeled

by the incident wave vector k, and the limit p ~ 0+ js
implied. Substitution. of Eq. (39) and an analogous ex-
pression for (ukl exp( —iq' r) luk. ) into Eq. (30) gives to
6rst order in z (with neglect of contributions from possi-
ble bound states)

&(q q 'oo) = &(q,oo)&o,o+&(q,q', ~o)(1—8«.) (40)
' J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 28, 30 (1954).
'W. G. Holladay, J. B. Thomas, and C. R. Smith, Am. J.

Phys. Bl, 16 (1963).
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where 5)(q,o&) and K(q,q', &d) denote the diagonal and nondiagonal components, respectively, of X)(q,q'; co).

fk fk+«
n(q, (e) = 2 P

k AN ek+«+ 6k+ zAQ
(41)

X(q,q'; or) = —2s
&«—«' fk fk+«

[(«k—«kp««+zP) '—(ek+« —ek+«+zP) 'j
e(q —q', 0) k A(o —eke«+ek+zAn

fk fk+«'
+ [(&k—&k+«-« —zP) ' —

(&k+« —&k+«
—zi3) 'j (42)

Aa& —ek+«+ ek+ zAn

For a uniform gas only the diagonal components X)(q,a&) appear. These have poles for Aa&= «k+« —ek corresponding
to quasiparticle excitations. The nondiagonal components K(q,q; &d) have, in addition, poles corresponding to
elastic scattering of quasiparticles by the Axed point charge.

If consideration is restricted to the plasmon region dined by Ace greater than both 6l,+q Ep and 6g+q cg the
infinitesimal n may be omitted from Eqs. (41) and (42). Within this region, where collective effects dominate,
$(q,&d) is real and K(q,q; i0) separates into the following real and imaginary parts:

&q—q' fk fk+«
+1(lhq i id) 2s Z ~[(ek ek+««') (ek+«~ ek+«) ]

d(q q 0) k AM —6k+«+ ek

fk fi+«—
+ f'[("—ek+«-«) '—("+«—ek+«) 'j, (43)

AN 6k+«!+«k

~q—q' fk fk+«
K2(q)q j 47) = 2«rs Q [8(ek fk+««&) 6(Ek+«' «k+«) j

e(q —q
' 0) k AM —ek+«+ ek

fk k+«'
+ [&("—ek+« -«) —~(dk+« —"+«)j (44)

&k+«'+ &k

Here, P denotes principal value. Strictly speaking, P
has meaning only if the% sum is transformed to an
integral sign. Note that X& and X2 are symmetric and
antisymmetric in q and q', respectively.

The sums in Eqs. (43) and (44) may be transformed to
integrals and evaluated in the limit q, q' —+ 0. An order-
of-magnitude argument shows that the resultant con-
tribution from possible single-particle bound states is
negligible. A surprisingly simple result for %& is found.
Details are given in the Appendix.

valid for nonuniform gases, in general, provided that the
nonuniformity is suSciently weak. Later we shall use
this fact and show that it leads to an experimentally
observed result.

An interesting similarity in form between the diagonal
and nondiagonal components of X)&(q,q'; a&) may be
deduced. The wave vector and frequency-dependent
dielectric constant for a uniform gas «(q, co) has been
evaluated by Lindhard in the SCF approximation. ' Use
of Eq. (24) then gives for the diagonal components of
X)z(q,q', ~d) in the long-wavelength limit

q q'
Kz(q, q'; ~d) = s[1—(«(q —q', 0)) ']+

mao2

(45)

q'1V( 3 s&'
&(q ~) =

I
1+- q'+"

«-'in~'5 5 uz )
A comparison of Eqs. (45) and (33) immediately gives

q.q'
& (q,q'; ) = (p -""')+" .

q q' 0 euv2

A generalization can be made for an arbitrary impurity-
charge distribution. Because of the linear approximation
with respect to s in Eq. (33), the induced density due
to a collection of point charges can be written as the sum

(p ind) P . (p ind) .

where (pk'~d), is the linearised contribution of the ith
charge. Hence, Eq. (46), derived for a point charge, is

&(q,~)4« = («olp«-« l«o)
q 'mo)'

3 zis'
xl1+- q+ "ls„.. (4s)

5 )"
This should be compared with Eq. (46) where (p«, '"d)
is replaced by (p«l p«« l s &). One sees that the diagonal
and nondiagonal components of Sz(q, q'; a&) have identical
form in the limit g, g' —+ 0, a fact which is not apparent
on cursory inspection of Eqs. (41) and (42).
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For the complete matrix Sq(q, q', co) we have from
Eqs. (40), (46), and (48)

where for the present system

(V'o I n»—«' I coo&

=&4» +sL1—(»(q —q' o)) '3(1—
~»» ) (5o)

The real part of the dielectric matrix may now be
inferred from Eq. (24) and the above expressions. In
the long-wavelength limit

co& 3 'vp

oy(q q' co) = LI ~ 1— 1+— q'+
5 a)2 )

M& gQ-(1-4» ) — l:1-(o(q-q', 0)) '3+
E cv' q'

Equation (51) shows that the ratio of nondiagonal to
diagonal components of »i(q, q'; co) is of order s/X («1).
Also, the width" or departure from diagonal form in
momentum space is seen with the aid of Eq. (38) to
be of order kpT.

Collective-Mode Disyersion Relation

If for all collective modes, AV~(0) is diGerent from 0
only when q&krT, we may use oi(q, q'; co) as evaluatod
in the long-wavelength limit in Eq. (27). This will be
the case if the collective modes are well defined. For, if
6V~('& over1aps the quasiparticle spectrum, rapid decay
of collective modes into single-particle excitations is to
be expected. Under this assumption substitution of
Eq. (51) into Eq. (27) gives the following homogeneous
integral equation. (The summation sign and Kronecker
deltas are replaced by an integral sign and delta func-
tions in accordance with the usual prescription. )

2&V ~
l

q&— — E loo(q) = —A cfq'E(q, q')»o(q') . (52)
k )

co(q) =q~l'»"' (53)

9'q
&i(q,q'; ~) =, -(ecole»-» l » o)

O mcv2

3 'vg

X 1+- q'8»» +, (49)
5 GO

The form of Eq. (52) is deliberately chosen to re-
semble a single-particle Schrodinger equation in the
momentum representation. The kernel E(q,q') is sym-
metric (a consequence of the fact that $~(q,q', co) is
symmetric) which means that the eigenvalue E is real.
Since K(q,q') depends on both q and q' rather than on
their difference, the "potential" seen by the effective
single particle is velocity- as weH as position-dependent.

The identification of Eq. (52) as a Schrodinger equa-
tion is indicative of the particle character of a collective
mode or plasmon. In eGect, we have reduced the
Ã-particle problem to a single-particle problem describ-
ing the collective modes of the system.

We recall that the origin of Eq. (52) is a statement of
Poisson's equation l Eq. (11))for cLassicuL eLectrostatics
Quantum mechanics enters only in the calculation of the
expectatlon value kQ»).

As a check on the valdity of Eq. (52), we consider the
special case of a uniform gas (s=0). For this system the
coupling constant A vanishes, and a free-particle
Schrodinger equation results with the solution

where
» (q) =&(q-k),

5 co' (co'k'=-
l

—1 lkFT'.
9 co„'(coo'

(57)

Straightforward manipulation of Eq. (58) reproduces
Eq. (1), the known dispersion relation for collective
modes in a uniform gas. Moreover, Eq. (57) when
transformed to coordinate space gives the required plane
wave with wave vector k.

Continuous Syectrum Solutions
For nonvanishing s the solutions of Eq. (52) are not

trivial. The possibility exists for solutions belonging to
both the discrete spectrum (E(0) and to the continuous
spectrum (E)0). The latter solutions, called free
plasmons, are similar in character to those of the
uniform gas. We treat this case first.

The excitation spectrum for a free plasmon in the
presence of a Axed point charge is identical to that ob-
tained above, viz. , Eq. (58), from which Eq. (1) follows.
We find that the only effect of the point charge is to
act as a scattering center for free plasmons. To deduce
the scattering cross section, Eq. (52) is recast in the
form of a Lippman-Schwinger equation

2M 5 co' (co'
E=

l

—1—lkpT»-
k' 9 co„'4)o'

z 5~~
A= kg T'

(N/Q)(2n-)' 9 co„'

o'q
Ic- (q,q') = Ll —(o(q- q', 0))-').

W'

(54)

(56)

le)= lk)+1m (z,—a,+i»)-~Vie), (59)

where
l k) is a free-particle eigenvector with eigenvalue

E&——k'k'/2jlf, Ho is the free-particle Hamiltonian, and
the following identi6cation is made:

(ql~)= v(q)
h2

(ql I'lq') =A&(q,q') —.2'
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In the first Born approximation Eq. (59), written in where
the coordinate representation, reduces to x= q/k2T (67)

(rIc)= exp(ik r)
(22r)'/'

E(q,k)
+A dq exp(iq r)

k2 g—2+i6

The integral appearing above can be evaluated in the
limit r ~~.

Here,

(r I C) = exp(ik r)+ f(rk)
r~ao (2~)3/2 r

(62)

f(rk) = —2g2~Z(rk, t) (63)

and ik denotes a vector a magnitude k oriented in the
r direction.

Equation (62) has the familiar asymptotic form of an
ingoing plane wave plus an outgoing spherical wave,
i.e., the free plasmon is scattered by the impurity
charge. The function f(rk) is the usual scs, ttering ampli-

tude. In the long-wavelength limit

zr, 'gp 10
f(rk) =- cose,

2~0 (9~/4) 1/6 92r 1/2
(64)

where 0 is th, e scattering angle and r, is the interparticle

spacing parameter.
3Q

(4w a62$3
(65)

Discrete-Spectrum Solutions

We now seek solutions of Eq. (52) belonging to the
discrete spectrum. These have no counterpart in the
uniform gas. They correspond to a plasmon bound to
the impurity site and are analogous to the trapping of
phonons at lattice defect sites.

Since B is negative, we set

(65')

Fq. (52) may be written in nondimensional form

(x'+V') 6 (x)

Thus, the differential cross section
I f(rk) I' for plasmon

scattering has dipole character as lt —& 0.
The total cross section is of order s'r, 4ap' which is

comparable to the cross-sectional area of the induced

density distribution. This result suggests that the free

plasmon is scattered by the nonuniform density rather
than directly by the impurity charge itself.

0(y2(5/36, (69)
corresponding to

1)66/&6~) 1/V2. (70)

The original many-particle Hamiltonian, Fq. (3), is
invariant under rotations. Hence, the eigenfunctions
22(x) transform according to the full rotation group, i.e.,

6 (x) ~ q,„(x,e,y)=F,(x)I'1"(e,y). (71)

Substitution of Eq. (71) reduces Eq. (66) to a one-
dimensional integral equation,

(x'+y') f/(x) =X dx'E'1(x, x') f1(x'), (72)

where

f/(x) =xF1(x)

1

E1(x,x') =xx' d/2 /2P, (/2)

(73)

X L1—(6(x'+x"—2xx'/2 0))—1j (74)

10 ( 36 ) /2 r,2/2

)I.=—s—1+I 1—~2
I

9 1 5 /I

(75)

Here, F&(/|2) is the Legendre polynomial of order &.

In the long-wavelength approximation, we have from
Eq. (38)

L6(x +g —2gx /|2, 0)j = (g2+g'2 —2gg'/2+1) —1

With this approximation Eq. (74) can be integrated
exactly, ~

//x2+x" +1~E,(x,x') =Q, I

2xx' j
/g2+g"+1~

/
x2+x"+1~

IQ/I
2xx' & 2xx' i

l=O

where Q1(s) is the 1th order Legendre function of the

and use has been made of the fact that y' and co are
related through Eq. (54).

~'/~ '= (1+L1—(36/5)v'3'")/2 (68)

A second root of the quadratic equation yielding Kq.
(68) is rejected as unphysical.

One notes in Eq. (66) that the coupling constant de-
pends on the eigenvalue y'. Since y' is positive and co

must be real, we conclude from Eq. (68) that solutions
belonging to the discrete spectrum are possible only in
the range

36 1/2- r 2/2=-.— 1+I 1—~'
9 k 5

dx'E (x,x') 22(x'), (66)

' Use is made of the usual recurrence relations for Legendre
polynomials and an integral formula given by E. Y. Whittaker
and G. N. Watson, Moderl Analysis (Cambridge University
Press, Cambridge, England, 1962},4th ed., p. 320.
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second kind. The lowest three orders of Ei(x,x') are

/x'+x"+ ii i(x+x')'+1i
X,(x,x) =~

4xx' ) k(x —x')'+11

fg5+x 5+1) (x5+x 5+1)
&&(x,x') =

I

3.5

I-
K 3.0
X
O
CP

2.5
2-'

0
O

2.0

~ J i'J

t'(x+ x')'+ li
X ln~

~

—1, (78)
k (x—x') '+ 11

0 O.OR 0.04 0.06 O.OB O.IO 0.IR 5/'36

DIMENSIONLESS PLASMON BINDING ENERGY,

FIG. 2. Eigenvalues for bound S-state plasmon.

~g'+x"+1~ 1- (x'+x"+1~'
&5(x,x') =

I

——
2xx' i

t (x+x')'+1~ 3 t'x'+x" +1~X»I, I

—I, I
. (»)

E(x—x')'+1) 2 E 2xx' /

Equation (72) with I=0 was solved numerically on an
IBM 7090 computer. The method employed is an adap-
tation of a numerical iteration scheme described by
Salpeter. ' In this procedure, it is convenient to regard P

as the eigenvalue and y' as a known parameter. In other
words, the binding energy is prescribed, and the problem
is to deduce the coupling constant. The method is
suitable for finding the lowest eigenvalue X, correspond-
ing to an eigenfunction without nodes.

Numerical solutions were obtained for five values of
y' (0.02, 0.06, 0.10, 0.12, 5/36). These values encompass
nearly the entire permissible range of p' as indicated by
Eq. (69).The computed eigenfunctions and eigenvalues
are plotted in Figs. 1 and 2. As assumed, AV5&'& ~ f(q)/q'
lies mainly in the plasmon region. Over its full range )
varies nearly linearly with p' and deviates from a con-
stant value (=3.0) by less than 4 percent. Since X is
positive, s must be negative in accordance with Eq. (75).

Thus, bound 5-state plasmons exist only for negative
impurity charge.

From Eq. (75) the product sr, '"—is fixed once X and
y' are known. For metals r, has the approximate range

1.8&r,&5,5.
These limits are indicated in Fig. 3 where the impurity
charge —2' is plotted as a function of binding energy y'.
In low-density metals (r,=5 5), an. impurity charge of
s= —1 appears to be just sufhcient to support a
bound plasmon. At higher densities larger values of
—s are required.

In Eq. (72) the binding energy appears in nondimen-
sional form. Its magnitude in energy units-can be de-
duced from Eq. (65') if the effective mass 3/I of a
plasmon is known. If the usual formula for eGective

IO

9

7 ~ 0.06
O.IO

5/N'
ILJ
C9
K 6

I- 5

IL

4

J
rz =5.5~

2 4 6 8
RADIAL ' MOMENTUM COORDINATE ~ It *

kF&

PIG. 1. Radial wave functions for bound S-state plasmon.

E. E. Salpeter, Phys. Rev. S4, 1226 (1951).

0
0 O.OR 0.04 0.06 O.OB 0.IO O.IR 5/36

DIMKNSIONlESS PLASMON BINDING ENERGY, g
Pro. 3. Magnitude of impurity charge required to support

a bound S-state plasmon.
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mass is assumed to hold

M= k(B'co/pIk') ', (80)

obtained is

Mp/Mp~ —0.1, (86)

we have from Eq. (1)

M = (5/9) (kki T'/pp, )
and

E= (9—/10) Apply'.

(81)

(82)

which indicates that the bound plasmon is a fairly well-
defined excitation. (The negative sign signifies damping
I See Eq. (10)].) Finally, the lifetime of the excitation is
given approximately by

Since y' has the maximum value 5/36, the binding

energy of a bound plasmon must lie in the range

r 1/I pip
I

1/O. ico~,

or for metallic densities

(87)

0( E& i%op—/8. (83)
10 "sec. (88)

For metals kpp„/8 1 eV.
An interesting connection between Schrodinger equa-

tions for a plasmon and for the hydrogen atom is worth
mentioning. If in Eq. (72) for l=0 we take the limit

k~T —+ 0, corresponding to the absence of shielding, the
resultant equation becomes identical with the l= 1 radial
equation for the hydrogen atom. '

A large portion of the preceding analysis is predicated
on the assumption that the plasmon, whether bound or
free, is a reasonably well-dined excitation. The validity
of this assumption is known for the free plasmon in the
long-wavelength limit. Ke must show that the bound

plasmon is also well de6ned. For this purpose we turn
to Eq. (28).

The linewidth of an S-state bound plasmon is given by

,foR), fp(v')
doJ dq pp(g, g j pip) ', , (84)

,fpR) ~pi(a, a" ~p) fp(g')
dq dq'

q2 Bco q
2

where coo denotes the S-state eigenfrequency. An order-
of-magnitude evaluation of Eq. (84) will suf5ce. Con-

sequently, we include only the diagonal portions of

&y and t2.
IfpR) I'

dpi pp(q, ~p)
q4

I fph) I' ~pi(a~p)

q4 BCO

The real and imaginary parts of the uniform-gas dielec-
tric constant have been evaluated elsewhere in the SCF
approximation. 5 For example, we find

Bpi/gM I (g=~p 2/My

which may be substituted into Eq. (85). The remaining

integrals were performed numerically for the particular
solution y =0.02 illustrated in Fig. 1. The result

9 H. A. Bethe and E. E. Salpeter, Quantum 3Eechan~cs of One-
and Two-E'/ectron Atoms (Academic Press Inc., New York, 1957),
p. 38.

3. DISCUSSION

We have seen that in the presence of an impurity
charge two distinct types of plasmons may exist. The
erst, called a free plasmon, has the same excitation
spectrum found for the uniform gas. The nonuniformity
acts as a scattering center for free plasmons.

In contrast, the bound plasmon has no counterpart
in the uniform gas. It exists (at least for 1=0) only if the
impurity charge is negative. Furthermore, it belongs to
the discrete spectrum with an excitation frequency less
than the plasma frequency of the surrounding uniform
gas.

The detailed microscopic theory sheds little light on
the physical mechanism responsible for the existence of
bound plasmons. Seeking an explanation, we consider an
idealized model of the nonuniform gas in which the
induced density distribution due to the point charge is
replaced by a simple step-function approximation. In-
side a radius rp( 1/kFT) centered at the impurity site,
the electron density is treated as a constant S&, outside
this region the density E2 is also constant. Clearly, for
positive s, the quantity S&)E2 while for negative s, the
quantity Ã&&S2. Since the density is uniform, we may
apply uniform-gas results to either region. For the
moment we overlook the fact that certain matching con-
ditions must be satisfied at the interface r= ro in order
for a valid solution to exist.

The dispersion relation for free-plasmon excitation in
regions 1 (r&rp) and 2 (r) rp) is

pp'=pp &~'P+-'p &~&Pk P +=i 2a (89)

where co~i i= (4pre'E /m)'I', etc. It is important to note
that for fixed frequency co the wave vector h is, in
general, diferent in the two regions.

If s is negative, we may consider solutions in the fre-
quency range p~~i'&&~(~„&".By virtue of Eq; (89) ki
is then real and k2 pure imaginary. This means that a
propagating wave in region 1 must be matched to a
damped wave in region 2, resulting in a wave trapped at
the impurity site, i.e., a bound plasmon. Conversely, if
s is positive, no trapping is possible. Only propagating
waves, i.e., free plasmons, may then be constructed.
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conditions at 0 and ~ .The remaining two are matching
conditions at the interface r=rp. When use is made of
Eq. (90), these may be written

Hydrodynamical Model

The validity of the preceding argument rests on the
assumption that a progapating plasma wave may be
matched to a damped plasma wave at the interface
r=rp. To investigate this assumption, a simple hydro-
dynamical theory patterned after the work of Bloch"
and Jensen" is constructed. In this theory the electron
gas is treated as a Quid whose pressure is related to the
zero-point energy of the particles.

The linearized Bloch equations for irrotational Qow

(with neglect of retardation) are

4« - 4me
C&(1) g (1) — @(2) g (2)

kFT (1)2 - r=rp - +FT(2)2
, (98)

-r rp

-g@(1) 4«g y(1)-
E1

~FT ~r —r rO

a4 (» 4«ar(»-
=S, — — . (99)

~FT ~r —r rpBN e 4me'—+—
&)2
— 22=0,

R m mkFT'

Bs—=V tspVN
BI

Equations (98) and (99) express the irrotational
character of the velocity Qow field and conservation of
mass Row across the interface. For application to Eq.

(91) (96) these must be expressed in terms of S( &.

The electric potential satisfms the equation

V2q =4«n. (92)

p=pi, r&rp

r&rp, (93)

Herc, u is the velocity potential, p the electric field
potential, and e the electron number density. These
three quantities are regarded as perturbations on the
steady-state Aow field, and ep is the steady-state number
density. Equation (90) originates from the equation of
motion of a fiuid; Eq. (91) from the continuity equation;
and Eq. (92) is Poisson's equation.

Kith the choice

E( &(r')
C (r) = —e dr' (100)

In the absence of any surface charge or dipole layer, 4
and its radial derivative are continuous across the inter-
face. Thus, the matching conditions, Eqs. (98) and (99),
are

(kpT"')-'J))'"'
f
„=(kFT"')-'S"' f, „(101)

8
(.V N) dr'X( &(r—')—

Br fr-r'f
„„

Eqs. (90), (91), and (92) may be combined to give

(g222(a)/e)t2)+(e (~)2Lrt(~) (k (~))—2V222(~)]=0. (94)

Ej BE(') x, ax()-
+42'

FT(1)2 gr ~FT(2)2 gr —r=rp

=0. (102)

Solutions of the following form are sought:

22( )(r,t)=X('(r)e'"'
22(~) (r,t) = U(~) (r)e'"'

p& &(r,t)=C(~)(r)e'"'

As predicted, if the charge z is negative, bound solu-
tions of Eq. (96) subject to Eqs. (101) and (102) may
be found in the frequency range co„")&~(.ar„(').Since

(95) ks is pure imaginary, we set ks i)&2 Th——e req.uired well-
behaved solutions are

Equation (94) reduces to a Helmholtz equation

V2$( &+k 21V( '=0,
where

2 k (a)2L(~2 ~ (a)2)/~ (n)2] (97)

Since Eq. (96) constitutes two equations, a total of
four boundary conditions are required. Two of these are

N(r) =A)j 2(k)r) Y)"(0,&), r(rs
=B)h)("(i)&sr)Y)"(t),&), r) re

where j)(s) and ht(2) (s) are spherical Bessel and Handsel
functions.

If in Eq. (102) 1/fr —r'f is expanded in terms of
spherical harmonics, Eqs. (101), (102), and, (103) com-
bine to form

xl—1

"hg(')(iz)
dh+if —

l
Dh, 2(»(i&) —(l+ 1)h,+,(»(;„)~

&z,i

l+1
(1—e)

pl+2
*"'i2(*)d*+ el

—
I f:lj&-2(&)—(l+ 1)j)+2(k)3

kZ2)

(104)

"F.Bloch, Z. Physik 81, 363 (1933).
"H. Jensen, Z. Physik 106, 620 (193'/).
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where
)=ktrp

'g =K21'p

e= St/Es
z.=u„&-).,
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(105)
Exyerimental Detection of Bound

and Free Plasmons

qualitative check on the predictions of the microscopic
theory as well as physical insight into the nature of
these predictions.

The quantities $ and rt are related through Eq. (97)

L(1—e)/e't'jRs' (1—e)Rs'
(106)

To compare with the microscopic theory, we consider
the special case l=0. Equation (104) then reduces to

cot/ 1 1 1
e
—1/s +

P rt rt'- (107)

e' n O. l

Equations (106) and (107) must be solved simultane-
ously by graphical or numerical means. These relations
bear a striking- resemblance to equations appearing in
the well-known problem in quantum mechanics, first
treated by Margenau, "of a particle bound in a three-
dimensional square well. It is particularly interesting to
note that in this analog the same disparity between /

values exists as in the microscopic theory. Equation
(107) corresponds to the l= 1 equation in the quantum-
mechanical analog. "

A graphical solution of Eqs. (106) and (107) is
illustrated in Fig. 4. Two intersections occur at the
values ($,rt) = (3.36, 2.46) and (6.29, 0.25). Their corre-
sponding eigenfrequencies are deduced from Eq. (97) to
be co/co "l=0.60 and 0.997.

Further details of the solution are relatively un-

interesting. We have seen that solutions corresponding
to bound plasmons are found in the hydrodynamical
the'ory when the charge s is negative. It is easy to show
that propagating-wave solutions or free plasmons also
exist. In short, the hydrodynamical theory provides a

It is well known that plasmons may be excited in
metals by fast electrons. In the Born approximation the
transition rate for inelastic collisions of fast, charged
particles with a uniform electron gas is readily ob-
tained. ' We wish here to indicate brieQy how the results
of such, an analysis are modified for a nonuniform gas.

We consider a high-velocity particle with charge soe

moving through the electron gas. Since the velocity is
large, a classical path approximation is permissible,

I=vol' vo= const (108)

where H; t(co) is the Fourier component in time of H;„t„
we obtain for the full transition probability due to II;„t,

w= Ps w(k, k ve) .
Here,

2%so
w(k, k'») = — 'vs P vs~8s. r&,sI.r&

PP j 'wo

X P (too I p&l & )(q' I&-&' I q'o)~(k'»+co e) (112)
neo

gives the transition probability for momentum transfer
—t'tk and energy transfer —t'tk» to the nonuniform
gas. For a uniform gas Eq. (112) reduces to the known
result"

277'SO

w(k, k vp)= ns' Q I(qpIpsIq )I'
Pg,

2 neo

X8(k'»+co p). (113)

where R and ve are the position and velocity of the
particle.

The interaction Hamiltonian is

II;„t, ss Ps„svs——(ps —s) exp(ik R) . (109)

Applying Fermi's golden rule of time-dependent per-
turbation theory

2'
wo, „(co)=—I(q oI H;„,(co)I qr„)I'6(to co„,), —(110)

3~
2

Fro. 4. Sample graphical solution of Eqs. (106) and (107).

» H. Margenau, Phys. Rev. 46, 613 (1934).
»L. I. Schiff, Quuwtum Mechanics (McGraw-Hill Book. Com-

pq, ny, Inc., New York, 1955), 2nd ed. , p. 79.

In the analysis beginning with Eq. (110), it is im-

portant to recognize that the states
I q ) are eigenstates

of the true Hamiltonian, Eq. (3). Past convention has
been to use this notation for the eigenstates of the SCF
Hamiltonian, Eq. (6). Since the distinction will soon
become important, hereafter we use Iq„') for SCF
eigenstates and

I q„)for true Hamiltonian eigenstates.

"See, e.g., D. Pines, Elementary Exc@atsons en SolUs (~. A.
Benjamin, Inc., New York, 1963), pp. 126-128.
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In the new notation Eq. (24) is written

e'or'(k, k'; oo) = bye —vgnsoF(k k' o~)

provided

&I'o'[p&l v '&&Ã 'l p t'l —ooo'&
scr'(k, k' ~o)

~o 0 oi (—o„p&'&+in

&
ioo'

I p—~'
I
t»'& &

w»'
I ps I

pop'&

co+pi»o ' +icx
(115)

In contrast, Cohen4 6nds for the inverse of the true
dielectric m.atrix

230
w(k, k vo) = — g' vg. bs.„,o .

„

a'wo

XImo '(k, k', —k vo), (117)

where the prime on the summation sign restricts k' to
values for which k' vp and hence k vp are negative. For
uniform gas Eq. (117) reduces to

w(k, k vo) = —(2z '/k)eq ImLe(k, —k vp) j ' (118)

where p(k, oi) is the frequency and wave-vector de-
pendent dielectric constant for the uniform gas.

Because e '(k, k';oi) is the inverse of an infinite
dimensional matrix, Eq. (117) is difficult to analyze
quantitatively. Nevertheless, its essential features are
clear. As a reasonable approximation e '(k, k'; &o) may
be replaced by [e (k k' oi)j 'We have see—n that the
matrix esoF(k, k', co) has the eigenvalue zero for fre-
quencies or corresponding to the collective modes of the
system. Hence, Eq. (117) will have resonances when
—k vp approaches a collective mode. These absorption
peaks correspond to the excitation of plasmons within
the electron gas. Thus, both bound and free plasmons
can be excited by fast electrons, the presence of the
former depending, of course, on the existence of negative
impurity sites.

If the preceding argument is correct, existing experi-
mental data should show evidence for bound as well as
free plasmons in solids. A noteworthy feature of the
early (prior to about 1959) measurements of character-
istic electron energy losses in solids is the frequent dis-
agreement in results reported by diAerent observers
and even by the same observer at diferent times. "Often
a main resonance peak is found by all observers at the

o
—'(k, k', o~) = Rsvp +osn(k)k'; oo) ) (116)

where X)(k,k', oo) is given by Eq. (115) with the super-
script s omitted throughout.

Inspection of Eqs. (112) and (116) shows that

predicted plasma frequency, but there the similarity in
results ends. Additional satellite peaks are frequently
observed which defy identification. Marton" has at-
tributed such anomalies to certain instrumental difFi-

culties and/or impurities (volume or surface) in the
solid specimen.

The latter explanation accords with the present
analysis. Satellite peaks in the frequency range oo„/v2
&co(~„may well represent the excitation of bound
plasmons at negative impurity sites. Once created, a
bound plasmon in the ground state may be further
excited to higher bound states or even ionized (i.e.,
transformed into a free plasmon) .Hence, bound plasmon
effects are not confined to the range too/V2&ei«o~. The
complete plasmon excitation spectrum may have a
richness comparable to that of the hydrogen atom.

In more recent experiments (since about 1959), great
care has been taken to obtain pure samples and to avoid
sects of surface oxidation and contamination by the
specimen support. '~ With certain notable exceptions
this care has led to a marked diminution in the number
of satellite peaks observed. These exceptions have been
positively identified as surface eGects of one of two
types: (1) a modified plasma loss due to the presence of
an oxide layer on the surface, and (2) a plasma loss at
the frequency &o=oo„/V2 representing the excitation of
a "surface" plasmon.

Surface plasmons were first predicted theoretically by
Ritchie" who used a hydrodynamical model applied to
a finite metal foil. In classical terms a surface plasmon
represents an electron density wave trapped at the
surface and hence bears a close resemblance to a bound
plasmon. To investigate this connection, we suppose, as
previously argued, that Eq. (46) is valid for nonuniform

gases in general and apply it to a system consisting of a
semi-infinite metallic slab. The lattice potential is ap-
proximated by a uniform background of positive charge
which terminates in a plane. The resultant electric held
appears to an electron as a distribution of eegat&e charge
at the surface. The induced electron density distribution
may be calculated in some suitable approximation and
substituted in Eq. (46). Equation (27) then yields a
one-dimensional Schrodinger equation by virtue of the
symmetry of the system. The exact form of this
Schrodinger equation is relatively unimportant. What
matters is that its energy eigenvalue is again given by
Eq. (54), and as we have seen, bound-state solutions
(8&0) are limited by Eq. (54) to the range oo~)oi
&co„/W2. Furthermore, the limiting value op=pi~/v2 is
obtained for sufficiently large, applied, negative, surface
charge.

Thus, the surface plasmon, experimentally observed
in many diGerent solids at the excitation frequency

"For a review of the experimental methods, results, and dif-
6culties up to 1955, see: L. Marton, L. B.Leder, and H. Mendlo-
witz, Advances in ELectronics and ELectron Physics (Academic
Press Inc., New York, 1955), Vol. 7.

~6 L. Marton, Rev. Mod. Phys. 28, 172 (1956).
"See, e.g., C. J. Powell, Proc. Phys. Soc. (London) 76, 593

(1960)."R. H. Ritchie, Phys. Rev. 106, 874 (1957l.
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~~/v2, and the impurity bound plasmon appear to be
diferent manifestations of the same phenomena.
Generalizing, one may conclude that any induced
deficiency in electron density, if sufficiently large, may
support a bound plasmon.
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APPENDIX

We wish to evaluate the sum appearing in Eq. (43) in the limit q, q —& 0. Equation (43) may be rewritten

4seq q tg+.q 6k

+&(q,q'; ~)= —— ~ Z fk L(«+g —«+q ) ' —(«+c-e —«) 'j
6(q —q', 0) ~ (kM) («+~—«)

In the long-wavelength limit

6k+q'
+— —L(«+~ —"+~) ' —(«+~-~—«) 'j (A1)

(k )'—(«+~ —")'
4s'vq q& &k+q &k

Xg(q, q', co) = — EQ fk 1—
6(q q 0) (kQ&) k — «y ««+ «-

Kith the replacement

P —+ dfr
(2~)'

Eq. (A2) becomes

(A2)

4svq , 0 2k q+g' 2k q'+q"
m, g(q, q'; (a) (A3)

~(q —q', 0)(& )'(2 )' ~ ., 21 (q —q')+lq —q'I' 2& (q' —q)+Iq —q'I'

The first integral yields

dk=-', skF'.

The second and third integrals are identical if the interchange q, g' ~ q', q is made. Straightforward evaluation gives

2& q+q' 2~ q (q—q') q q' ( lq —q'I' 2k~+ lq —q'I
dk —-,'kF' + Iq —q'Ikp+I kp' — ln

2k (q—q')+lq —q'I' Iq —q'I Iq —q'I 4— 2kF-
I
q-q'I—

Finally, substitution into Eq. (A3) yields

sv .q q' Dk (k '—Iq —q'I'/4) 2k + Iq —q'I
Xg(q, q';(o) = 1+

&(q —q' 0)(k )' 2~'- Iq —q'lk~ 2k~ —
I q —q'I—

(A4)

On comparison with Eq. (36), this result assumes the surprisingly simple form revealed by Eq. (45).


