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Normal Vibrations of y Brass
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The normal modes of vibration of the ordered alloy of copper and zinc, P brass, have been extensively
studied at 296'K by means of the coherent one-phonon scattering of slow neutrons from single-crystal
specimens. The frequencies of normal modes propagating along the high-symmetry directions [00f'7, [g07,
[f'f'f'7, and [qsf'7 have been measured by means of a triple-axis crystal spectrometer for two specimens
mounted in different orientations. These results may be satisfactorily described in terms of a restricted
Born-von Ki,rm6, n model (4E) with interatomic forces extending out to fourth-nearest-neighbor atoms,
although Fourier analysis of sums of squares of certain normal-mode frequencies (taken in pairs) indicates
the probable existence of nonzero forces extending at least to seventh neighbors, A feature of interatomic-force
models for p brass is the large difference between the second-nearest-neighbor Cu-Cu and Zn-Zn forces.
The experimental evidence does not, however, permit an unambiguous determination of which force is to
be identified as Cu-Cu and which as Zn-Zn. A fairly successful attempt has been made to interpret the results
in terms of more physically realistic models, in which the effective long-range forces are represented by an
oscillatory potential arising from the mild singularity in the dielectric function at the Fermi level. The
precise form of the coefficient of the oscillatory potential has been chosen on an empirical basis. Model 4E
has been used as an interpolation formula for computing the frequency distribution function and its mo-
ments, and also the heat capacity of p brass. A selection of normal modes has been studied at several tem-
peratures above 296'K, particularly in the vicinity of the order-disorder phase transition at about 727'K.
The over-all structure of the dispersion curves appears to be substantially unchanged in the disordered
phase, although certain "splittings" observed at 296'K become blurred into apparently continuous bands of
frequencies at elevated temperatures. In all cases, the frequencies decrease and energy widths increase as
the temperature increases. Two particular longitudinal-optic modes display a sharp increase in energy
width at the transition temperature, in contrast to the generally smooth behavior of the other modes. No
satisfactory explanation of these effects has yet been found.

1. INTRODUCTION At room temperature, P brass has an ordered CsC1
structure, that is to say, it consists of two interpene-
trating simple cubic lattices (lattice constant u), with
the copper and zinc ions occupying positions (0,0,0)
and (-'„-'„-',)a, respectively. As the temperature is in-
creased, a transition of the second (or higher) degree
to a simple bcc structure occurs; the transition tem-
perature T, is composition-dependent, being about
727'K for the specimen used in the high-temperature
experiments described in Sec. 5. The neutron-scattering
experiments have been performed at various tempera-
tures, above and below T„ to study the behavior of the
thermal vibrations as a function of the degree of order.

When a beam of thermal neutrons is incident upon
a crystalline solid, coherent-scattering processes may
occur in which one phonon of the normal modes of
vibration of the solid is created or destroyed with conse-
quent changes in energy and momentum of the scattered
neutrons. If the energy and momentum of the incident
and scattered neutrons are Ep, hkp and E', Ak', respec-
tively, the conditions governing these coherent one-
phonon processes may be written

A CONSIDERABLE body of information concern-
ing the thermal vibrations of solids has been

accumulated in recent years; much of this information
has been obtained for simple solids (i.e., having a
simple structure, usually one atom per unit cell) by
means of the coherent inelastic scattering' of slow neu-
trons. The present paper describes the application of
these neutron-scattering techniques to the case of P
brass, an alloy of copper and zinc in approximately
equal proportions. Preliminary reports'' of some of
this work have already appeared. Earlier studies of the
thermal vibrations of P brass have been made by Cole
and Warren, 4 who determined certain normal-mode
frequencies from x-ray diffuse-scattering measurements.
Their results are in poor agreement with the present
work, the frequencies being generally too low, by a
factor of 2 in the worst case. Shibuya et ut. ' have calcu-
lated the dispersion relation for P brass using a simple
Born—von Karman force model (deduced from elastic-
constant values) in which only the mass difference be-
tween Cu and Zn is taken into account. Their results
show some similarities to analogous calculations to be
described in Sec. 3. Eo—E'= +hv,

kp —k'=Q=2pr~+q, (2)*N.R.C. Post-doctoral Fellow; Present address: Oak Ridge
National Laboratory, oak Ridge, Tennessee.

' G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).
' G. Gilat and G. Dolling, Bull. Am. Phys. Soc. 9, 82 (1964)
3 G. Dolling and G. Gilat, Solid State Commun. 2, 79 (1964)
4 H. Cole and B. E. Warren, J. Appl. Phys. 23, 335 (1951).' Y. Shibuya, Y. Fukuda, and T. Fukuroi, Sci. Rept. Res. In

Tohoku Univ. Ser. A: 5, 1 (1951).

where v is the frequency of the normal mode whose
reduced wave vector is q; Q is the momentum-transfer
vector; and ~ is a vector of the reciprocal lattice of the
crystal. Equations (1) and (2) are satisfied only when
v and q satisfy the "dispersion relation" for the normal
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ordered CsC1 structure, which the present (nonstoichio-
metric) specimens display even at very low temperatures.

Of the many possible types of spectrometer with
which inelastic-neutron-scattering measurements may
be performed, one of the most convenient is the triple-
axis crystal spectrometer. " All the experiments de-
scribed in this paper were performed on the triple-axis
spectrometer installed at the NRV reactor Chalk River.
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FxG. 1. Reciprocal-lattice diagrams illustrating typical con-
stant-Q and constant-energy measurements together v ith the
appropriate observed neutron groups.

modes of the material,

(3)

where j denotes the polarization of the normal mode.
If the coherent one-phonon scattering processes can be
observed and distinguished from all other possible
scattering processes which may occur, the dispersion
relation (3) is readily deduced by application of Eqs.
(1) and (2) to the measured neutron energies and
momenta. The nuclear properties of both copper and
zinc are quite favorable for this purpose, and indeed
neutron-scattering experiments on these elements (sepa-
rately) have already been performed. ~'

The derivation of Eqs. (1) and (2) involves the
assumption of harmonic interatomic forces within the
solid by which the neutrons are scattered. If arlharmorlic
effects are present, the 8 functions of Eqs. (1) and (2)
become broadened into approximately Lorentzian shapes
and there is no longer a clear-cut distinction between
one-phonon and multiphonon scattering processes. This
subject has recently received considerable theoretical
and experimental study. '~" The situation is further
complicated in the case of P brass by the existence of
defects arising from the departure from the ideal-

' C.Cribier, B.Jacrot, and D. Saint-James, in Inelastic Scattering
of Neutrons in Solids and Lsquids (International Atomic Energy
Agency, Vienna, 1961),p. 549.' S. K. Sinha and G. L. Squires, J. Phys. Chem. Solids (to be
published).

G. Borgonovi, G. Caglioti, and J. J. Antal, Phys. Rev. 132,
683 (1963).' E. Maliszewski, J.H. Rosolowski, and D. Sledziewska, J.Phys.
Chem. Solids (to be published).

'0 A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2S89 (1962).
~'R. A. Cowley, Advances in Physics (Francis R Taylor, Ltd. ,

London, 1963), Vol. 12, p. 421.
'2 B.N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto, R. N.

Sinclair, and A. D. B. Woods, in Inelastic Scattering of Neutronsin
Solids and Liquids (International Atomic Energy Agency, Vienna,
1961),p. 531.

2. EXPERIMENTS AT 295'K

Most of the measurements, including all those made
at elevated temperatures (see Sec. 5), were made with
a cylindrical specimen (I) having the following char-
acteristics: composition 47 at. /~ Zn, length 2 in. , diam.

4 in. , [111]axis parallel to the cylinder axis. Specimen I
was oriented so that a (110)-type mirror plane of the
crystal was parallel to the incident and scattered neu-
tron beams of the triple-axis spectrometer. A second
cylindrical specimen (II) was employed in a small
number of additional experiments at 296'K: com-
position 48 at. j~ Zn, length 2 in. , diam. 4 in. , [001]
axis parallel to the cylinder axis. Specimen II was
oriented so that a (001)-type mirror plane of the crystal
was parallel to the incident and scattered neutron
beams. The mosaic spread of both specimens was
approximately —,".

The experiments were carried out under conditions
of either (a) constant momentum transfer of the neu-

tron (')Constant Q" method") or (b) constant energy
transfer of the neutron. "Both methods are illustrated
in Fig. 1. In the upper diagram, the energy transferred
from neutron to crystal is kept constant while the
momentum-transfer vector Q describes a straight line
in reciprocal space. In the lower diagram, Q remains
constant while the energy transfer is varied. In both
examples, the scattered-neutron energy is kept constant,
and in all the measurements only neutron-energy-loss
processes were employed. The results for both crystal
specimens at 296'K, are shown in Fig. 2. Constant Q
(constant energy) measurements are plotted with verti-
cal (horizontal) error bars where these exceed the size
of the points.

Certain normal modes, e.g., all those propagating
along the [001] direction, and the longitudinal (L)
modes propagating along [g0], could be observed in
the experiments on both specimens, and provide a test
of the eHect of small changes in composition. Within
the experimental errors (1 to 2%), no significant dis-

crepancies between the two crystals were observed, and
hence no distinction according to specimen has been
made in plotting the results in Fig. 2. Other normal
modes were observable only on one or the other of the
specimens. For example, the 2'&[@0]modes (i.e., with
polarization vectors parallel to [001]) and all modes

along [—,'-,'t'] were measured using specimen I, while

'3.B.N. Brockhouse, in Inelastic Scattering of Neutrons in Solids
and Liguids (International Atomic Energy Agency, Vienna, 1961),
p. 113.
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Fn. 2. Dispersion curves
of p brass at 296'K for four
high-symmetry directions.
Triangular points denote L
and A. modes, and circles in-
dicate T and w modes. Solid
points denote uncertain po-
larization. The solid curve
represents the Horn —von
K6rman fourth-nearest-
neighbor model (4F) best fit.
The dashed curve is the fit
obtained with model (a) of
Sec. 4, in which the oscilla-
tory potential U p is em-
ployed.
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the Ts[g0] modes (i.e., with polarization vectors
parallel to [110]) were observed using specimen II.
The limiting slopes at zero wave vector of the acoustic-
mode dispersion curves correspond to the appropriate
sound velocities, which may be calculated from the
296'K elastic constants determined by McManus. '4 The
elastic constants display a significant composition de-
pendence, " but over the range 45 to 48 at.% Zn, the
maximum variation is only about 2%. It is therefore
not surprising that no significant differences in phonon
frequencies were detected in our experiments with the
two specimens. Further discussion of this point is
given in Sec. 3.

The over-all shapes of the dispersion curves in Fig. 2
are rather similar to those which would be expected for
a simple bcc material such as sodium, except that cer-
tain degeneracies are removed, by reason of the dif-
ferences between copper and zinc. Only two of the
theoretically expected "splittings" are large enough to
be observable in the present experiments, namely, at
uq/2s. = (0.5,0.5,0.5) and for the longitudinal (I.) modes
at aq/2m= (0,0,0.5). Figure 3 shows two pairs of well-
resolved neutron groups observed in constant-Q meas-
urements carried out near aQ/2~= (1.5,1.5,0.5), i.e.,
near the zone boundary in the A direction. The magni-
tude of this splitting depends mainly on the di6'erence
between the second-nearest-neighbor copper-copper and
zinc-zinc interatomic forces (see Sec. 3). The tempera-

ture dependence of this splitting is briefly mentioned
in Sec. 5.

Throughout these measurements, the most suitable
values of Q to choose for studying each normal mode

(q,j) were selected with the help of structure-factor"
values computed from Born—von Karman models of
the interatomic forces in P brass. These models, and
some computed structure-factor curves, are described
in Sec. 3. The scattering lengths" for copper and zinc
required for these calculations, together with other

P BRASS
CONSTANT Q
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TABLE I. Some properties of p brass.

Lattice constant at 300'K
Debye temperature:

(i) measured
(ii) calculated

Elastic constants at 300'K
(for 50 at. 'pz Zn) C11

C12
C44

Mean scattering lengths: Zn
CU

Composition: specimen I
II

2.945 x

284'K
281'K

13.36X 10" dyn/cm'
10.38X 10" dyn/cm'
7.34X 10" dyn/cd
0.59X10-12 cm
0.77X10 ~ cm

47 at. jz Zn
48 at. 'Po Zn

'4 G. M. McManus, Phys. Rev. 129, 2004 (1963).
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Fzo. 3. Neutron groups associated with modes (a) Lpga j and
(b) Tffg'j, near the Brillouin-zone boundary. A splitting into
optic and acoustic branches is observed in both cases.

"B.N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
(1958).

'e D. J. Hughes and R. B. Schwartz, Brookhaven National
Laboratory Report No. BNL-325, 1958 lunpublishedl,
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relevant information concerning P brass, are given in
Table I.

TABLE II. Best-Gt values of interatomic force constants in-
cluding fourth-nearest neighbors (Model 4E). (Only nonsero
coefBcients are hsted).

In this section vre describe the application of the
Born-von Karman theory to the ordered P-brass struc-
ture, the calculation of the frequency distribution func-
tion g(r) for the normal modes and. related thermo-
dynamic quantities, Rnd the calculation of the "reduced
structure factors" which dominate the behavior of the
coherent onc-phonon scattering cross section as a func-
tion of Q. No allowance has been made in these calcula-
tions for the slight departure from perfect order dis-
played by our specimens even at 296'K. A discussion
of somewhat less phenomenological force models for P
brass is given in Sec. 4.

Since there are two atoms in the primitive unit cell
of perfectly ordered P brass (of stoichiometric composi-
tion), and since equilibrium positions of both atoms are
at centers of inversion symmetry, the thermal vibra-
tions may be expressed by means of a real, symmetric
(6X6) matrix whose eigenvalues are proportional to
the squares of the normal-mode frequencies. The matrix
elements, which are linear functions of the interatomic
force constants, are listed in Appendix A; details of
the fo cc-constant notation us d, and of the condit' ns
under which the dynamical matrix may be factorized,
are also given in this Appendix. The 1st, 4th, 7th-. ~

nearest neighbors of an origin atom of type A are of
type B, whereas the remaining neighbors (2nd, 3rd,
5th, 6th ) are of the same type A. Thus force con-
stants representing interactions betmcen identical atoms
are of two kinds, Cu-Cu and Zn-Zn. Extension of the
Born—von Karman theory to distant neighbors there-
fore involves a substantial number of disposable pa-
rameters. For example, a first-through-hfth-ncarest-
neighbor model (general forces) involves 20 force con-
stants (cf. 13 constants for the simple bcc structure).
Preliminary attempts to fit the experimental dispersion
curves with such general force models (by means of a
nonlinear least-squares-fitting program) showed (i) that
forces only out to third- or fourth-nearest neighbors
were important and. (ii) that "tangential" or "shear-
ing-type" force constants were always small or zero

except for the Grst-nearest neighbor. A simple Fourier
analysis may also be performed on the sums of the
squared frequencies of various pairs of branches of the
dispersion relation, e.g. , the longitudinal-acoustic (LA)
Lg0j and. longitudinal-optic (LO)Lg0j branches. The
Fourler coeKclents are hncar comblnatlons of inter-
atomic force constants, and the number of such co-
CScients required. to obtain a good. 6t gives an
indication of the ranged of the interatomic forces.
Analysis of the results for P brass in this way shows that
signi6cant forces exist at least out to fifth, and very
probably out at least to seventh, nearest neighbors.
The 6fth- through seventh-neighbor force constants

Neighbor Force constants (dyn/cm)

a/=8420
o.10'= 7110
n10' ——1070
a14 ——280

P1'=11340
n112= 730
0.113= 1190
p34= 370

are, however, relatively small, as indicated by the
above mentioned Born—von K6,rman analysis.

Accordingly, various restricted. third- and fourth-
nclgllboI' Born-von KRrmRD folcc niodels merc tllcd
in order to obtain the best possible 6t with the least
DuIQbcr of disposRblc pal ametcrs. Tangcntlal foI'cc con-

stants such as O.g.', 0,3,', Rnd 0.2' mere arbitrarily set to
zero in most of the models considered. The 6nal calcu-
lations vrere made by 6tting the various force models

(having, say, e~ disposable parameters) to 86 inde-

pendent experimental data D;, viz. , 3 elastic constants"
and the squared values of 83 phonon frequencies spaced
regularly along all the branches shown in Fig, 2. If the
computed values of these 86 quRntltlcs RI'c labclcd C;,
then the quality of 6t for any particular model is con-

veniently expressed by the ratio

F =+(C;—D;)sW;/(86 —n~),

where S', are weighting factors given by the experi-
mental errors of the D;. A satisfactory fit is obtained.

when Ii is of order 1. For the most general second;
neighbor model (ts„=6) F=9.16, while the best third-

neighbor model (as,s=ns, s=0, es=8) gave F=3.11.
When certain fourth-neighbor constants (ni' and ps')
were added and ps,s put equal to zero, however, a quite
satisfactory fit was 6nally obtained. (rs~=8, F=1.38).
This fourth-nclghbol Gt ls shown Rs thc solid cuI'vcs ln

Fig. 2. Values of the force constants used in computing
the solid curves are listed in Table G. Ke shaH refer to
this model as 4K A general feature of aH these calcula-

tions was that almost identical fits could be achieved,

for any mod, el merely by interchanging the masses 3f0

and Mg, or alternatively, by labeling aH the Cu-Cu

force constants as Zn-Zn type, and vice versa. Reference
to Table II shows that, for example, O.gj&&eU2: However,
it is impossible to determine unambiguously from these
best-fit computations mhich constant refers to Cu and

which to Zn. Although it is probable that this question

may be settled only by means of a theoretical calcula-

tion of these force constants from 6rst principles, some

experimental indication of the correct labeling is given

by thc ncutlon gloup lntcDsltles obscl'vcd fol thc
ALrs —',l'| modes which correspond to independent vibra-

tions of Cu and. Zn atoms. With the help of eigenvectors

for various normal modes, obtained. from a suitable

force model, the neutron group intensities arising from
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coherent one-phonon scattering" '~ involving those
modes may be estimated. The scattered-neutron in-
tensity is sensitively dependent upon the so-called
"inelastic structure factor, "given by

gj= Ig Q g„b, e-xp(2tri~ r,)ls,

l.5—

l.0—

LO~'
TA

iTA

LA

g'=
~
bsQ g, I'f'

where, if ro is taken to be 0,

(6)

ft'=
I (s+(bt/bs)&t exp(2tri~ rt) Is. (7)

where g., is the eigenvector appropriate to the o atom
in the unit cell (j denotes the mode), b, and r, are the
scattering length and position with respect to the cell
origin of the o. atom, and s is deftned by Eq. (2). (We
here ignore the small differences between the Debye-
Waller factors and masses of'Cu and Zn. ) For the direc-
tions of high symmetry shown in Fig. 2, gs, and gtt.
have a common directsots, denoted by a unit vector g;.
A "reduced structure factor" can then be dehned by

0-
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Figure 4 shows curves of fP against i for the high-
sy~unetry directions, computed from model 4E de-
scribed in Table II.

If we consider the above mentioned AL-, -t'i') modes, it
is clear that scattered-neutron energy distributions at
appropriate values of Q should in principle consist of
two peaks, associated with independent vibrations of
the Cu and Zn sublattices, respectively. The former
peak should be more intense, and its identihcation
would permit the correct assignment of the AA- and
BB-type force constants. The frequencies of the two A
modes are, however, very similar for all I' (see Fig. 2)
and no well-resolved neutron groups were obtained in
experiments designed to observe them. The shapes of
the peaks observed did suggest that the lower fre-
quency mode is probably associated with the copper
atom vibrations, i.e., that the Cu-Cu second-neighbor
constant is the smaller one. However, this conclusion is
largely tentative at the present time.

Some remarks should perhaps be made at this point
concerning the elastic constants of P brass, and the
extent to which they are 6tted by the force model 4E.
As mentioned in Sec. 2, there is a significant composition
dependence of the elastic constants at 296'K. The
calculated values of elastic constants obtained in the
least-squares-fitting analyses tended towards the values
appropriate to a specimen of the ideal stoichiometric
composition. The neutron measurements refer to normal
modes whose wavelengths are 10 to 15 interatomic dis-
tances at most, whereas the sound velocity measure-
ments utilize wavelengths of order 10' times longer
than this. The short wavelength phonons are perhaps
well-defined within regions of perfectly ordered crystal,
and their frequencies may then be expected to refer to

"I. Wailer and P. O. Froman, Aritiv Fisiit 4, 183 (1952).

0.5-

0
0 0.25 0.50 0.75 I.O 0 025 0.5
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the ideal structure rather than to the composition of
macroscopic regions of the specimen.

The Born—von Karman models described above are
of course purely phenomenological, and several arbi-
trary restrictions have been imposed upon the force
constants. However, these models may well be adequate
as interpolation formulas for calculating normal mode
frequencies which have not been experimentally meas-
ured. We believe that model 4E is quite satisfactory for
this purpose, and hence also for computing the 6equency
distribution function g(v) and related thermodynamic
properties of P brass. The problem of constructing less
arbitrary force models will be discussed in Sec. 4.

Methods for calculating the distribution function
g(v) for the normal modes of vibration of a crystal
have been discussed at length by Maradudin et at."
These methods require initial data, which may consist
of certain branches of v, (q) from which frequencies of
"critical points'"' may be deduced, or of a given inter-
atomic force model which fits that dispersion relation.
The most straightforward method of calculating g(v) is
the sampling method, in which a large number of pho-

'8 A. A. Maradudin, E. W'. Montroll, and G. H. gneiss, Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , Net York, 1963), Suppl. 3, p. 1.' L. Van Hove, Phys. Rev. 89, 1189 {1953).

I'ro. 4. The reduced structure factor calculated from model
4E for all the high-symmetry directions in P brass. Solid lines
represent the reduced structure factor for I. or A. modes, dashed
lines for 2", T~, or x modes. The dotted lines along the fg&oj and
Li I'1] directions represent the Ts modes.
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than ade uate for the purpose of calculating thermo-than a equa e or
148. Fre uenc

distribution functions for P brass have previously been
1 1 t d 4" for example, by the method of Houston. "cacua e, o

Although a similar number of prominent pea s app
f these earlier distributions, their relative in-in one o ese

om thosetensi les an s't' d si acings are quite different rom
shown ln ig.F' 5 A conventional presentation o t e

ss b wa ofcalculated lattice heat capacity of P brass, by way o
i n of Deb e temperature 0D with tempera-

II II I I I

6
~C
cx

Cl

4

2

FxG. 5. The frequency distribution functioc ion for P brass obtained
E b means of extrapolation method (Ref. . n---.f 96018048--.1 b-'-".this histogram, the frequencies o

are sorted into over 300 channels of -width 5v= . p.
(For further details see Appendix B.l

M'„= v "g(v)dv

for ns0, e) —3. (9)

vs ——exp 1/3+ (1nv)g(v)dv
0

ahibu a V. Fukuda, and T. Fukuroi, Sci. Rept. Res. Inst."""""""'""" "'.20 ~ (".), W V H:-t, R".M y. ,
'

128 551 (1962).nd . A. Ra ne, Phys. Rev.
d . A. Morrison, Proc. Roy.'4T. H. K. Barron, W. T. Berg an . . or

'

Soc. (London) A242, 478 (1957).

' G Gilat and G. Dolling, Phys. Letters ~,8 304,1964). The
v) h t a er is based on an ear ierv) for P brass mentioned in t-a pap

d l fitted to a smaller number of experimen a resuforce mo e, e o
l tions.than are utilized in the present calcu. a ions.

the variat o yI

ture, is given in ig.Fi . 6. The low-temperature limit
(O'K) = 281' is in good agreement with that o taine

heat ca acit " and elastic-con-FREQUENCY VNCY V ( «IO cps) from low-temperature ea
stant'4 measurements. It should be emps an . hasize t at a

armonic-forceof these calculations are based on a armo '-
model appropria e ot t 296'K and that no corrections

-mo e fre-have been made for the variation of normal-mo e re-
quencies wi empth temperature. Thus the calculated e&(T)

0e is ex ected to be between 5 and 10 K too lownon frequencies, correspondingdi to a uniform distribu- curve is expec e o e
low temperatures. A potentially mo re useful

h d f ti th lt to e
t the Brillouin zone, at very ow e

late theusuall b means of a met o o preseare computed in some way (usua y y
force mo e~j. edel~j. These are sorted into appropriate fre- momen s

tervals v v v+Av and the resu ts presen e
00in histogram form. The chief objection to this method
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Brillouin zone ~ / inzone (1/48 in the case of p brass), are calcu- "
3

1 t d by matrix diagonalization. Each g, is at a cornerae y

y ~ po p 'g
lie at the body centers of cubes of the mesh. LT e or e=, —,
alternative c oice, wih

' 'th (000) at a corner of a cube, is
oof5
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4. THE EFFECTIVE INTERATOMIC POTENTIAL

Attempts have recently been made to calculate from
first principles an "e6ective" interatomic potential func-
tion (and hence the interatomic forces) for a number of
metals, for example, Na" " Cu" and also Zn." A
division is made of the total potential into three con-
tributions: (i) the very short-range "overlap" potential
Ve~ between immediate neighbors, (ii) the long-range
Coulomb potential Vq between the bare ions, and
(iii) the potential Vs arising from the interaction
through the conduction electrons, including the elec-
tron-electron interaction. Contributions (ii) and (iii)
are rather large, and, owing to the screening eR'ect of
the conduction electrons, tend to cancel each other out
for increasing range. The overlap potential (i) is usually
treated empirically, for example, by means of an ex-
ponential (Born-Mayer) form with adjustable pa-
rameters. The bare-ion contribution (ii) may readily
be calculated by standard methods, while (iii) can,
under certain assumptions, be expressed in terms of a
"form factor" and "dielectric function" for the metal.

A fairly satisfactory description of the observed v;(g)
for both Na " ' and Cu ' has been obtained with this
kind of model, and in spite of certain difhculties (e.g. ,
the selection of suitable numerical values for the term
Vs~), it seems possible that the problem of P brass
may be approached from this viewpoint. We adopt,
however, a different approach. Since the interatomic
potential (in real space) at short range is quite compli-
cated, a separation is made into two parts (i) inter-
actions extending to first- and second-neighbor atoms
and (ii) long-range interactions for third-nearest neigh-
bors and beyond. Two distinct descriptions, I and II,

6.5-
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CL
CP

Ol
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C
& 5.5—

/in

vtdvj n~a

/f g(v)dvj

50-
-3-2-I 0 I 2 3 4 5 6 7 8 9 IO II IP, 13I415

n—
Fxo. 7. The Debye cutoff" frequency u„as a function of

I,, obtained from the moments of the distribution function
(Fig. 5).

kg =4k '/~air . (12)

This expression for Vqg is a poor approximation at
short range, but since its contribution is very small
compared to V~~, its precise form is of little practical
significance. In the second description II we avoid any
assumptions concerning the nature of the potentials by
replacing (V&M+ Vez) by four empirical Born—von
Karman force constants n~', P~', n~o', and n~P. The
second-neighbor "tangential" force constants O.~P and
n2P are neglected, as in model 4E (Sec. 3).

For the long-range part of the interatomic interaction,
we assume an oscillatory potential Vp of the form

have been employed for the short-range interactions.
In I, we assume that the potential consists of a Born-
Mayer term V~~ responsible for repulsive forces be-
tween first neighbors and between second-neighbor
Cu-Cu atoms, together with a small screened electro-
static potential of the Thomas-Fermi form

Veg= (Z,/r, ,)e

where Z; is an "e6ective charge" on the jth ion, r;; is
the distance between ions i and j, and k, is related to
the Fermi radius kp and the Bohr radius of the hy-
drogen atom u~ by

240- V (;,)-(1/;~)' cos(2k r;~+&), (13)

250—

220-

2IO
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I I I I

IOO 200
TEMPERATURE K

I

300

25 T.Toya, J.Res. Inst. Catalvsis, Hokkaido Univ, 6, 183 (1958}.
"W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963)."L.J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965)."T.Toya, Progr. Theoret. Phys. (Kyoto) 20, 974 (1958).
"W. A. Harrison, Phys, Rev. 129, 2512 {1963).

FIG. 6. The Debye temperature (OD) as a function of tempera-
ture, calculated on the basis of the force model 4E. No corrections
have been made for the temperature dependence of the normal-
mode frequencies.

where P is an adjustable phase angle. This oscillatory
potential originates from the mild singularity' in the
dielectric function e(Q) of the metal for Q=2kr. An
oscillatory term of this kind has been derived for the
case of an impurity ion embedded in a host metal, " "
and also by Koenig" who used the Born approximation

30 J. Bardeen, Phys, Rev. 52, 689 (1937)."J.Friedel, Nuovo Cimento, Suppl. 7, 287 (1958).
3' J. S. I,anger and S, H. Vosko, J. Phys. Chem. Solids 12, l96

(1959).
A. Blandin and J. L. Deplante, Metallzc Solid Solutions,

edited by J. Friedel and A. Guinier (W. A. Benjamin Inc., Nevv
York, 1963), Paper IV, p. 1.

34 S.H. Koenig, Phys. Rev. 135, A1693 (1964). (We are grateful
to Dr. Koenig for sending us a preprint. )
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TABLE III. Numerical results of best-Gt calculations for models involving the long-range oscillatory potential U&.'(a) short-range
forces described by (U&M+Usz), and "shearing" forces neglected; (b) same as (a) but with shearing forces included; (d) range forces
described by four Born—von Karma parameters, again neglecting shearing forces. Set (c) is results obtained by other authors, denoted
by superscripts. Set (e) is model 4E parameters for comparison (see Table II).

Set

(a)
(b)
(c)

8'0
eV

0.096
0.097

8"
eV

0.120
0.129
0.120s

P
A I

k,
A I

1.92
1.99
1.91

Rb

10' erg-cm

—2.14—1.98

8
10' erg-cm

—0.46—0.68

rad

2.09
1.94
1.86"

1.29
1.32

(d)
(e)

8360
8420

10 940
11 340

6890
7110

290
730

—2.09 —0.47 2.08 1.30

a Reference 28.
b Born-von Karman force constants (dynes/cm).

to calculate the scattering of free electrons by planes
of atomic dipoles in Na. Harrison and Paskin" used
such a potential to calculate the order-disorder energy
in P brass. For a simple metal such as Na, the expression
(13) for V& should be multiplied by a parameter A
which depends on the screening charge distribution
around an ion. The case of p brass is slightly compli-
cated by the existence of two kinds of atom. Simple
considerations based on a nearly-free electron model
lead to parameters Aoo, A11, and A1o= (Aoo A(1)'(',
representing the Cu-Cu, Zu-Zn, and Cu-Zn interactions,
respectively. However, this form for the long-range part
of the potential leads to a fit to the experimental results
which is scarcely better than the fit obtained for a
Born—von Karman model involving first- and second-
neighbor forces only.

It is perhaps not surprising that this simple approach
is unsuccessful, since it is based on a single plane-wave
approximation for the conduction electrons, implying
that the off-diagonal terms of the (matrix) dielectric
function e are zero." The Fermi surface of P brass
intersects the 6rst (simple cubic) Brillouin zone, 'r and
even if it is still an acceptable approximation to assume
a spherical Fermi surface, it is necessary to admix more
plane waves in order to describe the conduction elec-
trons satisfactorily. In the light of this consideration,
the exact form of Vp remains unclear. A successful

attempt has, however, been made to fit the experi-
mental results with a semiempirical expression of the
form

V) (r;;)= (A'&8') (1/r;„)' cos(2krr;, +it1), (14).
where A '= A pp =A yy

=c4 yp and 8' is an additional term
depending on the off-diagonal components of e. The +
sign refers to Cu-Cu and Zn-Zn interactions while the
—sign is to be used for calculating the Cu-Zn inter-
actions. The chief advantage of this expression is that

3' R. J.Harrison and A. Pasl~in, J. Phys. Radium 23, 613 (1962).
See also A. Paskin, Phys. Rev. 134, A246 (1964}.

3 L. J. Sham and J.M. Ziman, Solid State Phys. 15, 221 (1963).
See in particular p. 270, Eq. (12.16), and p. 272, Eq. (13.4)."J.-P. Jan, W. 3. Pearson, and M. Springford, in Proceedings
of the Ninth International Conference on Low Temperature
Physics, "Columbus, Ohio, 1964 (unpublished).

(as will be discussed below) it provides a good de-
scription of the results with a fairly small number of
disposable parameters. Clearly, it cannot be regarded
as satisfactory in the absence of a rigorous derivation
from a basic formalism such as is described in Ref. 36.
It is interesting to note that the same expression Kq.
(14) with A' set to zero was employed in the calcula-
tion" of the ordering energy.

Once an explicit form for the total effective potential
has been chosen, it is relatively straightforward to
calculate the potential energy 8';; associated with the
interaction of pairs of atoms i, j, and hence the Born-
von Karman force constants from which the vibration
frequencies can be computed in the usual manner. We
consider the total potential to be of the form (Vew
+Vss+V~), from which it will be clear how the
calculations are performed when (Ve))r+Vsg) is re-
placed by Born—von Karman force constants. The
interaction energy is given by

e P(r r01)+ ISO e
—P'(r ——r01)+ (g—g /r, )e )rrrir. —

+t (A "&8")/(r,,)'] cos(2krr, ,+$), (15)

where rp~ is the first-neighbor Cu-Zn distance. The first
and second terms are the Born-Mayer core-repulsion
potentials effective only between the first-nearest neigh-

bors, and between second-nearest-neighbor Cu ions,
respectively. The disposable parameters p and p' may
be taken to be the same since the quality of fit is rela-
tively insensitive to (p

—p'). In the "Thomas-Fermi"
term, we assume" the effective charges Z; to be +0.5e

(—0.5e) for Zn(Cu) ions, respectively. Since its con-
tribution is in any case rather small, this somewhat
arbitrary a,ssumption is of small significance. In the
final calculations, the value of kp was taken to be
1.515 A ' (i.e., 0.710 reciprocal lattice units), appro-
priate to three conduction electrons per unit cell. (If
k~ is treated as a free parameter, the fitted" value
does not differ appreciably from this value. )

We now express the interactions in terms of inter-
atomic force constants, keeping only the dominant
terms of each contribution. As mentioned earlier, the



TssLz V. Temperature dependence of frequency and Hnemidth
for 7 normal modes in P brass.

C; = {1/r)(BV/r)r), =„, {16)

have been found to be small for all except first-nearest-
nelghbor lons. This fact ls consistent with the approxi-
mations involved in deriving Eq. (13), viz. , that terms
of higher order than (I/r, ;)s are neglected. In many of
the calculations, therefore, we have made the simplify-
ing assumption that C @'=0 (except for first neighbors).
tA"e present below the results of two nonlinear least-
sqllRI'cs-fi'ttlllg lllvcs'tlgRtlolls (llslllg thc same 86 ex-
perimental results for P brass at 296'K as described in
Sec. 3) in which this assumption is made. In the first
model (R), tile to'tal cffcctlvc potclltlal ls taken Rs

(V~sr+Vss+VI), while in the second model (d), we
replace (Vssr+ Vss) by the four disposable forces con-
stants rrt', pt', ates, and arts. To show that the effect of
the above assumption is indeed small, we also present a
recalculation of model (a), including the tangential
force constants. This is called model (b). In all of these
calculations, force constants extending out to 11th-
nearest-neighbor ions were computed from the appro-
priate interaction energy. The results for the three
models (a), (b), and (d) are given in Table III. Figure 2
shows (dashed curves) the best fit to the experimental
results obtained with model (a), compared with the
eight-parameter Born—von Karman model 4E (solid
curves) discussed in Sec. 3. A slightly better over-all
fit to the results is obtained with model (a), which has
seven disposable parameters, 8'0, 8'0'„p, k„A, 8, and
P. LA and 8 are very simply related to A" and 8" in
Eq. (15).j It is interesting to note that the Born—von
Karman parameters calculated in model (d) are in
excellent agreement with those derived from model (a)
(scc TRble IV), Rlld Rlso, except fol' rrlt ) wltll tllosc of
model 4E The valu. e of k, calculated from Eq. (12) is
1.91A ', approximately equal to the best-fit values
obtained for models (a) and {b).Values for Ws' and @,
obtained by other authors, are also given in Table III.

%ave vector
(aQ/2~) mod

(1.30,1.30,1.0
I.A Z

) 296
499
693
714
725
739
751
774
296
693
714
739
774
296
499
693
714
739
751
774
296
499
693
714
739
751
774
296
693
714
739
774
296
499
693
714
739
751
774
360
714
739

(1.0,1.0,03/)
TAz

(1.0,1.0,0.32)
TAZ

(1.20,1.20,0.20)
I.o A

(1.18,1.18,0.0)
L,Az

(1.27,1.27,0.0)
JOE

(1.13,1.13,0.13)
IAx

ture Frequency
(10I2 cps)

3.39w0.04
3.27~0.05
3.23%0.05
3.22~0.06
3.21~0.08
3.22~0.10
3.17%0.09
3.12~0.15
3.44m 0.04
3.16+0.04
3.15+0.05
3.11~0.05
3.07~0.05
3.06&0.03
2.96a0.04
2.81~0.03
2.77~0.03
2.76~0.04
2.73~0.04
2.71&0.04
4.99a0.05
4.90a0.07
4.80a0.06
4.73w0.05
4.73w0.08
4.68~0.10
4.71~0.07
3.82~0.04
3.65~0.04
3.63%0.04
3.62~0.04
3.59&0.05
5.20~0.05
5.09~0.07
5.00a0.06
5.01a0,06
4.90a0.08
4.91~0.12
4.94~0.06
3.65'0.04
3,42+0.04
3.41~0.05

R Errors are in most cases of the order of 20%.

LinevFldth+
(10~ cps)

0.50
0.44
0.70
0.80
0.80
0.85
0.70
1.00
0.25
0.40
0.50
0.50
0.55
0.20
0.30
0.38
0.40
0.40
0.50
0.45
0.24
0.42
0.65
0.55
0.90
0.90
0.90
0.24
0.40
0.45
0.40
0.40
0.35
0.50
0.55
0.55
0.85
0.80
0.90
0.30
0.45
0.55

Posltlon

(200)

(220)
(311),
(222)
(400)
(331)
(420)
(422)
(333)
(511)

Representative
force constants

dyn/cm

8280
10 990

7160
360
710
320—120—430
200
520—120—90—250

4.682
5.375
5,585
6.346
6.855
7.016
7.622
8.044
8.044

Thar, z IV. Interatomic force constants and phase factors calcu-
lated from model (a) (see Table III). Force constants not listed
beloved may be derived either from symmetry or from the re-
strictive assumptions appropriate to model (a).

Two series of measurements have been made in
which the energies and energy widths of selected normal
modes of vibration have been measured at several
temperatures, both above and below the order-disorder
transition temperature T.. A general result of these
measurements is that the norma, l-mode energies de-
crease and the widths increase as the temperature T
rises. It is of particular interest to compare and corre-
late the behavior of various normal modes„and to
attempt to detect any anomalous temperature effects
as T passes thlough T ~ An account of the 6lst series of
measurements has already been given, ' in which no
de6nit n lu s r d awn con

'
g e'th r c

relations between modes or anoma, ious energy shifts or
widths near T,. For certain longitudinal modes, how-
ever, there were indications of possible anomalous in.—

creases in width of the observed scattered neutron
groups) and a second series of more pleclse measure-
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LONGITUDINAL {($ 0) MQOFS
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Fro. 8. Observed neutron groups associated with two diferent
modes of the same polarization 1.(II'0], each at two diI1erent tem-
peratures (below and above T,). The frequency shifts as well as
the changes in width are clearly shown. The change in the width
is noticeably larger for the &=0.27 mode.

ments was carried out to investigate these possibilities
in further detail. An apparently significant correlation
was then observed between the character of certain
normal modes and the behavior, as a function of tem-
perature, of the energy width of the associated neutron
groups. The results of both sets of measurements are
mutually consistant and are discussed together below.

The energies and energy widths of seven normal
modes specially selected for the sharpness and high
intensity of the associated scattered neutron groups,
were measured at several temperatures both above and
below the transition temperature T„and the results
are listed in Table V. The system for labeling the normal
modes in Table V differs from that used in the earlier
account' where the modes were assigned labels "optic"
(0) or "acoustic" (A) according to the lund of atomic
motions involved (i.e., according to the eigersvectors).
This convention is experimentally convenient but leads
to ambiguities in the regions of "splitting" between
longitudinal (L) modes near aq/2z-= (0.22,0.22,0) and
(0.17,0.17,0.17) (we refer to these wave vectors as qei
and qes). We now define the optic mode in each case to
be that with the higher frequency, and disregard the
change in character (i.e., the phase relation between the
Cu and Zn atoms) of the L modes which occurs near
the wave vectors q~& and qq2.

For most normal modes studied, the energy and
energy width vary smoothly with temperature even
through the transition point. All the energies decrease
and widths increase with increasing temperature. Thus,
although the scattered neutron groups associated with
the mode LAX(1.30,1.30,1.0) are at each temperature
much wider than those of LAX(1.18,1.18,0.0), in both
cases a smooth variation of width is observed. The
behavior of the mode LOZ(1.27, 1.27,0.0) is, on the
other hand, significantly different; a sharp increase in
width is observed when the temperature is raised
through T,. The observed neutron groups for two of
these modes at two temperatures, are illustrated io
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FIG. 9. The observed
frequency width, as a
function of tempera-
ture, is plotted for sev-
eral phonons. The loca-
tion of these phonons
on the dispersion curves
is schematically shown.
For the transverse-
acoustic (TA) mode, p
=0.32. The variation
of linewidth in the vi-
cinity of T, for the
longitudinal-optic (Lo)
mode (triangles) dif-
fers qualitatively from
that of the other modes
studied.

Fig. 8. A similar effect is observed for the mode LOA
(1.20, 1.20,0.20). Only these two normal modes, of all
those studied, display other than smooth monotonic
behavior as a function of temperature. In both cases,
the wave vector is somewhat greater than that of the
closest a,pproach of the LO and LA branches (qei and
qes). The observed frequency widths for these modes
are illustrated in Fig. 9, together with sketches of the
relevant parts of reciprocal space and the wave vector
values. A typical transverse-acoustic mode is included
for comparison. It shows no anomalous behavior near
T,. The normal-mode frequencies in all cases show a
smooth decrease with temperature, within the accuracy
of the present measurements. In this connection, it is
interesting to note the anomalous temperature de-
pendence" of the elastic constant C44 in the vicinity
of T,.

It would perhaps be too daring to draw any definite
conclusions concerning the anomalous behavior of L
modes on the basis of these two examples. It would be
highly desirable to obtain more experimental data
before such conclusions are drawn. However, the experi-
mental conditions under which such observations may
be made at all are quite restrictive, and so we cannot
readily produce further independent examples of similar
anomalies. Assuming, nevertheless, that these energy-
width anomalies are indeed real, it seems plausible that
they are closely associated with the type of mode in-
volved, and perhaps also with its wave vector and/or
frequency. It is interesting to point out (though this
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may be purely coincidental) that the magnitudes of
2sr/qss and 2))./qss are similar, and are of the order of
the extent of the short-range order ( 10 A) which is
known" to exist in P brass at temperatures just above
T,. From another viewpoint, the contrast between the
smooth temperature behavior of T[00fj modes and the
possible anomalous behavior of certain longitudinal
modes is not too surprising. An order-disorder transition
will, presumably, inhuence mainly the u&0', 0.»' force
constants, which display the largest (and only signifi-
cant) difference between the two kinds of atom. These
force constants are absent from the expressions (see
Appendix A) for the frequencies of the transverse
modes mentioned. As yet, however, no reasonable
framework has been established within which these
anomalies may be completely understood.

It is of interest to mention the behavior of the
"splitting" of the normal modes for wave vectors near
(0.5,0.5,0.5) as a function of temperature. The two
neutron groups are fairly well resolved at 296'K (see
Fig. 3), but considerable blurring together has occurred
even for T=499'K. Above this temperature, it was no
longer possible to resolve the two peaks. One would
expect to observe such a single wide peak for T& T„'
its appearance for T&T, may well be due to the poor
instrumental focusing conditions prevailing in these
particular experiments.

A few remarks should be made about the intensities
of the observed neutron groups as a function of tem-
perature. No attempt has been made to compare in
detail the intensities at different temperatures. Such an
analysis would be very inaccurate, particularly at the
higher temperatures owing to the large increase in
"background" intensity and to the relatively poor sta-
tistics in the wings of the distributions. These facts also
contribute to the error in the measurement of the widths
of the neutron groups. The precision of the width
measurements (about 20% in most cases) is, however,
substantially better than that of the intensities. In any
event, no signihcant changes in the intensity of any of
the neutron groups were observed in the vicinity of T..

0. CONCLUSIONS

A study of the normal mode vibration frequencies
for ordered P brass at 296'K has revealed the existence
of fairly long-range effective interatomic forces. The
dispersion curves can be reasonably well described in
terms of an entirely empirical Born—von Karman model
involving forces extending to fourth-nearest-neighbor
ions, although Fourier analysis of the curves indicates the
probable existence of at least seventh-neighbor forces.
By setting a rather arbitrary selection of force constants
to zero, the number of disposable parameters of this
model (4E) is reduced to 8. While this model is prob-
ably adequate as an interpolation formula for comput-
ing vibration frequencies, the frequency distribution

"C.B.Walker and D. T. Keating, Phys. Rev. 139, 1726 (1963).

function, and various thermodynamic quantities (within
the pseudoharmonic approximation), it lacks any physi-
cal justification in terms of real interatomic forces. A
fairly successful attempt has been made to construct
force models which, although still burdened with
several disposable parameters, can be more closely cor-
related with the various kinds of force believed to
exist in metal crystals. More theoretical work is needed,
however, to justify the particular form of the oscillatory
potential V& employed in these calculations. A calcula-
tion from basic principles of the short-range part of the
potential is also required.

Experiments at high temperatures, especially near
the order-disorder transition temperature, have shown
that the general features of the normal modes of vibra-
tion are retained even in the "disordered" phase.
Certain "splittings" in the 296'K dispersion curves are,
however, blurred out into apparently continuous bands
of frequencies. The vibration frequencies and energy
widths generally vary smoothly with temperature, but
two examples have been found of anomalous increases
in width, which are definitely associated with the order-
disorder transition itself. No reasonable explanation of
these effects has yet been found.

APPENDIX A

The elements of the dynamical matrix for the P brass
(CsC1) lattice may be written as four distinct expres-
sions. The convention adopted here follows that of
Squires, "who has given the two distinct expressions
appropriate to monatomic bcc and fcc lattices. Let us
define C„p as the force acting on the origin atom in
the ith direction when an atom "p" moves unit dis-
tance in the jth direction. 0 =0, 1 stands for the two
different atoms (Cu or Zn) which may be at the origin.
The force constant matrix Ci' consists of elements
a;,' and P;,' in the following manner:

Ps.' Ps:
Ps: ~s.' Ps:
Ps: Ps: ~s.')

(A1)

"G. L. Squires, JeeLastic Scattering of 2Veltrons its SoLids and
liglids (International Atomic Energy Agency, Vienna, 1963),
Vol. II, p. 71.
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where s is the order of the neighbor. Let h denote (in units of half the cubic unit cell side) the equilibrium
position of an sth-nearest neighbor, and e' the number of such neighbors. In the case of a perfectly ordered
CuZn lattice we have, for odd h,

O|;0 =a 1

P,o'=P, i', (A2)

and we shall drop the subscript o in these cases. Then the four general expressions for the (6X6) dynamical
matrix elements are:

A;+», ,~».——(1/24m'M. ) Q e.»i' Q n;, '{2—C;,"[Ci+i,i+i'Cj+2, i+2 +Cj+2,i+i Cj+i, i+2 ]}y

Ai+»~k+»e , (1/24& ~e) P &s'a P Pjs Cji+2[,~j+li~i+, 2i+1 ,+~j+»i~j,+l, i+1 ]&

A~, ;=A; ~3——[1/24»r2(MOM'i)'"] Q(1—e,)e' P u {2—C;,,'[C,+i,;+i'C;+2, ;+2'+CD 2,~i'C;pi, ;+2']},
8

A i+», i =A i y+»= [1/241r (MpMi) ]P(1—c»)N P Pj Cji+2 P, j+li+j+, 2i+1 +, +i+2, i +i+i, i+1 ]' ' '
&1

(A3)

where:
C,„'=cos7tah f, ,

Sg', i =sl no»br' f&,

for h,' even,
=0 for h,' odd,

symmetric, permutation of indices in these four ex-
pressions yields all 36 elements. If p, p are new indices
taking the values 1, 2, 6, and 5» is the Kronecker
delta symbol, then the secular equation yielding the
squares of the normal-mode frequencies for a given wave
vector il = ({i,{m, t ») (2»r/a) is

and M, is the mass of the 0-type atom (i.e., M» or M&).
The indices i, j, k can only take the values 1, 2, or 3.
In the terms C;, S,, , expressions such as i+1, i+2,
which exceed 3, are to be interpreted as i —2, i—1, re-
spectively. Similarly, the subscript k is taken to be
i+1 unless i=3, when k=1. Since the matrix A is

IA~» —4»~'I =o. (A4)

This equation can be factorized for wave vectors in
directions of high symmetry in the reciprocal lattice,
i.e., [00$], [gO], [g{'],and [-', —',{'].For the first three
directions, the squares of the frequency v' are roots of a

TABLE VI. Combinations of force constants for modes propagating along directions of high symmetry.

Branch

[001]I.
$001]T
CmÃ
Lm3'
C-:kj~
I:M]

CD@~1
Cl8]&»

elo +4elir +4alir
n2o +2alo +2eSo +4alo
nl 2+2n2 2+3alo~ —2pl, '

elo' 4nlo' +4n lo'

n2 '—2n1,3—2n3,3+4a1,5

alar +a2o +2alo +2n8ir
2n2,2+4nlo'
nlo +a2ir +2nl o +2n Bo

0
0

2alo +neo' +2pgo
2el ~+ay 3—Pg 3

0
0

+P3o +2nlo +2Plo
n3o +2nlo
al,'—p3o'+2al, '—2plo'

0
0

nlo +2Plo
alo P lo'

0
0
0
0
0

Branch

COot]i
C
001']T

Cmj~
Curj~
Hkr]s
H-'. t]

n=1

4all+Sn24
4nll+4a14+4n24
3all —2pl'+nl4+2a24+2pl4 —4p24

3nl'+ pl'+nl'+2n2' —pl'+2p2'
0

—4p,l+Sp,4

n=3

4nl4

4a24

el'+2pll+2a14+4n24 —4p14

al' —pl'+2n 1'+4a2 +2pl'
0

—4P14

n=S

0
0

al +2a2 +2pl'+4p2
e 4+2a 4 P14 2P 4

0
0

LEO]L
Lt'PÃ~
fn0 j~.

2al'+2pll+2a14+4n24+2p14 —4p24

2nll+2al4+4n24
2al' —2p1'+2n14 14n24 —2pl4+4p24

2nl +2n2 +4p2
4n24

2nl4+2n24 —4p24

Group-theoretical notation.



NORMAL VI B RATIONS OF p 8 RASS A 1065

TABLE VII. Symmetry conditions for interatomic force constants.

Order of
neighbor

S

i
2
3
4
5

Position' of
neighbor

h

(1 1 1)
(2,0,0)
(2,2,0)
(3,1,i)
(2,2,2)

8
6

12
24
8

Type of
force

AB
AA or BB
AA or BB

AB
AA or BB

~l —~21—~,31

+24r =&3n'2= 2

CX].4r =CX2n3— 3

CX2 =CK3
O' le =C2e =&3o5 5 5

pll —p21 —p31

ply= p2n2=p3a2=0
Pl '=P2 '=o
P 4 —P34

Force-constant conditions

n ln units of (a/2), where a is the cubic unit cell side.

quadratic equation, yielding the so-called acoustic (vz)
and optic (i o) branches. The expressions for the frequen-
cies can be written for these cases in the general form

i o,g'= (1/4ir'MQMi) fMpLi+MiLp
a [(MpiL MiLp)'—+4MpMiL' j'"), (AS)

where L, and L have the following forms

L,=R+P C '(1—cosirnf'),
(A6)L= —R+g C„(1—cosirnf).

R, C.„', and C„are linear combinations of force con-
stants. R is given by

R= 4n '+4n 4+Sn 4+

while C„and C„are listed in Table VI.
Factorization of the matrix for the fourth direction

Lp-', f'7 yields two modes (A and z) each of which is
separated into two distinct branches. The solutions are

v4, P= (1/2z'M, )$R+E,+g C „'(1—cosprnf) j, (AS)

v o,g' = (1/4m'MQMi) (MQBi+ MiBp

+L(MQB] —MiBQ) +4MQMiB ] t ) (A9)

where 8, and 8 are given by

B,=R+C.+P C„(1 count)—,
(A10)B=C+Q C „(1—cosprnt ) .

E,C, and C are linear combinations of force constants,
whose explicit expressions, for the first- through fifth-
nearest neighbors, are

E,=4np, '+Sni, ', (A11)

C.=2ni.'+2np. '+4ni. '+4np. ', (A12)

C= 4Pi' SPQ'+4Pi'. — (A13)

The appropriate linear combinations C„and C„ for
these branches are given in Table VI. In many cases,
symmetry requires certain relations between the inter-
atomic force constants. These are listed in Table VII
for the first five nearest neighbors.

(A7)

APPENDIK B

The irreducible 1/48 of the Brillouin zone (BZ) is
taken to be defined by the 4 planes fi ——0.5, t 4=0, f&=f&,
and f p

——t'p. [t'; are Cartesian coordinates of the wave
vector aq/2ir—= (li, fp, f'4).] In the present calculation,
this polyhedron is subdivided into three parts labeled
A, B, and C (in order of increasing f& values) by the

planes fi 1/2——8 and fi 1/——14. The norma, l mode fre-
quencies are computed for wave vectors lying on a
simple cubic mesh M. of spacing f= 1/252. M, is chosen
so that the origin I' of reciprocal space (and in fact
all the corner points of BZ) lies at the body center of a
basic cube of the mesh. A straightforward calculation
of g(i) on this basis would involve 341 376 matrix di-
agonalizations to obtain a total of 96 018 048 frequencies
in the entire zone. This difhculty is avoided by di-
agonalizing the (6&(6) dynamical matrix at points
throughout the region C (f'i) 1/14) on a "crude" mesh
of spacing f=1/28. At each wave vector on this mesh
(labeled X, say), the frequency gradients Bv;/Bl; are
computed by standard first-order perturbation tech-
niques"; the frequencies corresponding to the 729
points of the basic mesh M„which lie in the vicinity
of each X, are then calculated by linear extrapolation
from each X. These extrapolated frequencies are an
excellent approximation to the "true" frequencies
(which could be obtained by direct diagonalization)
over most of the zone, where the frequency gradients
are slowly varying. In certain regions, however, par-
ticularly for small wave vectors, this method may not
be sufliciently accurate. '0 Thus we diagonalize the
dynamical matrix in the region B (1/14) |'i)1/28) on
an "intermediate" mesh of spacing f=1/84, and com-
pute frequencies by linear extrapolation from each
mesh point X for only 27 points of M, . Finally, the
region A (f&(1/28) is treated by diagonalization at all
points M„without the use of perturbation theory. In
total, the dynamical matrix is diagonalized at 767
different X. The distribution function g(i) thus ob-
tained is believed to be an extremely accurate repre-
sentation of the interatomic force model 4E (see Sec.
3), and is adequate for the computation of all thermo-
dynamic quantities except those that are sensitive to
the moments M„of g(v) for which n &~—2. In order to
increase the accuracy of g(v) for very low frequencies
a second calculation was made for the regions A and 8
(t'i(1/14) of BZ. The spacing of the basic mesh M.
was reduced by a factor 4 to f=1/1008, and a three-
stage system of calculation employed, similar to that
described above for the full BZ. The results shown in
Figs. 6 and 7 are based on a properly normalized com-
bination of the two distributions. All the computations
were performed on the Control Data G-20 computer at
Chalk River.


