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excited in a dense vapor layer close to the liquid
aluminum surface. The layer must be thin because if
the gaseous Al atoms extended any appreciable distance
from the anode, an arc or discharge would take place
in the sample chamber. Such a discharge did not occur.
If the source of the XP band is in the gaseous layer above
the sample, then we must assume that the continually
narrowing band in the intermediate temperature range
is due to a increase in concentration of Al atoms over
the liquid. However, bands recorded in the intermediate
range did not have the appearance of a composite of
the narrow and broad bands. That is the intermediate
bands retained the original asymmetrical shape but
became narrower at the base. The penetration of 6-kv
electrons even in a low-Z element like Al is not great.
The range of low-energy electrons in solids has been
studied by Feldmano who shows that the range in
angstrom units for electrons may be calculated by the
equation

E(A) =250A/p(E/gZ)", e= 1.2/(1 —0.29 logreZ),

where A is the atomic weight, p is the bulk density in

' C. Feldman, Phys. Rev. 117, 455 (1960).

g/cc, 8 is the electron energy in keV, and Z is the
atomic number. Substituting the appropriate values for
aluminum we obtain a penetration depth in the solid
of about 6000 A for 6-kV electrons. Therefore, if the
electrons are to be completely absorbed in a layer of
Al atoms on the surface, then this gaseous layer, if it
exists, must appreciably exceed 6000 A since the
density would be less than in the solid.

It has been suggested that perhaps an oxide layer or
other contamination results in the effect shown here
for Ep. Such contamination does not account for the
results shown here. Ke have shown previously that
chemical combination of aluminum causes a gross shift
to longer wavelengths in Al EP and large changes in the
Ea4/Ecr3 ratio. '

Certainly, we have not proven in this paper that the
observed narrow EP originates from the liquid. Neither
can we conclusively state that it originates in a vapor
layer. We present our findings, however, with the hope
that other workers using other techniques will inves-
tigate liquid aluminum at temperatures much higher
than the melting point to determine if any real changes
occur in the liquid.
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The condensation temperature and the specific-heat anomaly of an ideal relativistic Bose gas are dis-
cussed. For a high concentration of bosons with small rest mass there is a marked departure from the normal
nonrelativistic theory. The heat capacity C„remains continuous at the condensation temperature unless the
rest mass vanishes.

1. INTRODUCTION

~~~NE might expect the ideal three-dimensional
relativistic Bose gas to behave near its con-

densation temperature in exactly the same way as the
corresponding nonrelativistic gas. The lowest single-
particle energy levels might be thought to play a
dominant part at, and below, the condensation tem-
perature, and under these conditions the relativistic
corrections would be expected. to be negligible.

This expectation is here shown to be in error. The
reason can be traced ultimately to two drastic ideali-
zations commonly adopted in this kind of theory:
(i) The particles are independent, (ii) the properties of
the system are considered in the limit in which the
volume V and the number of particles X both tend to
infinity. This usually leads to the result' that the

~ P. T. Landsberg, Proc. Cambridge Phil. Soc. 50, 65 (1954).

single-particle qlmtlm states lying energetically above
the lowest energy level, and extending to any finite
quantum number M, play no part in the limiting
properties of the system. Hence the single-particle
spectrum for high quantum numbers can be important
and is responsible for the differences between the
relativistic and nonrelativistic cases. Along with most
other exactly tractable models of phase transition, the
present one is divorced from reality and should be in-
vestigated for interacting particles.

The relativistic corrections are considerable only if
the rest mass of the bosons is very small, or if their
concentration is very large. The bosons of smallest
nonzero rest mass conceivable at present are a pair of
neutrinos and a photon. If nonzero, the rest masses
involved would be less than' 10—'0

g and less than 10 4'

'P. Roman, Theory of Elementary Particles (North-Holland
Publishing Company, Amsterdam, 1960). R. R. Lewis, Phys.
Rev. 136, 8811 (1964).
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Frc. 1. The condensation tempera-
ture for an ideal relativistic Bose gas
is here plotted against rest mass for
various concentrations (full lines).
The broken curves (-----) represent
the same plot for the extreme relati-
vistic and nonrelativistic approxima-
tions, as indicated. These latter curves
are shown to intersect on the straight
line. (———).
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g, respectively. Typically, departures from the non- negligible fraction of 1Y'. The condition for T, is ac-
relativistic theory occur if the rest mass is less than cordingly
3&(10 " g, while the concentration e exceeds 10"
particles per cm' (see Fig. 1). 1V= (2.5)

2. GENERAL THEORY
We have here followed a previous argument. ' A

more rigorous foundation for these equations is possible
(see Appendix).

Consider an ideal Bose gas with v(E)dE single-
particle quantum states in an energy range dE. E
excludes the rest energy &0=—mc'. The occupation
probability of a quantum state of energy E at tempera-
ture T is

3. THE INTEGRALS

If the number of particles in the lowest energy level is

¹(n,T) at temperature T, then the total number of
particles in the system is

X Nr(n, T) = u—(E)f(E,n, T)dE.
exp(x —n) —1

In previous work' integrals were introduced in terms
' '~&r I' r ' ' ikT (2 1) of which the statistical thermodynamics of ideal rela-

tivistic quantum gases can conveniently be discussed.
These are defined again on the right-hand sides of Kqs.
(3.1) and (3.2), below. They are slightly modified for
the present purpose:

" (x'+2ux)""(x"+ux"—')
X(n,r,u)= dS

The zero for the energy E has been chosen at that value
of the lowest energy level E=8&, which is found in the
limit when the volume V tends to inhnity. For 6nite
volume, n&Er/kT; and for an infinite volume, n& 0.
As the temperature is lowered, the numerical value of
n in the limit of inhnite volume decreases, and can in
some cases reach the value zero at a critical tempera-
ture T,&0. Hence for a large volume one can define
this condensation temperature by

n&0 for T&T, , n=0 for T&T,. (2.3)

If (2.3) is used in (2.2), a unique condition for T= T,
is not obtained unless (2.3) is supplemented by

iV (n, T)«N for T&T„ (2 4)

where the equality sign in (2.4) is important. Below
the condensation temperature, ¹(n,T) is a non-

L. de Broglie, Mecaniqle Ondllataire dge Photon et Theoric
Quantique des Champs (Gauthier-Villars, Paris, 1949), p. 59.

8(n,s,u)=

= (kT)—&"+2'E (3.1)

ce (g2+2ug)j/2(xs+uxs —I)ex—a
d's

t-exp(x —n) —1j'
=—(kT) '+"8 (3.2)

Here n is given by (2.1) and

r=1, 2; s=1, 2, 3; u—= es/kT. (3.3)

I(n,s) =
I'(s+1) 2 e* —1

4 P. T. Landsberg, Thermodynamics arith Qupntlm Statistical
Illlstrations (Interscience Publishers, Inc. , New York, 1961),
pp. 311—315.

'P. T. Landsberg and J. Dunning-Davies, Paper presented at
the International Symposium on Statistical Mechanics and
Thermodynamics, Aachen, Germany, June 1964 (to be published).

The integrals are dimensionless and go over into
multiples of the familiar integrals
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Nonrelativistic limit
Q~ cc

Extreme relativistic limitI —+0

TABLE I. Special cases of the integrals. Equation (4.5) is a familiar result for a nonrelativistic
three-dimensional gas of bosons. More generally, for a
nonrelativistic gas of bosons having a density of states

X(,y,~)

e(~,y,N)

Var(r+gr(~, r —,)1»2

~I'(y+2)g (0,, y —~~)zP~

(r &-', )

r (y+2)I(~, r+1)
F (r+2)I (O.,r)

(y& —1)

u(Z) =HZ~* (s& —1),

where A is proportional to volume, one fiinds

—r/(8+&)

(4.7)

as shown in Table I. If t'(s) denotes the Riemann zeta
function; we also have

1(0,~) = t (~+1), (»0) (3 4)

4. THE CONDENSATION TEMPERATURES

where
u.=mc'/kT. . (44)

The condensation temperature is seen to depend only
on the particle density N=N/V and the rest mass m.
It can be computed from (4.3) (see Fig. 1).'

To obtain approximate solutions of (4.3) one can
expand the numerator of the integrand of K(0,1,u, )
binomially to 6nd

K (0,1,u.)= (~u,/2)"'D'(3/2) u,+ (15/8) f'(5/2) ],
(u.»1)
(u,((1).= 2t'(3)+2t'(2)u, ,

These approximations correspond to the nonrelativistic
and extreme-relativistic cases. The corresponding lines
are seen from the figure to intersect on a further straight
line. If m is in grams, its equation is

mc' -f'(-P)-' '~'

T,= n =8)&10ppm ('K).
2k f.(3)

Relativistic eRects are important above this line, i.e.,
for very small rest masses: The higher the concentration
the higher the rest mass at which the eRects begin to
appear.

In the two limiting cases of Table I, (4.3) yields

h' Ã
kT, =

2nm&oVf (p).
jPc3g —1/3

8n pi Vf (3)

(nonrelativistic)

(extreme relativistic) . (4.6)

' We are indebted to Dr. P. Lal of this department for assistance
with the computation.

Taking account of a spin degeneracy ~, the required
density of states is

v(B) = (4s piV/h'c') (8+pp) (Z'+2ppZ)'i' (4.1)

Inserting (4.1) and (2.1) into (2.2) to (2.5), and using
(3.1) and (3.2) one finds, for example, from (2.2)

N Ni(n, T)—=47r&uV(kT/hc)'K(n, i,u), (all T). (4.2)

Equation (2.5) yields the relation for T,
N = 4~pi V(kT./hc)'K(0, 1,u.), (4.3)

kr. =
Xr(s+1)i (s+1)

(4 8)

(4.5) and (4.6) are special cases of this result which
occur if s=-,' and s=2, respectively. A condensation
temperature T,&0 exists in this case if s&0. It is
associated with a discontinuity in the derivative of the
heat capacity C, if s&~ —„and with a discontinuity in
C, itself if s&1. Hence, in the case of the relativistic
gas one might expect (i) that a condensation tempera-
ture T,&0 exists always, (ii) that a discontinuity in
the heat capacity C„develops as soon as one leaves
the nonrelativistic limit, and (iii) that this discon-
tinuity becomes more pronounced as the relativistic
region is approached. It will be seen in the next section
that only (i) is correct, whereas (ii) and (iii) are
incorrect.

The two temperatures, (4.5) and (4.6), are related
as follows

where

(T.) . (NV)'&'

(T,).,
8~(3-)

C= = 1.643
-t:f (!)j'-

(4.9)

(4.10)

kTq'
=4 ~vk

~
8(0,3,u),

hc)

(T&T.)
(T&T.). (5.1)

A term due to (Bn/BT)„contributes to the first ex-
pression. The second expression is simpler because this
term vanishes for T&T,. Alternatively, introducing
(4.2) or (4.3) into (5.1),

Ek 8'(n, 2,u)
8(n,3,u)—

K(n, 1,u) 8(n, 1,u)

(T ' 8(0,3,u)=Nk]—
kT, K(0,1,u,)

(T& T,)

(T&T.). (5.2)

and X—=h/mc is the Compton wavelength of the
particle.

5. THE ANOMALIES IN C,

It is known' that the heat capacity at constant
volume of an ideal relativistic gas of bosons is

kT)' 8'(n, 2,u)
C„=4vrpiVk

~
8(n, 3,u)—

hc I 8(n, 1,u)
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The discontinuity in C„at T= T, is accordingly

1)'(0,2,u.)6= (C„)r, —(C„)r,+=iVk . (5.3)
e(0,1,N, )E(0,1,N, )

Consider a property F such that F(j) is the contri-
bution made to Ii by a particle in quantum state j.
Then, assuming the infinite sum to converge, and F(j)
to be finite for 6nite j, the mean value of P is given by

Thus using Table I and Eq. (3.4)

(N.&0) (5 4)

gi F(1) - F(j)IV
(A3)

V V e»—~—1 g=gI+ie» ~—j. kT

=ski'(3)/i(2)=6 576$k (N, =O). (5.5)

The fact that 8(n, i,N, ) —+ ~ as n~O for N.&0 has
here been used. There is no break in C, unless the rest
mass is zero.

The anomaly 5 has therefore the same values as are
obtained by a nonrelativistic theory based on (4.7)'
with

s=-,' for Eq. (5.4) and s=2 for Eq. (5.5). (5.6)

The result (5.5) has recently been discussed in a
different context. 7

APPENDIX: MORE RIGOROUS DERIVATION OF
THE MAIN EQUATIONS

The known argument for a reasonably rigorous dis-
cussion of Bose condensation may be extended to the
relativistic gas as follows. (For more details the original
references should be consulted. ) Make the following
assumptions: (i) An infinity of single-particIe quantum
states 1, 2, ~ ~ j ~ ~ of energies E~&~E2&~~ ~ exist. E,
is 6nite if j is finite and tends to energy SO=0 as
V~ ~. (ii) For large volumes V, and if 0, r, u, and d
are constants, there exists an integer ufo such that for
j&~ufo a continuous spectrum approximation can be
made with E; given by

(E;+o) =~ +d(j%)'

Here g& is the degeneracy of the lowest energy level and
a is defined in (2.1).For a Bose gas, a &~ i)i, so that

(ni ~) '&(ns—ni) ' (A4)

Take any term with Gnite j on the right-hand side of
(A3) as V-+ ~, i);-+ i)e=O, and there exists a 8 such
that 0, -+pi—5= —8. If 8+0 a term with 6nite j in
(A3) clearly goes to zero as V ~ ae. If 5=0, one is at
or below the condensation temperature, and for large
enough volumes a typical term satisfies, by (A1) and
(A4), the expression

F(j)/V F(j) 1 F(j)
e» —1 V i);—e V(i);—i)i)

F(j)kT j,
(AS)

C~ +~(j%)'7' C~'+&~ 'j"'—
When a=0, this expression tends to zero for r&0.,
while, when a&0, a value of V can always be found
such that the denominator may be expanded and then
the expression tends to zero for r &1. Hence any finite
number of terms having 6nite j can be omitted from
the right-hand side of (A3) for large enough volumes,
provided only r is smaller than 1 and 0-. Omitting all
states from j=gi+1 to j=M~) 3fe one can now use
assumption (ii) to find for large enough V

Equivalently, the density of states

U(E)=( /r)« "'L(E+a)'—o'7' 'L&+a3' ' (A2)

F gi F(1) 1 " u(E)F(E)
lE.

V t/' e»——1 t/"
0

e~f~~——1
(A6)

may be spec16ed.
Table II shows that these expressions cover the

nonrelativistic limit as well as the relativistic situation.
The parameters d' and r could be kept general, but for
convenience the table includes appropriate values for a
three-dimensional gas.

TABLE II. Interpretation of constants in Eqs. (Al) and CA2).

Nonrelativistic limit

Relativistic theory

' R. M. May, Phys. Rev. 155, A1515 (1954).
s Reference 4, Appendix D.

If F(j)=1, F is the mean number of particles in the
system, and (A6) yields (2.2).

For large enough volumes (A3) (with the states for
which j satisfies gi+1&~j&M omitted) also yields

F(j)/V
$e»i- —1j=0 (M )M,). (A7)

In the limit V —+ ~, 0. -+ —5. If b&0, the 6rst factor
vanishes; if 5=0, the second factor vanishes. The
transition, if present, occurs at the condensation tem-
perature T, when both factors vanish. Thus T, is given
by

F(j)IV
~=~ eg/&&c I

This yields Eq. (2.5) if F(j)= 1.


