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excitation cross section of H2 by slow electron impact.
An analysis of swarm experiments by Engelhardt and
Phelps, "using the Born approximation values for the
rotational excitation cross section, yielded a synthesized
vibrational excitation cross section for H2 which was a
factor of 2 larger than Schulz's for electron energies
&3 eV. Our present results, while still containing major
uncertainties, indicate that one must question both the
magnitude and shape of the rotational excitation cross
sections based upon the Born approximation, which
have been used in the swarm experiment analysis. It is

hoped that calculations with a more realistic interaction
potential can be done in the future.

ACKNOWI, EDGMENT S

The extensive computer coding (IBM 7090) for the
numerical work. of this paper was done by Mrs. Marilyn
Kuhner and Mrs. Antonia Forni. Their assistance is
gratefully acknowledged. One of us (K.T.) would like to
express his gratitude to Dr. Lewis Branscomb and other
members of the JILA staff for their hospitality during
his stay as a Visiting Fellow.

PHYSICAL REVIEW VOLUM E 138, NUM B ER 4A 17 MAY 1965

Perturbation-Theory Expansions Through 21st Order of the Nonrelativistic Energies
of the Two-Electron Systems (2p)' sP and (1s)' 'S~

JoHN MIDTDAL

Irtstitlte for TheoreticaL Physics, University of Oslo, BLirsderrt, Norvoay

(Received 21 December 1964)

The Hylleraas-Scherr-Knight variational perturbation method has been applied to the two-electron
systems (2p)2 3P and (is)' 'S, carrying the calculations through to tenth-order perturbation wave functions.
Various forms of expansions for the trial wave functions have been considered, e.g., the Hylleraas form and
the Schwarz form, and numerical results are given in naturally spaced groups up to and including 252-term
expansions. Estimates of the correct perturbation-energy coeKcients through 21st order are tabulated, and
the resulting nonrelativistic energies for Z =2, 3, , 10, are given with ten signi6cant figures. To complete
the tables the energies of the two states for H have also been calculated variationally, using the same ex-
pansions of trial wave functions as in the perturbation treatment, and for the (2p)' 3P state an extrapolated
energy value of —0.2507097 measured in units of Z'Rh has been obtained.

1. INTRODUCTION

'HE (2P)'sP state of the negative hydrogen ion
has already been found to be stable. ' Using a

22-term trial wave function, Wold obtained an energy
value of —0.250421', measured in units of Z'Rh.

In a preliminary investigation for bound states of the
negative hydrogen ion' an improved 22-parameter wave
function has been set up yielding an energy of

—0.250618 for H—.In the same paper the Hylleraas-
Scherr-Knight (HSK) variational perturbation method
was also applied for the 6rst time to that state, furnish-

ing a second-order and a third-order energy coefBcient
of —0.078288 and 0.003631, respectively.

The HSK variational perturbation method appears
to be very well suited for atomic calculations provided
that an electronic computer is available. The results are

TABI.E I. Contributions to the perturbation energy coetiicients (X&—X&) for the state (2p)"P.

Order

3
7

13
22
34
50
70
95

125
161
203
252

Contributions
to )~

—0.0744773381—0.0040427166—0.0002268368—0.0000340131—0.0000063734—0.0000014801—0.0000004035—0.0000001253—0.0000000433—0.0000000164—0.0000000067—0.0000000029

Contributions
to Xg

0.0013129555
0.0009572751
0.0012021496
0.0001651968
0.0000319708
0.0000074218
0.0000020003
0.0000006093
0.0000002059
0.0000000761
0.0000000303
0.0000000129

Contributions
to X4

0.0257976480—0.0239069249—0.0021170919—0.0003597004—0.0000726308—0.0000171772—0.0000046640—0.0000014133—0.0000004710—0.0000001707—0.0000000667—0.0000000278

Contributions
to Xg

0 0010557398
0.0015435888—0.0016508836
0.0003557950
0.0000963727
0.0000235745
0.0000065446
0.0000020143
0.0000006734
0.0000002425
0.0000000934
0.0000000384

*Supported by Aeronautical Research Laboratory, OAR, and Fridtjof Nansen's Fund for Advancement of Science.
' E. Wold, Phys. Math. Univ. Oslo. , No. 13, 1962.
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TwsLz II. Contributions to the perturbation energy coefficients (X2-X5) for the state (is)' '5.

Order

3
7

13
22

50
70
95

125
161
203
252

Contributions
to)~

—0.2922676282—0.0209368521—0.0016754968—0.0003312179—0.0000822682—0.0000247257—0.0000085745—0.0000033291—0.0000014165—0.0000006501—0.0000003180—0.0000001640

Contributions
to Xe

0.0069919564
0.0031267441
0.0059009075
0.0010027080
0.0002549806
0.0000764071
0.0000262370
0.0000100439
0.0000042058
0.0000018988
0.0000009138
0.0000004643

Contributions
to X4

0.0604400311—0.0546518754—0.0056451735—0.0014124818—0.0003439043—0.0001040998—0.0000357128—0.0000135743—0.0000056174—0.0000024995—0.0000011840—0.0000005919

Contributions
to)g

—0.0034562059
0.0053301998—0.0051912415
0.0008401128
0.0002758621
0.0000815122
0.0000280739
0.0000106911
0.0000044104
0.0000019466
0.0000009114
0.0000004494

produced much faster than by using the orthodox
variational treatment, owing to the fact that, in reality,
no variational process is necessarily needed. Moreover,
the computation furnishes the energies of the whole
isoelectronic sequence of the state under consideration.
In addition, the wave function obtained for excited
states will automatically be orthogonal to all the lower

lying discrete states of the same syxnmetry type. This
last statement has been formulated as the general
orthogonality theorem of that method. '

The approximate perturbation wave functions fur-
nished by the variational equations of the Hylleraas-
Scherr-Knight procedure, will automatically, to any
order, satisfy the same orthogonality conditions as the
exact perturbation wave functions.

In this paper we present a tenth-order perturbation
wave function both for the (2p)' 'P state and the (1s)' '5
state of a two-electron system. Estimates of the correct
perturbation energy coeKcients through 21st order have
been evaluated, giving the total nonrelativistic energies
to ten significant figures.

The calculations involved in this investigation have
all been performed on a UNIVAC 1107, located at the
Norwegian Computing Center, using double-length
Qoating-point arithmetic throughout in the treatment
of real numbers. This implies a fraction part (mantissa)
of 54 bits.

2. THE HSK METHOD AND CONVERGENCE
PROPERTIES

E'= Q Z-"e„,
n 0

(2)

where e will be referred to as the exact nth-order
perturbation energy coeScient.

Introducing the same notation as Scherr and Knight'
we write

Go=&o—eo,

Gg= H' —t.g,

and the general perturbation equation then reads

(3)

(4)

Gpg'n+Gtg'n i—Z epiP -s=—O (ehO),
k 2

where terms with negative indices are to be ignored.
For the trial wave function 4 we assume the

expansion
@—P Z—np (6)

coe5cients furnished by the Hylleraas-Scherr-Knight
variational perturbation method. For a general develop-
ment of the theory we like to refer to the papers of
Hylleraas' and Scherr and Knight. '

Using Z 'ao as the unit of length and Z"Eh as the unit
of energy, the correct wave function and the energy of
the system may be expanded as power series in Z ':

%=QZ "P„,
+=0

We shall here only point out two important conver- the first term of which is known exactly pp=fp
gence properties concerning the perturbation energy Generally, the eth-order wave function y„will be

TAsLz III. (2p)' 'P. The perturbation energy coef5cients 4,
'A2—h&) obtained by using 70 terms of the function sets 3, B, C, and D.

System

X4

—0.0787891616
0.0036789699—0.0006805412—0.0006874788

—0.0787892684
0.0036794237—0.0006816742—0.0006786133

—0.0787888273
0.0036771019—0.0006757580—0.0006868611

—0.0787885857
0.0036748797—0.0006707077—0.0006809169

3 J. Midtdal, Phys. Math. Univ. Oslo. , No. 25, 1964.
4 E. A. Hylleraas, Z. Physik 65, 209 (1930).' W. Scherr and R. E. Knight, Rev. Mod. Phys. 35, 436 (1963).
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TABLE IV. (1s)' 'S. The perturbation energy coefBcients (Xs-X&) obtained by using 70 terms of the function sets A, 8, C, and D.

System

X3

Ko'

—0.3153267650
0.0173799405—0.0017532166—0.0020916865—1.4518618814—1.8781360852

—0.3153314850
0.0173938726—0.0017727239—0.0020749745—1.4518621332

—1.8781361203

—0.3153199067
0.0173573876—0.0017230515—0.0021083529—1.4518616240—1.8781360367

—0.3153216644
0.0173579619—0.0017379791—0.0020435480—1.4518616031—1.8781360543

Txnzz V. (2p)' 'P. Perturbation energy coefncients in rydbergs.

Order

Xp

X2
'A3

X4

X7
Xs
X9
X]o
~11
Xy2

4s
X/4

~15

~18
)I.$9

4o

R

—0.5
0.328125—0.078789286860
0.003679579117—0.000681954483—0.000678733541—0.000461624682—0.000330333269—0.000245740847—0.000189510063—0.000149319221—0.000120102790—0.000098310455—0.000081690676—0.000068737310—0.000058523335—0.000050342879—0.000043432914—0.000037126600—0.000031119756—0.000025451251—0.000020279539—0.00009288

125

—0.5
0.328125

—0.078789330175
0.003679785031—0.000682425513—0.000678060180—0.000462273882—0.000329904267—0.000245939073—0.000189424083—0.000149254234—0.000120063454—O.OG0098288232—0.000081673627—0.000068743356—0.000058507694—0.000050279841—0.000043S85559—0.000038079767—0.000033464197—0.000029468756—0.000025887407—0.00020086

161

—0.5
0.328125—0.078789346552
0.003679861097—0.000682596257—0.000677817688—0.000462510422—0.000329743148—0.000246014856—0.000189398225—0.000149266242—0.000120083288—0.000098305389—0.000081685667—0.000068751987—0.000058514375—0.000050288979—0.000043592610—0.000038076355—0.000033485465—0.000029630324—0.000026360660—0.00034945

203

—0.5
0.328125—0.078789353231
0.003679891432—0.000682662913—0.000677724244—0.000462601734—0.000329679673—0.000246045734—0,000189387979—0.000149268987—0.000120081483—0.000098299550—0.000081679701—0.000068746200—0.000G58510409—0.000050283771—0.000043589705

—0.000038071340—0.000033485480—0.000029623126—0,000026365510—0.00034940

Extrapolated
—0.5

0.328125—0.0787893588
0.0036799159—0.0006827145—0.0006776540—0.0004626686—0.0003296346—0.0002460681—0.0001893807—0.0001492694—0.0001200814—0.000098300—0.000081682—0.000068747—0.000058512—0.000050286—0.000043592—0.000038072—0.000033485—0,000029623—0.000026365—0.0003494

TABLE VI. (is)' 'S. Perturbation energy coefficients in rydbergs.

Order

Xp

X2
X3
)4
X;
)6

)s
)g
~lp
~11
Xg2

&i3
~14
~15
X)6

Xg9

4p

R

95

—2.0
1.25—0.315330092511
0.017389984475—0.001766790854—0.002080995355—0.001221785193—0.00074S676528—0.000485445999—0.000331431015—0.000232550314—0.000166747368—0.000121836878—0.000090516192—0.000068195225—0.000051998576

—0.000040091792—0.000031167922—0.000024263341—0.000018753709—0.000014295943—0.000010704954—0.00003822

—2.0
1.25—0.315331509050
0.017394190231—0.001772408264—0.002076584996—0.001223982114—0.000744963038—0.000485626060—0.000331350901—0.000232341777—0.000166552290—0.000121709724—0,000090423800—0.000068131201

—0.000051961412—0.000040050693
. —0.000031158331—0.000024443791—0.000019316188—0.000015344498—0.000012216521—0.00005163

161

—2.0
1.25—0.315332159193
0.017396088991—0.001774907761—0.002074638378—0.001224952290—0.000744649864—0.000485694669—0.000331332208—0.000232354627—0.000166605562—0.000121773645—0.000090478110—0.000068174558—0.000051994943—O.OOD040076645—0.000031179327—0.000024458602—0.000019328625—0.000015376533—0.000012306032—0.00005569

203

—2.0
1.25—0.315332477164
0.017397002781—0.001776091725—0.002073726948—0.001225404814—0.000744503652—0.00048572504S—0.000331326411—0.000232357326—0.000166603362—0.000121760118—0.000090458127—0.000068154152—0.000051976554—O.OOD040060853—0.000031165999—0.000024447538—0.000019319740—0.000015369380

—0.000012300509—0.00005569

Extrapolated

—2.0
1.25

-0.315332856
0.017398058—0.001777409—0.002072747—0.001225864—0.000744368—0.000485747—0.000331324—0.000232358—0.000166603—0.000121761—0.000090464—0,000068160—0.000051986—0.000040067—0.000031171—0.000024451—0.000019322—0.000015372—0.000012304—0.0000557
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TABLE VII. Perturbation nonrelativistic energies (E') of the state (2P)' 'I.

1
2
3

5
6
7
8
9

10

95 terms

—0.25044992—0.3552500763—0.3992551317—0.4228390512—0.4374984777—0.4474846809—0.4547225458—0.4602084601—0.4645094429—0.4679717888

125 terms

—0.25057073—0.3552500771—0.3992551326—0.4228390520—0.4374984783—0.4474846815—0.4547225462—0.4602084604—0.4645094432—0.4679717890

161 terms

—0.25072006—0.3552500775—0.3992551330—0.4228390524—0.4374984786—0.4474846817—0.4547225464—0.4602084606—0.4645094433—0.4679717891

203 terms

—0.25071997—0.3552500777—0.3992551331—0.4228390525—0.4374984787—0.4474846818—0.4547225465—0.4602084606—0.4645094433—0.4679717892

Extrapolated

—0.250720—0.35525007783—0.39925513327—0.422839052595—0.437498478792—0.447484681847—0.454722546526—0.460208460692—0.464509443383—0.467971789218

expressed as a finite sum of terms taken from some
auxiliary set of well-behaved basic wave functions

pn=Z &n, i&~
i=1

Let us define for convenience

(eiQtm) — y *Q&p dr,

~2-= &~ I
Go

I ~)+2&~ I
G

2n—1 n—Q e~ Q (i~2m —p —i), (9)
$7~2 ~n p

~,.+,——&~l G, I ~)

2n—1 n—p e„p &i
~

2rc+1 p i), (—10)—
@=2 i n—y+1

where, as before, terms with negative indices are to be
ignored.

Insertion of Eqs. (2) and (6) into the variational
theorem

E 4 4dT'+ 4 IIC'dT

then leads to the following variational equation,

(0 ~
0)tg„( (0

~

0)X2„=Aq„(minimum),

provided that &p„, eg~, and e2~+~, p=0, 1, 2, 3, , e—1,
have already been sufBciently exactly determined, and
where the minimization procedure is to be performed

with respect to the eth-order perturbation wave
function q„.

Equation (12) now furnishes an approximation to p
and ~2„, which in turn may be used to calculate an
apprOXimate Value Of c2n+l'.

(Oi 0),„„=X,„„-2,„(0~1),
&.e.,

(0~0)e2 +] =(0~0)X2 +y=A2 +y 2X2 (0~ 1). (13)

Hence, the approximate perturbation-energy coefFi-
cients )2„with even indices will, beyond a certain
approximation, converge downwards, whereas the
coeKcients with odd indices converge upwards.

Tables I and II clearly demonstrate these conver-
gence properties. There the contributions to (X2—X~) are
displayed in groups in which the number of basic func-
tions is naturally given by the specific function system
itself. The functions used in this case are all of the
Hylleraas type. %e also note that the sets of energy
coefficients of the (2p)' 'I' state converge more rapidly
than the corresponding sets of the (is)' '5 state.

3. SETS OF WAVE FUNCTIONS USED

For the (2p)' 'I' state an expansion oi the form

y„=8 ~~2~~P P c„p's~zlm~& (14)
nteZ

was taken, where the angular part of the spatial wave
function has to be

P'= rlr2 sine sinful sin+ =Pl/2 —PQll.

The exponent / must be an even positive integer to
ensure correct symmetry. The following four types of

TABLE VIII. Perturbation nonrelativistic energies (E') of the state (ig)»g.

2
3

5
6
7
8
9

10

95 terms

—1.05548158—1.4518620463—1.6177584257—1.7069456988—1.7624776658—1.8003469868—1.8278140508—1.8486435678—1.8649805276—1.8781361097

125 terms

—1.05549751—1.4518621169—1.6177584813—1.7069457397-1.7624776965—1.8003470105—1.8278140696-1.8486435829—1.8649805401—1.8781361202

161 terms

—1.05550204—1.4518621505—1.6177585072
—1.7069457588—1.7624777108—1.8003470214—. 1.8278140782
—1.8486435900—1.8649805459—1.8781361250

203 terms

—1.05550191—1.4518621673—1.6177585201-1.7069457682—1.7624777178—1.8003470268—1.8278140825—1.8486435934—1.8649805488—1.8781361274

Extrapolated

—1.0555020—1 4518621880—1.6177585360—1.70694577969—1.76247772634—1.80034703338—1.82781408766—1.84864359755—1.86498055217—1.87813613028
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TABLE IX. Variational nonrelativistic energies
of the (2p)''P state of I and He.

Order k

34 0.28632
50 0.2644
70 0.2592597
95 0,25

125 0.25
161 0.25
203 0.25
Extrapolated

—0.2503505037
—0.25058405
—0.25061397028
—0.25067224932
-0.25068255975
—0.25069724437
—0.250702012
—0.2507097

0.434753
0.434751
0.4347501
0.4347501
0.4347500

—0.3552499000
—0.35525002508
-0.35525005893
—0.35525007048
-0.35525007474

-0.3552500771

TABLE X. Variational nonrelativistic energies
of the (is)' '5 state of I . k=0.60.

Order

91
116
146
182
224
Extrapolated

—1.0554997900
—1.0555017873
—1.0555019195
—1.0555019989-
—1.0555020125
—1.055502016

' H. M. Schwartz, Phys. Rev. 103, 110 (1956).
7 C. Schwartz, Phys. Rev. 128, 1146 (1962).

expansions have been tried: (A) The exponents e and m
take only positive integral values (the Hylleraas type).
(8) e is integral or half-integral, m is integral (the
Schwartz type). (C) e is integral, m is integral or half-
integral. (D) both e and m take integral and half-
integral values (introduced by H. M. Schwartz). '

Some results are presented in Tables III and IV. We
note that the expansion 8 is by far the best one, both
for (2P)' 'P and (1s)s 'S& though the improvement is
not so marked in the case of the (2p)' 'P state.

The expansion 8 is just the expansion so successfully
used by Schwartz7 in his extensive variational calcula-
tions of the nonrelativistic energies of the (1s)' 'S state
of He.

However, in the following variational perturbation
investigations only functions of type A have been used
more extensively, and for two reasons: (1) Introduction
of too many half-integral exponents makes the secular
equations unnecessarily ill conditioned. (2) The results
are better suited for extrapolation, which is partly due
to the higher degree of stability.

It may be of some interest to compare our results with
those obtained by Scherr and Knight' using wave func-
tions of the Kinoshita type. In addition, they have
varied the scale factor k individually for every p;. We
have decided not to do so, partly because of the increas-
ing computing time, partly to obtain sets of energy
coefficients better suited for extrapolation. Conse-
quently, the scale factor has been 6xed at the hydro-
genic value, i.e., k=0.5 for the (2p)' 'P state and k=1
for the (1s)s 'S state.

4. NUMERICAL RESULTS. THE ENERGY
COEFFICIENTS

In Tables V and VI we present the numerical values
of the energy coefficients P.s—X») obtained by using
trial wave functions up to order 203. These tables
clearly illustrate the fact that the perturbational con-
vergence is somewhat better for the (1s)' 'S state than
for the (2p)' 'P state, whereas the variational con-
vergence is best for the (2p)' 'P state. For both states,
however, it is sufFicient to evaluate the energy coefFi-
cients up to X» to obtain the energy of He with an
accuracy of ten digits.

By using an extrapolation procedure we are now able
to estimate a value of the sum of the remaining coefh-
cients; let us call it the remainder, denoting it by R.
The remainders given in Tables V and VI are all
calculated on the basis of the coeScients (X&4-Ãsr).

The coefhcients given in the 5th column are in the
same way found by extrapolation from the sets of order
70, 95, 125, 161, and 203. They are believed to be
correct within several units in the last decimal place
given, apart from possible rounding errors due to the
comparatively too short double-length numbers
(approximately 16 decimal digits) for handling our
equation systems of higher order than say 250 with
sufIicient accuracy.

The extrapolations have all been carried out by a
repeated use of A,itken's IP process known from
numerical analysis. This method renders a relatively
good estimate of the reliability of the extrapolated
values of the convergence limits.

S. ENERGY VALUES

The total nonrelativistic energies computed from the
sets of coefficients listed in Tables V and VI, are given
in the Tables VII and VIII, respectively, for the first
ten members of the isoelectronic sequences. The values
presented in the last column in each table, are most
likely correct within a few units in the last decimal
given.

0. SOME VARIATIONALLY CALCULATED ENERGIES

A few variationally calculated energy values will be
given for comparison. For the (2p)' 'P state we have
used the same basic set of functions as in the perturba-
tion calculations, system A. For (1s)' 'S a mixture of
systems A and 8 was found to be most fruitful. The
first 55 terms have been taken from system 8, the rest
from system A.

The energy obtained for the (1s)' 'S state of H- is
seen to be in excellent agreement with the best value
found by. Pekeris'. P.'= —1.0555020126 (444 terms).
The scale factor k has been 6xed at 0.60, which is nearly
its optimum value using a 116-term wave function.

C. I.. Pelreris, Phys. Rev. 126, 1470 (1962).


