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excitation cross section of Hj by slow electron impact.
An analysis of swarm experiments by Engelhardt and
Phelps,** using the Born approximation values for the
rotational excitation cross section, yielded a synthesized
vibrational excitation cross section for Hp which was a
factor of 2 larger than Schulz’s for electron energies
>3 eV. Our present results, while still containing major
uncertainties, indicate that one must question both the
magnitude and shape of the rotational excitation cross
sections based upon the Born approximation, which
have been used in the swarm experiment analysis. It is

hoped that calculations with a more realistic interaction
potential can be done in the future.
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The Hylleraas-Scherr-Knight variational perturbation method has been applied to the two-electron
systems (2p)2 3P and (15)21S, carrying the calculations through to tenth-order perturbation wave functions.
Various forms of expansions for the trial wave functions have been considered, e.g., the Hylleraas form and
the Schwartz form, and numerical results are given in naturally spaced groups up to and including 252-term
expansions. Estimates of the correct perturbation-energy coefficients through 21st order are tabulated, and
the resulting nonrelativistic energies for Z=2, 3, - - -, 10, are given with ten significant figures. To complete
the tables the energies of the two states for H™ have also been calculated variationally, using the same ex-
pansions of trial wave functions as in the perturbation treatment, and for the (2p)2 3P state an extrapolated
energy value of —0.2507097 measured in units of Z2R% has been obtained.

1. INTRODUCTION

HE (2p)?3P state of the negative hydrogen ion

has already been found to be stable.! Using a

22-term trial wave function, Wold obtained an energy
value of —0.250427, measured in units of Z?RhA.

In a preliminary investigation for bound states of the

negative hydrogen ion? an improved 22-parameter wave

function has been set up yielding an energy of

—0.250618 for H~. In the same paper the Hylleraas-
Scherr-Knight (HSK) variational perturbation method
was also applied for the first time to that state, furnish-
ing a second-order and a third-order energy coefficient
of —0.078788 and 0.003631, respectively.

The HSK variational perturbation method appears
to be very well suited for atomic calculations provided
that an electronic computer is available. The results are

TasLE I. Contributions to the perturbation energy coefficients (A2-\5) for the state (2p)23P.

Contributions Contributions Contributions Contributions
Order to A2 to A3 to Ay to As

3 —0.0744773381 0.0013129555 0.0257976480 —0.0010557398

7 —0.0040427166 0.0009572751 —0.0239069249 0.0015435888
13 —0.0002268368 0.0012021496 —0.0021170919 —0.0016508836
22 —0.0000340131 0.0001651968 —0.0003597004 0.0003557950
34 —0.0000063734 0.0000319708 —0.0000726308 0.0000963727
50 —0.0000014801 0.0000074218 —0.0000171772 0.0000235745
70 —0.0000004035 0.0000020003 —0.0000046640 0.0000065446
95 —0.0000001253 0.0000006093 —0.0000014133 0.0000020143
125 —0.0000000433 0.0000002059 —0.0000004710 0.0000006734
161 —0.0000000164 0.0000000761 —0.0000001707 0.0000002425
203 —0.0000000067 0.0000000303 —0.0000000667 0.0000000934
252 —0.0000000029 0.0000000129 —0.0000000278 0.0000000384

* Supported by Aeronautical Research Laboratory, OAR, and Fridtjof Nansen’s Fund for Advancement of Science.

1E. Wold, Phys. Math. Univ. Oslo., No. 13, 1962.

2 J. Midtdal, Phys. Math. Univ. Oslo., No. 21, 1964.



PERTURBATION-THEORY EXPANSIONS

A 1011

TasLE II. Contributions to the perturbation energy coefficients (As—A;) for the state (1s)21S.

Contributions Contributions Contributions Contributions
Order to A2 to \s to A« to As

3 —0.2922676282 0.0069919564 0.0604400311 —0.0034562059

7 —0.0209368521 0.0031267441 —0.0546518754 0.0053301998

13 —0.0016754968 0.0059009075 —0.0056451735 —0.0051912415
22 —0.0003312179 0.0010027080 —0.0014124818 0.0008401128
34 —0.0000822682 0.0002549806 —0.0003439043 0.0002758621
50 —0.0000247257 0.0000764071 —0.0001040998 0.0000815122
70 —0.0000085745 0.0000262370 —0.0000357128 0.0000280739
95 —0.0000033291 0.0000100439 —0.0000135743 0.0000106911
125 —0.0000014165 0.0000042058 —0.0000056174 0.0000044104
161 —0.0000006501 0.0000018988 —0.0000024995 0.0000019466
203 —0.0000003180 0.0000009138 —0.0000011840 0.0000009114
252 —0.0000001640 0.0000004643 —0.0000005919 0.0000004494

produced much faster than by using the orthodox
variational treatment, owing to the fact that, in reality,
no variational process is necessarily needed. Moreover,
the computation furnishes the energies of the whole
isoelectronic sequence of the state under consideration.
In addition, the wave function obtained for excited
states will automatically be orthogonal to all the lower
lying discrete states of the same symmetry type. This
last statement has been formulated as the general
orthogonality theorem of that method.?

The approximate perturbation wave functions fur-
nished by the variational equations of the Hylleraas-
Scherr-Knight procedure, will automatically, to any
order, satisfy the same orthogonality conditions as the
exact perturbation wave functions.

In this paper we present a tenth-order perturbation
wave function both for the (2p)? 2P state and the (1s)21S
state of a two-electron system. Estimates of the correct
perturbation energy coefficients through 21st order have
been evaluated, giving the total nonrelativistic energies
to ten significant figures.

The calculations involved in this investigation have
all been performed on a UNIVAC 1107, located at the
Norwegian Computing Center, using double-length
floating-point arithmetic throughout in the treatment
of real numbers. This implies a fraction part (mantissa)
of 54 bits.

2. THE HSK METHOD AND CONVERGENCE
PROPERTIES

We shall here only point out two important conver-
gence properties concerning the perturbation energy

coefficients furnished by the Hylleraas-Scherr-Knight
variational perturbation method. For a general develop-
ment of the theory we like to refer to the papers of
Hylleraas* and Scherr and Knight.5

Using Z'a, as the unit of length and Z?Rk as the unit
of energy, the correct wave function and the energy of
the system may be expanded as power series in Z1:

V=3 Z""n, 1)
n=0

E=Y 7, )
n=0

where e, will be referred to as the exact mth-order
perturbation energy coefficient.
Introducing the same notation as Scherr and Knight$
we write
GO= Hy—¢ ) (3)

Gi=H'—e, 4)
and the general perturbation equation then reads

n

Go‘lln+G1‘l’n-—1—' Z ek‘pn——k=0 (1’1/;0) ) (5)

k=2

where terms with negative indices are to be ignored.
For the trial wave function ® we assume the

expansion
=3 Z "¢, (6)

n=0

the first term of which is known exactly, @o=4x.
Generally, the nth-order wave function ¢, will be

TasLE III. (2p)23P. The perturbation energy coefficients (As-As) obtained by using 70 terms of the function sets 4, B, C, and D.

System A B C D
A2 —0.0787891616 —0.0787892684 —0.0787888273 —0.0787885857
As 0.0036789699 0.0036794237 0.0036771019 0.0036748797
A4 —0.0006805412 —0.0006816742 —0.0006757580 —0.0006707077
As —0.0006874788 —0.0006786133 —0.0006868611 —0.0006809169

3 J. Midtdal, Phys. Math. Univ. Oslo., No. 25, 1964.
4 E. A. Hylleraas, Z. Physik 65, 209 (1930).
8 W. Scherr and R. E. Knight, Rev. Mod. Phys. 35, 436 (1963).
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TasiLE IV. (15)21S. The perturbation energy coefficients (Az-\s) obtained by using 70 terms of the function sets 4, B, C, and D.

System 4 B C D
pYs —0.3153267650 —0.3153314850 —0.3153199067 —0.3153216644
s 0.0173799405 0.0173938726 0.0173573876 0.0173579619
e —0.0017532166 —0.0017727239 —0.0017230515 —0.0017379791
s —0.0020916865 —0.0020749745 —0.0021083529 —0.0020435480
Ly —1.4518618814 —1.4518621332 —1.4518616240 —1.4518616031
Ly —1.8781360852 —1.8781361203 —1.8781360367 —1.8781360543
TABLE V. (2p)23P. Perturbation energy coefficients in rydbergs.
Order 95 125 161 203 Extrapolated
No —0.5 —0.5 —0.5 —0.5 —0.5
M 0.328125 0.328125 0.328125 0.328125 0.328125
A2 —0.078789286860 —0.078789330175 —0.078789346552 —0.078789353231 —0.0787893588
As 0.003679579117 0.003679785031 0.003679861097 0.003679891432 0.0036799159
s —0.000681954483 —0.000682425513 —0.000682596257 —0.000682662913 —0.0006827145
s —0.000678733541 —0.000678060180 —0.000677817688 —0.000677724244 —0.0006776540
Ao —0.000461624682 —0.000462273882 —0.000462510422 —0.000462601734 —0.0004626686
M —0.000330333269 —0.000329904267 —0.0003297431438 —0.000329679673 —0.0003296346
g —0.000245740847 —0.000245939073 —0.000246014856 —0.000246045734 —0.0002460681
Ao —0.000189510063 —0.000189424083 —0.000189398225 —0.000189387979 —0.0001893807
Mo —0.000149319221 —0.000149254234 —0.000149266242 —0.000149268987 —0.0001492694
A —0.000120102790 —0.000120063454 —0.000120083288 —0.000120081483 —0.0001200814
A1z —0.000098310455 —0.000098288232 —0.000098305389 —0.000098299550 —0.000098300
iz —0.000081690676 —0.000081673627 —0.000081685667 —0.000081679701 —0.000081682
M —0.000068737310 —0.000068743356 —0.000068751987 —0.000068746200 —0.000068747
Ais —0.000058523335 —0.000058507694 —0.000058514375 —0.000058510409 —0.000058512
Ais —0.000050342879 —0.000050279841 —0.000050288979 —0.000050283771 —0.000050286
A7 —0.000043432914 —0.000043585559 —0.000043592610 —0.000043589705 —0.000043592
Ais —0.000037126600 —0.000038079767 —0.000038076355 —0.000038071340 —0.000038072
A1g —0.000031119756 —0.000033464197 —0.000033485465 —0.000033485480 —0.000033485
Az0 —0.000025451251 —0.000029468756 —0.000029630324 —0.000029623126 —0.000029623
A2t —0.000020279539 —0.000025887407 —0.000026360660 —0.000026365510 —0.000026365
R —0.00009288 —0.00020086 —0.00034945 —0.00034940 —0.0003494
TasLE VI. (15)21S. Perturbation energy coefficients in rydbergs.
Order 95 125 161 203 Extrapolated
Mo -2.0 —2.0 -2.0 —-20 —-20
M 1.25 1.25 1.25 1.25 1.25
A2 —0.315330092511 —0.315331509050 —0.315332159193 —0.315332477164 —0.315332856
A3 0.017389984475 0.017394190231 0.017396088991 0.017397002781 0.017398058
s —0.001766790854 —0.001772408264 —0.001774907761 —0.001776091725 —0.001777409
s —0.002080995355 —0.002076584996 —0.002074638378 —0.002073726948 —0.002072747
Ne —0.001221785193 —0.001223982114 —0.001224952290 —0.001225404814 —0.001225864
M —0.000745676528 —0.000744963038 —0.000744649864 —0.000744503652 —0.000744368
As —0.000485445999 —0.000485626060 —0.000485694669 —0.000485725045 —0.000485747
Ao —0.000331431015 —0.000331350901 —0.000331332208 —0.000331326411 —0.000331324
Ao —0.000232550314 —0.000232341777 —0.000232354627 —0.000232357326 —0.000232358
A —0.000166747368 —0.000166552290 —0.000166605562 —0.000166603362 —0.000166603
A2 —0.000121836878 —0.000121709724 —0.000121773645 —0.000121760118 —0.000121761
i3 —0.000090516192 —0.000090423800 —0.000090478110 —0.000090458127 —0.000090464
A4 —0.000068195225 —0.000068131201 —0.000068174558 —0.000068154152 —0.000068160
Ais —0.000051998576 —0.000051961412 —0.000051994943 —0.000051976554 —0.000051986
e —0.000040091792 —0.000040050693 —0.000040076645 —0.000040060853 —0.000040067
A7 —0.000031167922 —0.000031158331 —0.000031179327 —0.000031165999 —0.000031171
Ais —0.000024263341 —0.000024443791 —0.000024458602 —0.000024447538 —0.000024451
Mo —0.000018753709 —0.000019316188 —0.000019328625 —0.000019319740 —0.000019322
A20 —0.000014295943 —0.000015344498 —0.000015376533 —0.000015369380 —0.000015372
A2t —0.000010704954 —0.000012216521 —0.000012306032 —0.000012300509 —0.000012304
R —0.00003822 —0.00005163 —0.00005569 —0.00005569 —0.0000557
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TasLE VII Perturbation nonrelativistic energies (E’) of the state (2p)23P.

VA 95 terms 125 terms 161 terms 203 terms Extrapolated

1 —0.25044992 —0.25057073 —0.25072006 —0.25071997 —0.250720

2 —0.3552500763 —0.3552500771 —0.3552500775 —0.3552500777 —0.35525007783
3 —0.3992551317 —0.3992551326 —0.3992551330 —0.3992551331 —0.39925513327
4 —0.4228390512 —0.4228390520 —0.4228390524 —0.4228390525 —0.422839052595
5 —0.4374984777 —0.4374984783 —0.4374984786 —0.4374984787 —0.437498478792
6 —0.4474846809 —0.4474846815 —0.4474846817 —0.4474846818 —0.447484681847
7 —0.4547225458 —0.4547225462 —0.4547225464 —0.4547225465 —0.454722546526
8 —0.4602084601 —0.4602084604 —0.4602084606 —0.4602084606 —0.460208460692
9 —0.4645094429 —0.4645094432 —0.4645094433 —0.4645094433 —0.464509443383
10 —0.4679717888 —0.4679717890 —0.4679717891 —0.4679717892 —0.467971789218

expressed as a finite sum of terms taken from some
auxiliary set of well-behaved basic wave functions

m
¢n=z Cn,iVs. (7)
=1
Let us define for convenience

(n]Q|m)= / en'Qondr, ®)

Az ={(n|Go|n)+2(n|G1|n—1)

2n—

~Te T (lm—p=i), ©)

Azn1=(n|G1|n)

2n—1 n

- X X {i|2nt+1—p—i), (10)

p=2 {=n—p+1

where, as before, terms with negative indices are to be
ignored.

Insertion of Egs. (2) and (6) into the variational
theorem

E / Fdr< / & Hddr (11)

then leads to the following variational equation,
{0]0Ye20 =< (0] OY\2,= A2, (minimum), (12)

provided that ¢,, €, and espi1, p=0,1,2,3, -+, n—1,
have already been sufficiently exactly determined, and
where the minimization procedure is to be performed

with respect to the mth-order perturbation wave
function ¢,.

Equation (12) now furnishes an approximation to ¢,
and ey, which in turn may be used to calculate an
approximate value of ezq1:

. {0]|0)e2ny1=Asny1—2€2,{0] 1),
ie.

(O I 0>€2"+1 i(()l 0>>\2n+1=A2n+1_ 2)\271(0] 1> . (13)

Hence, the approximate perturbation-energy coeffi-
cients Aq, with even indices will, beyond a certain
approximation, converge downwards, whereas the
coefficients with odd indices converge upwards.

Tables I and II clearly demonstrate these conver-
gence properties. There the contributions to (A\2—\s) are
displayed in groups in which the number of basic func-
tions is naturally given by the specific function system
itself. The functions used in this case are all of the
Hylleraas type. We also note that the sets of energy
coefficients of the (2p)? P state converge more rapidly
than the corresponding sets of the (1s)21S state.

3. SETS OF WAVE FUNCTIONS USED
For the (2p)? *P state an expansion of the form

Op=€"12P 3" P S U™ (14)

nml

was taken, where the angular part of the spatial wave
function has to be

P=rr; sinf sinf; sinp=x1y,—x2y1. (15)

The exponent / must be an even positive integer to
ensure correct symmetry. The following four types of

TasLE VIII. Perturbation nonrelativistic energies (E’) of the state (1s)21S.

VA 95 terms 125 terms 161 terms 203 terms Extrapolated
1 —1.05548158 —1.05549751 —1.05550204 —1.05550191 —1.0555020
2 —1.4518620463 —1.4518621169 —1.4518621505 —1.4518621673 —1.4518621880
3 —1.6177584257 —1.6177584813 —1.6177585072 —1.6177585201 —1.6177585360
4 —1.7069456988 —1.7069457397 —1.7069457588 —1.7069457682 —1.70694577969
5 —1.7624776658 —1.7624776965 —1.7624777108 —1.7624777178 —1.76247772634
6 —1.8003469868 —1.8003470105 —1.8003470214 —1.8003470268 —1.80034703338
7 —1.8278140508 —1.8278140696 —1.8278140782 —1.8278140825 —1.82781408766
8 —1.8486435678 —1.8486435829 —1.8486435900 —1.8486435934 —1.84864359755
9 —1.8649805276 —1.8649805401 —1.8649805459 —1.8649805488 —1.86498055217
10 —1.8781361097 —1.8781361202 —1.8781361250 —1.8781361274 —1.87813613028
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TaBLE IX. Variational nonrelativistic energies
of the (2p)? %P state of H~ and He.

H- He
Order k E’ k E'
34 0.28632 —0.2503505037 0.434753 —0.3552499000
50 0.2644 —0.25058405 0.434751 —0.35525002508 .
70 0.2592597 —0.25061397028 0.4347501 —0.35525005893
95 0.25 —0.25067224932 0.4347501 —0.35525007048
125 0.25 —0.25068255975 0.4347500 —0.35525007474
161 0.25 —0.25069724437
203 0.25 —0.250702012
Extrapolated —0.2507097 —0.3552500771

expansions have been tried : (A) The exponents # and m
take only positive integral values (the Hylleraas type).
(B) » is integral or half-integral, m is integral (the
Schwartz type). (C) # is integral, # is integral or half-
integral. (D) both # and m take integral and half-
integral values (introduced by H. M. Schwartz).®

Some results are presented in Tables IIT and IV. We
note that the expansion B is by far the best one, both
for (2p)?%P and (1s5)*1S, though the improvement is
not so marked in the case of the (2p)% 3P state.

The expansion B is just the expansion so successfully
used by Schwartz? in his extensive variational calcula-
tions of the nonrelativistic energies of the (1s)? 1S state
of He.

However, in the following variational perturbation
investigations only functions of type 4 have been used
more extensively, and for two reasons: (1) Introduction
of too many half-integral exponents makes the secular
equations unnecessarily ill conditioned. (2) The results
are better suited for extrapolation, which is partly due
to the higher degree of stability.

It may be of some interest to compare our results with
those obtained by Scherr and Knight® using wave func-
tions of the Kinoshita type. In addition, they have
varied the scale factor k individually for every ¢;. We
have decided not to do so, partly because of the increas-
ing computing time, partly to obtain sets of energy
coefficients better suited for extrapolation. Conse-
quently, the scale factor has been fixed at the hydro-
genic value, i.e., k=0.5 for the (2p)?°P state and k=1
for the (15)2 1S state.

TaBLE X. Variational nonrelativistic energies
of the (15)21S state of H™. £=0.60.

Order E’

91 —1.0554997900
116 —1.0555017873
146 —1.0555019195
182 —1.0555019989
224 —1.0555020125
Extrapolated —1.055502016

¢ H. M. Schwartz, Phys. Rev. 103, 110 (1956).
7 C. Schwartz, Phys. Rev. 128, 1146 (1962).
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4. NUMERICAL RESULTS. THE ENERGY
COEFFICIENTS

In Tables V and VI we present the numerical values
of the energy coefficients (Ao—\s;) obtained by using
trial wave functions up to order 203. These tables
clearly illustrate the fact that the perturbational con-
vergence is somewhat better for the (1s5)2 1S state than
for the (2p)?%P state, whereas the variational con-
vergence is best for the (2p)? 3P state. For both states,
however, it is sufficient to evaluate the energy coeffi-
cients up to Ae; to obtain the energy of He with an
accuracy of ten digits.

By using an extrapolation procedure we are now able
to estimate a value of the sum of the remaining coeffi-
cients; let us call it the remainder, denoting it by R.
The remainders given in Tables V and VI are all
calculated on the basis of the coefficients (A14~N2y).

The coefficients given in the 5th column are in the
same way found by extrapolation from the sets of order
70, 95, 125, 161, and 203. They are believed to be
correct within several units in the last decimal place
given, apart from possible rounding errors due to the
comparatively too short double-length numbers
(approximately 16 decimal digits) for handling our
equation systems of higher order than say 250 with
sufficient accuracy.

The extrapolations have all been carried out by a
repeated use of Aitken’s § process known from
numerical analysis. This method renders a relatively
good estimate of the reliability of the extrapolated
values of the convergence limits.

5. ENERGY VALUES

The total nonrelativistic energies computed from the
sets of coefficients listed in Tables V and VI, are given
in the Tables VII and VIII, respectively, for the first
ten members of the isoelectronic sequences. The values
presented in the last column in each table, are most
likely correct within a few units in the last decimal
given.

6. SOME VARIATIONALLY CALCULATED ENERGIES

A few variationally calculated energy values will be
given for comparison. For the (2p)%3P state we have
used the same basic set of functions as in the perturba-
tion calculations, system 4. For (15)?1S a mixture of
systems A and B was found to be most fruitful. The
first 55 terms have been taken from system B, the rest
from system 4.

The energy obtained for the (1s)®1S state of H- is
seen to be in excellent agreement with the best value
found by Pekeris®: E'=—1.0555020126 (444 terms).
The scale factor % has been fixed at 0.60, which is nearly
its optimum value using a 116-term wave function.

8 C. L. Pekeris, Phys. Rev. 126, 1470 (1962).



