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The cross sections for the rotational excitation of Hz and N by slow electrons are evaluated in a distorted-
wave approximation with the use of a simple model potential. The changes from the previous Born-approxi-
mation results are quite pronounced, particularly for Hs.

I. INTRODUCTION

XCITATION of molecular rotation and vibration

are among the most important energy-loss mech-

anisms for slow electrons in molecular gases. Thus the

study of these excitation processes is closely related to

the study of discharges in gases, the effects of radiation

on matter, upper-atmosphere physics, and other prob-
lems involving slow electrons.

In this paper, the rotational excitation of homonuclear
diatomic molecules is studied wave mechanically.
Morse! and Carson? studied the rotational excitation
through the short-range electrostatic interaction which
arises when the incident electron approaches the elec-
tron cloud of the molecule. Later, Gerjuoy and Stein? put
emphasis on an interaction with longer range. Molecules
are regarded in their treatment as point quadrupoles.
For H; and N,, they get effective cross sections which
are not inconsistent with the existing experimental data.
Stabler* made a similar calculation for the molecular
ion, taking into account the distortion of the scattered-
electron wave function by the Coulomb potential, and
this was further considered by Sampson.® Dalgarno and
Moffett® made a correction to Gerjuoy and Stein’s result
by introducing the nonspherical part of the polarization
interaction.

Generally, the asymptotic form of the interaction
between a diatomic molecule and an electron is given
approximately by

’

V(f,r)=—f——ip,(f.f)—(f-Jrg)P,(sﬂf). )
2t 2 2rt 3

* A brief preliminary account of this work has been given in
Phys. Letters 13, 135 (1964).
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Here and in the following, atomic units are used. Thus
distances are measured in units of Bohr radii and energy
is measured in units of 27.2 eV. r is the position vector
of the scattered electron relative to the center of mass of
the molecule and § is the unit vector along the inter-
nuclear axis of the molecule (Fig. 1). u is the electric-
dipole moment of the molecule. For homonuclear
diatomic molecules, we have u=0. Q is the electric-
quadrupole moment defined by

Q= / q(xX')r2Py($-#)dr’ 2)

where ¢(r') is the charge distribution in the molecule.
a and o are related to ai and «,, which are the polar-
izabilities of the molecule along directions parallel and
perpendicular to its axis, respectively, by

a=3(ant+2a),

a'=%(ozu—a1) .

©)
(4)

Py and P, are the Legendre polynomials. Gerjuoy and
Stein used the Q term only. Dalgarno and Moffett used
the o’ term as well as the Q term.

All previous work is based on the Born approximation.
The validity of the approximation was discussed by
Gerjuoy and Stein. They found that in the transition
integral of the Born approximation the main contribu-
tion comes from the region corresponding to large
separation between the electron and the molecule. If the
distant collisions give the main contribution to the
transition, the distortion of the electron wave function
from a plane wave will have little effect on the resulting
cross section. However, a more detailed analysis of the
Born calculation shows? that the main contribution
actually comes from the combination of incident p wave
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F16. 1. Coordinates for the electron-molecule collision with Z axis
along the direction of incidence.
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and outgoing p wave (except for just above threshold
where the incident d wave combined with the outgoing
s wave gives the main contribution). Since s and p waves
should be distorted considerably by the static field of the
target molecule in the energy region of interest, the
effect of distortion could be important. In this paper, we
present a distorted-wave-type calculation for the hydro-
gen and nitrogen molecules. As will be seen later, the
resulting cross sections are considerably different from
the results of the Born approximation.

The asymptotic form (1) for the interaction cannot be
used for small values of 7. The actual interaction will not
have singularities such as 73 or 7 * at the center of mass,
but rather Coulomb singularities at the nuclei. Also the
possibility of exchange of incident and molecular elec-
trons will affect the interaction and give it a nonlocal
character at small 7. Unfortunately, we do not know the
correct short-range interaction. In this paper, therefore,
we simply cutoff the asymptotic form (1) at r=R, as
follows:

V(s,r)=—i—(9-+—°‘—>P2(§-f), r<R (5a)

2R* \R® 2R*

a /Q o
=__—<—+——>P2(§-f), r>R. (5b)

2t \r3 27

For H,, we adopt the following values for the parameters:

a=5.328 (Ref. 8),
o =1.250 (Ref. 8),

0=0.464 (Ref. 9),
and for Ny,

a= 12.00 (Ref. 10),
4.20 (Ref. 10),
0=—1.10 (Ref. 11).

The negative sign of Q for nitrogen was adopted in
accordance with the theoretical calculation of Scherr.!?

Preliminary calculations showed that the rotational
excitation cross section depends rather sensitively on
the value chosen for the cutoff distance R. To choose a
reasonable value of R, we first studied the elastic
scattering resulting from the same potential function.
By comparing the calculated elastic cross section with
the observed data, we can select a more or less reason-
able value of R.

II. ELASTIC SCATTERING

Even if the incident energy is as low as 10~ atomic
units, which corresponds roughly to the mean thermal
energy at room temperature, the collision time is much

8 E. Ishiguro, T. Arai, M. Mizushima, and M. Kotani, Proc.
Phys. Soc. (London) A65, 178 (1952).

9W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219
(1960).

9 Zahlenwerte and Functionen, edited by H. H. Landolt and R.
Bérnstein (Springer-Verlag, Berlin, 1951), Vol. I, Part 3, p. 510.

1 7, D. Poll, Phys. Letters 7, 32 (1963).

12 C. W. Scherr, J. Chem. Phys. 23, 569 (1955).
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shorter than the period of molecular rotation. Therefore,
we fix the molecular orientation in calculating the
elastic scattering cross section, and then average over all
orientations.

The direction of the incident electron beam will be
taken as Z direction. The orientation of the molecular
axis will be specified by the polar angles 6o, ¢o. The
electronic wave function arising from the Joth incident
partial wave will be expanded as

¥ (r) =>l: 7 fu(lm| k)Y (Im|6¢). (6)

Y (Im|60¢) is the normalized spherical harmonic function.
It should be noted that the radial function fi,(Im|k,r)
depends on 6, and ¢, parametrically. By substituting
the wave function (6) into the Schrédinger equation, it
is found that these radial functions must satisfy a set of
coupled equations of the following form:

@ I(+1)
== 2(m| V[lm)+Rf1, (bm | k1)
o

=23 (Im| V|I'm') fu(U'm | k),

Um!

()

where k is the wave number (%%/2 is the incident electron
energy in atomic units) and the matrix elements of the
interaction V are easily calculated to be

o
(Im|V|Im')=——b100mm
2rt

—(%—I——;;)(lmll’z(f-f)llw), ®)
where
(lm| Po(3-7)|U'm")
= (4m/5)12Y *(2, m—m' |6 o)t (Imi'm")  (9)
and

c?(lm,l'mo:(%)m [ [r+amioar @ m—nio0

XY ({'m'|00) sinbdode. (10)

¢2(Im,I'm’) vanishes unless /—7' =0, or ==2. The diagonal
matrix element of the interaction potential is given by

l a Q o
mivim=—=(+50)
X———-——l 41— 3m P2(cosby) .
(204+3)(21—1)

Tt should be understood that for 7<R, r is replaced by R
in (Im|V|I'm'), in accordance with our potential
model (5a), (Sb).

(11)
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If one gets a solution of (7) with the asymptotic form
Srom|kyr) = Sugdmo expl—i(kr—3im)]

—S(Im|1,0) exp[c(kr—3ir)], (12)

for all possible values of Jo, /, and m, then the elastic-
scattering cross section is given by

oa= (r/B)2| 2 (2l+1)12

Im g
Xi"’[S(lm]loo)—auoémo]P. (13)
If the nonspherical part of the potential is not too
large, one can apply perturbation theory. To the zeroth
approximation, we keep only the diagonal elements of V
[as in (11)], leading to a diagonal S matrix,

SO (Im | 160) = 811,0mo €xp (2i1150) , (14)

where 7,0 is the phase shift. The cross section to this
approximation is given by

Oel= (41!'/]32)2 (210+1) sinzn 150« (15)
lo

To the first approximation, obtained by using zero-
order f’s on the right-hand side of (7), one has for the
nondiagonal elements of the S matrix,

SO (Im|100) = — (43/k) exp (inim-+in loo)/ Y (m| k)

X (im| V| 10) f¥ (10| Er)dr,  (16)

where the zero-order f¥(Im/|k,r) is the solution of

@z I(+1)
—————2(lm| V| lm)+k2} NUm|kyr)=0, (17)
dr* 72

with the conditions
JY(im|k,0)=0,

F¥(Im|ky) — sin(kr—lr+num). (18)

Preliminary calculations showed that the nondiagonal
S-matrix elements were fairly small in our problem.
Thus the actual calculation was done by using (15).
Later, in Figs. 4 and 5, the smallness of the nondiagonal
elements of .S will be shown for a few selected values of
R. In calculating g1, only /y)=0, 1, and 2 were taken into
account.

The cross section was calculated for ,=0, r/4, and

w/2. We have assumed that
a'el(eo) = 5'91+(72P2(C0500)+0‘4P4(C0800) (19)

gives a good approximation to the 6, dependence of the
cross section. Then the averaged cross section is given

by
Foar=(1/15)[001(0)+80e1(r/4)+601(7/2)].  (20)
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Fic. 2. Elastic-scattering cross section for H, for electron energy
k2/2=0.02 and various molecular orientations as a function of
cutoff parameter.

In the case of Hj, we calculated oe1(f) as a function
of R for a fixed incident energy #2/2=0.02. The result
is shown in Fig. 2. The large peak at R=1.83 corre-
sponds to the fact that there is a discrete s level with
nearly zero energy for this value of R. In other words,
the s-wave phase shift (which does not depend on ;) for
this energy passes through =/2 at R=21.83. The peak
value of the cross section is found very close to the
maximum s-wave cross section 4r/k*=314. Therefore,
the p-wave contribution is very small here. A similar
large peak appears to occur for R less than 0.8. The
sharp peaks around R=1.0 are due to the p-wave phase
shift passing through /2. Since p-wave scattering de-
pends on the molecular orientation, we get separate
peaks for different 8.

For hydrogen and nitrogen, the total scattering cross
sections were measured many years ago.® In the low-
energy region under consideration, this is nearly the
same as the elastic-scattering cross section. For nitro-
gen, the cross section has a sharp peak with a maximum
of nearly 100 a.u. in the 2-3-eV region, while for
hydrogen a much broader peak with a maximum of
about 50 a. u. was found in the 1-4-eV region. Both
cross sections rise again at lower energies. However,

according to a recent analysis of swarm experiments

13 E. Briiche, Ann. Physik 82, 912 (1927) ; C. Ramsauer and R.
Kollath, ¢b7d. 4, 91 (1930) ; C. E. Normand, Phys. 35, 1217 (1930).
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by Engelhardt and Phelps for hydrogen* and by
Engelhardt, Phelps, and Risk for nitrogen,!® it appears
that these elastic cross sections do not tend to rise at low
energies. Their momentum transfer cross sections, which
are practically equal to o.1 at very low energy, tend to a
finite value of around 30 a. u. for H,; and a somewhat
lower value for N,. We may thus put the restriction on
the cross section that the low-energy value (%%/2220.02)
should be less than 100 a.u. for H, as well as
for Ng. This limits the range of R which we need to
consider.

For H,, with several values of R chosen in the above
described manner, we have calculated &) as a function
of the incident energy #2/2. The result is shown in
Fig. 3. As is seen at once, agreement with the experi-

200 T T

Tep 100
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Fic. 3. Average elastic-scattering cross-section curves for H, for
a number of cutoff radii. The cross hatching corresponds to the
experimental data.

mental data is not very close for any of the chosen
values of R. This indicates the necessity for further
refinement in the interaction potential to be used in this
scattering problem. Among the values studied, however,
R=1.2-1.3 is the region where the general behavior and
the order of magnitude of the calculated cross section is
closest to the experimental one. Thus we have chosen
R=1.2 and 1.3 for the rotational excitation calculation.
For these values of R, d¢1(0), oe1(7/4), and ge1(w/2) are

(114 A). G. Engelhardt and A. V. Phelps, Phys. Rev. 131, 2115
963).

158 A, G. Engelhardt, A. V. Phelps, and C. G. Risk, Phys. Rev.
135, A1566 (1964).
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Fi1G. 4. The effect of the nondiagonal elements of the S matrix
on the elastic scattering by H, for a number of molecular orienta-
tions (R=1.2). Solid lines without, dashed lines with, nondiagonal
elements of S matrix.

shown in Figs. 4 and 5. Here the calculations were done
with and without nondiagonal S-matrix elements. The
nondiagonal elements, when included, were calculated
by (16). It is seen from these figures that the non-
diagonal elements do not change the cross section very
much. Dependence on 6, however, is fairly strong. We
have also computed the elastic-scattering cross section
arising from only the spherical part of the potential,

Ve=—a/2r* for r>R; —a/2R* for r<R, (21)

and find that it is very close to .1, the difference being

150 T

e

0 I |
0 0l 0.2 03

k22

Fic. 5. The effect of the nondiagonal elements of the S matrix
on the elastic scattering by H, for a number of molecular orienta-
tions (R=1.3). Solid lines without, dashed lines with, nondiagonal
elements of .S matrix.
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within a few percent. Thus, at least in this case, the
elastic cross section based on the spherically averaged
potential is not very different from the averaged cross
section based on a nonspherical potential.

For N;, the mean cross section .1 as a function of R
at k2/2=0.01 is given in Fig. 6. As in the case of hydro-
gen, the steep rises for R>1 8 and R<1.2 are due to the
s wave and the sharp peak at R=21.43 is due to the p
wave. In this case, the three 8, values give p-wave peaks
very close to one another, so that the resultant ., does
not have well-separated peaks. The corresponding phase
shifts are shown in Fig. 7. Here again, we have to omit
the range of R where the low-energy cross section be-

150 1

100 - =

Sl

Fic. 6. Average elastic-scattering cross section for N for electron
energy %2/2=0.01 as a function of cutoff parameter.

comes around 100 a. u. or more. Thus, by studying
several values of R within the two minimum regions in
Fig. 6, we found that R=1.75-1.8 is the best choice.
The cross section .1 as a function of %2/2 is shown in
Fig. 8 for a few values of R. Again, the crudeness of our
potential does not allow us a very good fit with the
experimental data.

III. ROTATIONAL EXCITATION

In the distorted-wave approximation, the cross
section for the rotational transition J— J' is given

S-WAVE
PHASE SHIFT

')10 o

p-WAVE PHASE SHIFTS

L

,=0

TF1c. 7. s- and p-wave phase shifts for N, for electron energy
k2/2=0.01 as a function of cutoff parameter.

by
o(J— T
kl

—d St 2t
k 2]+1%:L; 12::,, MM

1 1
X|— Q4D | f(U| R r)
)74 0

2

X (U T M |2V | LOTM) f(| Ep)dr| | (22)

30 . [ , , :

0 ! | ! | 1
0 0l 02 03
k2/2

Fic. 8. Average elastic-scattering cross-section curves for N, for
a number of cutoff radii. The cross-hatching corresponds to the
experimental data.
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TasLE L. Calculated rotational excitation cross sections for Hs, given in atomic units (ae?).

J—J+2
0—2 1-3 2—4 35
k2 R=12 R=13 R=12 R=13 R=1.2 R=13 R=1.2 R=13

0.004 0.1067 0.1027 ..o e e cee
0.007 e e 0.0726 0.0689 e - - .
0.01 0.2565 0.2417 0.1188 0.1122 0.0669 0.0627 0.0176 0.0160
0.015 0.0860 0.0793
0.03 0.5249 0.4420 0.2920 0.2473 0.2305 0.1963 0.1949 0.1669
0.1 1.795 1.137 1.049 0.6658 0.8749 0.5572 0.7875 0.5032
0.2 4.538 2.276
0.3 6.721 3.087 4.009 1.842 3.415 1.570 3.142 1.445
0.4 7.184 3.329 4.301 1.992 cee cee cee oo
0.6 5.328 2.786 3.198 1.671 cee e .- N
1.0 2.286 1.464 1.373 0.8792 1.178 0.7540 1.092 0.6985
2.0 0.6581 0.4910 0.3949 0.2947 v cee eee cee
3.0 0.3683 0.2785 0.2210 0.1671 cee e

where k and %’ are the initial and the final electron wave with the conditions

numbers, V,; is the nonspherical part of the potential

given in (5), and JM and /m are the quantum numbers J(@|%0)=0,

of molecular rotation and orbital angular momentum, :

. . . 1 k) — sin(kr—3i . 25
respectively. The transition matrix element of the f0lR) — (r—3m+n2) 25)
potential is given by .

For the transition J — J+2,
Um/ T M| 2V s |1 0T M
( |2V |20730) AR =1~ k2=12GJ+1)B, (26)

_ 2<9+°‘_> (' 73| Po(-#) 1 0730
’,3 274

'

_z(g+:‘>vz<JM,J'M'>c2(l'm',w). (23)
1,4

73

The distorted-wave f’s are the solution of the radial
equations of the form

{iii_l(l—H)

dr? 72

—2V3+k2} kD=0  (24)

»
=
3
Q
=
e L
<
~
f];—
o
b

GERJUOY-STEIN
oL Ly | L | L1

10 | 10
K> (ATOMIC UNITS)
F16. 9. Comparison of present results for the rotational excita-

tion (0 — 2) of H; by electron impact with the curves of Gerjuoy-
Stein and Dalgarno-Moffett (k2=1 corresponds to 13.6 V).

where B is the rotational constant of the molecule in
atomic units, and

B=2.70X10*

=0.11X10-%

for H,

for No. 27

The resulting rotational excitation cross sections for
J=0— J=2 are shown in Figs. 9 and 10 for hydrogen
and nitrogen, respectively. In both cases the distorted-
wave calculation gives a cross section larger than the
Dalgarno-Moffett approximation in the intermediate
energy region and a much smaller result in the higher
energy region. The cross sections for transitions be-
tween higher J-values behave qualitatively in the same
way as does the cross section for J=0— J=2. Nu-
merical results for the effective cross section are given in
Tables I and II.

IV. DISCUSSION OF RESULTS

The qualitative difference between the cross section
for hydrogen and that for nitrogen is due to Q having
opposite signs. For hydrogen, the Q and o/ terms in (1)
are additive, but for nitrogen, they tend to cancel one
another. This makes the distorted-wave cross section
for hydrogen much larger than the Gerjuoy-Stein result
and the cross section for nitrogen less than that of
Gerjuoy-Stein.

Both for hydrogen and nitrogen, the largest contribu-
tion to the cross section comes from the partial cross
section corresponding to incident p and outgoing p
waves, except in the neighborhood of threshold. For the
Ith partial wave, the effective scattering potential is
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TasLE II. Calculated rotational excitation cross sections for N3, given in atomic units (ao?).

J > J+2
0—2 1-3 24 355 456 5—-7 6—-8 8-—10 10—12 15 —-17 20 —22 25 — 27
B R=175 R=18 R=175 R=18 R=175 R=18 R=18 R=18 R=18 R=18 R=18 R=18 R=18 R=1.8 R=18
0.0003 0.9643 0.9638 0.4694 0.4686 0.2503 0.2493 - -- “es
0.0005 cee v v cen cen cee 0.3436 v cee
0'0007 e .o oo .o e cee “en 0.3585 0.3045
0.001  1.078 1.078  0.6212 0.6209 0.5108 0.5105 0.4518 04107 0.3763  --- . .o -
0.0015 cee cee “ee “en oo cee “ee cee vee 0.3918 0.3537 0.3165 0.2050 cee cee
0.002 e cen oo “en “en cee “es “ee cee cen “en oo e 0.2070 0.0771
0,003 1.063 1061  0.6296 0.6285 0.5327 0.5318 04860 0.4573 0.4374 0.4219 03981 0.3780 03398 0.3013 0.2580
0,01  1.0203 1.0121 0.6098 0.6040 0.5206 0.5146 0.4758 0.4524 04367 0.4252 0.4092 0.3980 0.3787 0.3652 0.3538
003  1.29 1.094 06762 0.6556 0.5786 0.5611 0.5187 0.4943 0.4784 04665 04512 0.4411 04256 0.4150 0.4087
0.1 1324 1247 07944 07480 0.6807 0.6410 0.5933 0.5662 0.5486 0.5363 0.5200 0.5098 04952 0.4873 0.4822
0.3 02538 02924 01523 0.1755 0.1306 0.1504 0.1393 0.1330 0.1283 0.1259 0.1222 0.1199 0.1167 0.1150 0.1140
0.5 0.1151 0.1231 e 0.0738 e ves oo
1.0 0.0501  0.0490 0.0294 0.0252 0.0233 00223 0.0216 0.0211 00205 00201 0.0195 0.0192 0.0191
3.0 0.0083 0.0074 0.0044 e cee eee e e v e cee cen cen
(including the centrifugal term) (31) comes not from the innermost region but the region
of > R. Therefore, the cutoff of the interaction at =R
- 2 _ 4
Vet()=1(0+1)/2r"—a/2r*, for r>R. (28) does not affect our result very much. Furthermore, the
Thi 1 h . lue of distortion of the low-energy s and d waves in the region
1s potential has a maximum value o 7> R is small as the phase shifts (modulo %) are small.
V() = [104+1) /8 (29) This is the reason why we find the distorted-wave cross
of f = . N . o o
¢ section in the vicinity of threshold to be very close to the
at 1o Dalgarno-Moffett result, which has no cutoff in the
r=rn=[2a/l(0+1)]"2. (30)

If the incident electron has an energy greater than this
barrier height for /=1, the p-wave function will be
fairly large in the inner region (r<7.), and the cross
section is expected to be enhanced for the energies
k2/2>Voi™(1) over the Dalgarno Moffett result, which
does not take account of the distortion effect. This is
actually the case as one can see in Figs. 9 and 10.
Vess™(1) in these cases are 0.094 and 0.042 a. u., re-
spectively, and both values for ,>R. The classical
turning point occurs at a finite distance for all the
partial waves except for the s wave. As the incident
energy increases, the electron can penetrate more deeply
into the inner region, so that the cross section increases.
However, as we have cut off the interaction potential at
r=R, the transition integral

/

(%)wwk')-l / N

XMW I M |2V 4|l OTM) f(¢| kyr)dr  (31)
will eventually decrease toward zero as k? increases. In
the Dalgarno-Moffett formula, the nonspherical inter-
action has no cutoff, so that as energy increases, pene-
tration of the p and other higher partial waves will
cause the cross section to increase without limit as %2
increases.

In the neighborhood of threshold, the outgoing elec-
tron has a very low energy, so that only an s-wave
electron can come out of the interaction region. Only an
incident d-wave electron can become a final s-wave
electron [/=0— /=0 forbidden in (23)]. Since the &
wave at low energy has a fairly large classical turning
radius, the main contribution to the transition integral

potential and no distortion correction.

As a check on our numerical procedures, we set a=0
in our evaluation of the distorted waves in (24) and
allowed V,, in (22) to retain its asymptotic form all the
way into the origin. In this way we obtained the
Dalgarno-Moffett result to within 5%, which would be
the estimate of our numerical errors arising from the
numerical solution of (24), the numerical radial integral
in (22), and the truncation of the sum in (22) at //=10.
Also, if we keep the correct «, while allowing V,, to
retain its asymptotic form into the origin, we see that
the cross section approaches the Dalgarno-Moffett re-
sult at high energies. This is a confirmation that the
effect of distortion vanishes in the high-energy limit.

Recently, Schulz!'® directly measured the vibrational

W7 T T T T T T

GERJUQY—STEIN

DALGARNO-MOFFETT
DISTORTED WAVE

05— R=175| R=1.80 |

o (0—+2) (ATOMIC UNITS)

L1 IR L1 1 1

| |
1072 107!

iK% (ATOMIC UNITS)

]
04 03

Fic. 10. Comparison of present results for the rotational excita-
tion (0 — 2) of N; by electron impact with the curves of Gerjuoy-
Stein and Dalgarno-Moffett (k2=1 corresponds to 13.6 eV).

16 G, J. Schulz, Phys. Rev. 135, A988 (1964).
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excitation cross section of Hj by slow electron impact.
An analysis of swarm experiments by Engelhardt and
Phelps,** using the Born approximation values for the
rotational excitation cross section, yielded a synthesized
vibrational excitation cross section for Hp which was a
factor of 2 larger than Schulz’s for electron energies
>3 eV. Our present results, while still containing major
uncertainties, indicate that one must question both the
magnitude and shape of the rotational excitation cross
sections based upon the Born approximation, which
have been used in the swarm experiment analysis. It is

hoped that calculations with a more realistic interaction
potential can be done in the future.
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The Hylleraas-Scherr-Knight variational perturbation method has been applied to the two-electron
systems (2p)2 3P and (15)21S, carrying the calculations through to tenth-order perturbation wave functions.
Various forms of expansions for the trial wave functions have been considered, e.g., the Hylleraas form and
the Schwartz form, and numerical results are given in naturally spaced groups up to and including 252-term
expansions. Estimates of the correct perturbation-energy coefficients through 21st order are tabulated, and
the resulting nonrelativistic energies for Z=2, 3, - - -, 10, are given with ten significant figures. To complete
the tables the energies of the two states for H™ have also been calculated variationally, using the same ex-
pansions of trial wave functions as in the perturbation treatment, and for the (2p)2 3P state an extrapolated
energy value of —0.2507097 measured in units of Z2R% has been obtained.

1. INTRODUCTION

HE (2p)?3P state of the negative hydrogen ion

has already been found to be stable.! Using a

22-term trial wave function, Wold obtained an energy
value of —0.250427, measured in units of Z?RhA.

In a preliminary investigation for bound states of the

negative hydrogen ion? an improved 22-parameter wave

function has been set up yielding an energy of

—0.250618 for H~. In the same paper the Hylleraas-
Scherr-Knight (HSK) variational perturbation method
was also applied for the first time to that state, furnish-
ing a second-order and a third-order energy coefficient
of —0.078788 and 0.003631, respectively.

The HSK variational perturbation method appears
to be very well suited for atomic calculations provided
that an electronic computer is available. The results are

TasLE I. Contributions to the perturbation energy coefficients (A2-\5) for the state (2p)23P.

Contributions Contributions Contributions Contributions
Order to A2 to A3 to Ay to As

3 —0.0744773381 0.0013129555 0.0257976480 —0.0010557398

7 —0.0040427166 0.0009572751 —0.0239069249 0.0015435888
13 —0.0002268368 0.0012021496 —0.0021170919 —0.0016508836
22 —0.0000340131 0.0001651968 —0.0003597004 0.0003557950
34 —0.0000063734 0.0000319708 —0.0000726308 0.0000963727
50 —0.0000014801 0.0000074218 —0.0000171772 0.0000235745
70 —0.0000004035 0.0000020003 —0.0000046640 0.0000065446
95 —0.0000001253 0.0000006093 —0.0000014133 0.0000020143
125 —0.0000000433 0.0000002059 —0.0000004710 0.0000006734
161 —0.0000000164 0.0000000761 —0.0000001707 0.0000002425
203 —0.0000000067 0.0000000303 —0.0000000667 0.0000000934
252 —0.0000000029 0.0000000129 —0.0000000278 0.0000000384

* Supported by Aeronautical Research Laboratory, OAR, and Fridtjof Nansen’s Fund for Advancement of Science.
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