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Excitation of Molecular Rotation by Slow Electrons*f

K. TAKAYANAGrf. AND S. GELTMAN

Joint Institute for Laboratory Astrophysics, ) Boulder, Colorado

(Received 28 December 1964)

The cross sections for the rotational excitation of H2 and N2 by slow electrons are evaluated in a distorted-
wave approximation with the use of a simple model potential. The changes from the previous Born-approxi-
mation results are quite pronounced, particularly for H~.

I. INTRODUCTION Here and in the following, atomic units are used. Thus
distances are measured in units of Bohr radii and energy
is measured in units of 27.2 eV. r is the position vector
of the scattered electron relative to the center of mass of
the molecule and s is the unit vector along the inter-
nuclear axis of the molecule (Fig. 1). 14 is the electric-
dipole moment of the molecule. For homonuclear
diatomic molecules, we have 14=0. Q is the electric-
quadrupole moment defined by

q XCITATION of molecular rotation and vibration
~ are among the most important energy-loss mech-

anisms for slow electrons in molecular gases. Thus the
study of these excitation processes is closely related to
the study of discharges in gases, the effects of radiation
on matter, upper-atmosphere physics, and other prob-
lems involving slow electrons.

In this paper, the rotational excitation of homonuclear
diatomic molecules is studied wave mechanically.
Morse' and Carson' studied the rotational excitation
through the short-range electrostatic interaction which
arises when the incident electron approaches the elec-
tron cloud of the molecule. Later, Gerjuoy and Stein' put
emphasis on an interaction with longer range. Molecules
are regarded in their treatment as point quadrupoles.
For H& and N2, they get effective cross sections which
are not inconsistent with the existing experimental data.
Stabler' made a similar calculation for the molecular
ion, taking into account the distortion of the scattered-
electron wave function by the Coulomb potential, and
this was further considered by Sampson. ' Dalgarno and
Moffett' made a correction to Gerjuoy and Stein's result
by introducing the nonspherical part of the polarization
interaction.

Generally, the asymptotic form of the interaction
between a diatomic molecule and an electron is given
approximately by

(2)Q= g(r')r"Ps(s r')dr',

where q(r') is the charge distribution in the molecule.
0. and 0,' are related to nil and n~, which are the polar-
izabilities of the molecule along directions parallel and
perpendicular to its axis, respectively, by

3 (nil+ 2n4) &

A =3 All —Ag

I'& and I"& are the Legendre polynomials. Gerjuoy and
Stein used the Q term only. Dalgarno and Moffett used
the n' term as well as the Q term.

All previous work is based on the Born approximation.
The validity of the approximation was discussed by
Gerjuoy and Stein. They found that in the transition
integral of the Born approximation the main contribu-
tion comes from the region corresponding to large
separation between the electron and the molecule. If the
distant collisions give the main contribution to the
transition, the distortion of the electron wave function
from a plane wave will have little eGect on the resulting
cross section. However, a more detailed analysis of the
Born calculation shows~ that the main contribution
actually comes from the combination of incident p wave

n p n' Q)
v(s, r) = — ——Pt(s"" r) +—~P3(s r). —(I)'

2r r' 2r4 rsj
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shorter than the period of molecular rotation. Therefore,
we fix the molecular orientation in calculating the
elastic scattering cross section, and then average over all
orientations.

The direction of the incident electron beam will be
taken as Z direction. The orientation of the molecular
axis will be speci6ed by the polar angles Op, (pp. The
electronic wave function arising from the lpth incident
partial wave will be expanded as

and outgoing p wave (except for just above threshold
where the incident d wave combined with the outgoing
s wave gives the main contribution). Since s and p waves
should be distorted considerably by the static field of the
target molecule in the energy region of interest, the
effect of distortion could be important. In this paper, we

present a distorted-wave-type calculation for the hydro-
gen and nitrogen molecules. As wi11 be seen later, the
resulting cross sections are considerably different from
the results of the Born approximation.

The asymptotic form (1) for the interaction cannot be
used for small values of r. The actual interaction will not
have singularities such as r ' or r ' at the center of mass,
but rather Coulomb singularities at the nuclei. Also the
possibility of exchange of incident and molecular elec-
trons will affect the interaction and give it a nonlocal
character at small r. Vnfortunately, we do not know the
correct short-range interaction. In this paper, therefore,
we simply cutoff the asymptotic form (1) at r= R, as
follows:

P„(r)=Pr f„(lm-lk,r)V(lml8&).

V(lm l 8p) is the normalized spherical harmonic function.
It should be noted that the radial function f~, (lmlk, r)
depends on Op and pp parametrically. By substituting
the wave function (6) into the Schrodinger equation, it
is found that these radial functions must satisfy a set of
coupled equations of the following form:

V(s, r) =—
d' l(l+1)—2(lml V

l
lm)+k'f (, (lm lk, r)—

l

—+ lPz(s r), r&& (5a) dr' r'
2R' (Rz 284)

n Q n')
lPz(s r), r) R. (5b)

2r4 rz 2r4I

For H~, we adopt the following values for the parameters:

a=5.328 (Ref. 8),
a'=1.250 (Ref. 8),
Q=0.464 (Ref. 9),

and for N~,
a= 12.00 (Ref. 10),
n'= 4.20 (Ref. 10),
Q= —1.10 (Ref. 11).

The negative sign of Q for nitrogen was adopted in

accordance with the theoretical calculation of Scherr. "
Preliminary calculations showed that the rotational

excitation cross section depends rather sensitively on
the value chosen for the cutoff distance R. To choose a
reasonable value of R, we 6rst studied the elastic
scattering resulting from the same potential function.

By comparing the calculated elastic cross section with
the observed data, we can select a more or less reason-

able value of R.
II. ELASTIC SCATTERING

Even if the incident energy is as low as 10 ' atomic
units, which corresponds roughly to the mean thermal

energy at room temperature, the collision time is much

8 E. Ishiguro, T. Arai, M. Mizushima, and M. Kotani, Proc.
Phys. Soc. (London) A65, 178 (1952).

' W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219
(1960).' Zahlenwerte and FNectioeen, edited by H. H. Landolt and R.
Bornstein (Springer-Verlag, Berlin, 1951), Vol. I, Part 3, p. 510.

J. D. Poll, Phys. Letters 7, 32 (1963).
"C.W. Scherr, J. Chem. Phys. 23, 569 (1955).

= 2 P' (lm
l
V

l
l'm') f, (l'm'

l k,r), (7)
l'm'

where k is the wave number (k'j2 is the incident electron
energy in atomic units) and the matrix elements of the
interaction V are easily calculated to be

(lml Vll'm') = — 8„,8„„.
2r'

where

(lm l Pz (s r)
l

l'm')

Q n'—+ (lmlPz(s r) ll'm'), (8)
r' 2r'

= (4zr/5)'I' V*(2) m m'
l 8, q 0)c'(—lm, l'm') (9)

4~y'I'
c'(lm, l, 'm') =

5)
V*(lml8(p)V(2, m —m'l8y)

&& V(l'm'l8q) sin8d8dy. (10)

l(l+1)—3mz

X Pz(cos8z) . (11)
(2l+3) (2/ —1)

It should be understood that for r &R, r is replaced by R
in (lm

l
V

l
l'm'), in accordance with our potential

model (5a), (5b).

cz(lm, l'm') vanishes unless l—l'=0, or &2. The diagonal

matrix element of the interaction potential is given by

n Q n')
(l IVll )=— ——+

2r4 rz 2r4)
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If one gets a solution of (7) with the asymptotic form

fz, (lm! k,r) ~ BzzeB„oexpL —i(kr —-', lpr)]

—S(lm! lp0) expLi(kr ——,'hr)], (12) 500—

zrez ——(4pr/k')p (2lp+1) sin'rl z Q. (15)

for all possible values of lo, l, and m, then the elastic-
scattering cross section is given by

.z= (~/k')2 j
Z(2lo+1)'"

Zna l0

Xi"jS(lmjlo0) B—zz,B o][' (13)

If the nonspherical part of the potential is not too
large, one can apply perturbation theory. To the zeroth
approximation, we keep only the diagonal elements of V
[as in (11)],leading to a diagonal S matrix,

S&"(lmjlo0) =Bzz,B o exp(2irzz, o),

wllere 7/~ p is the phase shift. The cross section to this
approximation is given by

~ee

200—

! I

I

I
1

I
l

IOO -!
l

Iz
I I I

7

To the first approximation, obtained by using zero-
order f's on the right-hand side of (7), one has for the
nondiagonal elements of the 5 matrix,

0.8 LO

1 I 1 I 1 ! 1

1.2 1.4 1.6 1.8 2.0

So& (lm ! lo0) = —(4z'/k) exp(irz z„+igz,p) f"(lm
1
k,r)

0

FlG. 2. Elastic-scattering cross section for H2 for electron energy
k'/2=0. 02 and various molecular orientations as a function of
cutoff parameter.

X(imj &jlo0)f"(401k,r)dr, (16) In the case of Hs, we calculated o.,z(8p) as a function
of E for a fixed incident energy k'/2=0. 02. The result
is shown in Fig. 2. The large peak at 8=1.83 corre-
sponds to the fact that there is a discrete s level with
nearly zero energy for this value of E. In other words,
the s-wave phase shift (which does not depend on 8p) for
this energy passes through pr/2 at R—1.83. The peak
value of the cross section is found very close to the
maximum s-wave cross section 4zr/k'=314. Therefore,
the p-wave contribution is very small here. A similar
large peak appears to occur for E less than 0.8. The
sharp peaks around 2z!= 1.0 are due to the p-wave phase
shift passing through pr/2. Since p-wave scattering de-
pends on the molecular orientation, we get separate
peaks for diferent Op.

For hydrogen and nitrogen, the total scattering cross
sections were measured many years ago." In the low-
energy region under consideration, this is nearly the
same as the elastic-scattering cross section. For nitro-
gen, the cross section has a sharp peak with a maximum
of nearly 100 a. u. in the 2—3-eV region, while for
hydrogen a much broader peak with a maximum of
about 50 a. u. was found in the 1—4-eV region. Both
cross sections rise again at lower energies. However,
according to a recent analysis of swarm experiments

where the zero-order f~(lm
j k,r) is the solution of

d' l(l+1)—2(lmj Vjlm)+k' f~(lmj k r)=0, (17)
f

with the conditions

f~(lmjk, O) =0,

f~(lmjk, r) e sin(kr ——,'hr+rlz ).

Preliminary calculations showed that the nondiagonal
5-matrix elements were fairly small in our problem.
Thus the actual calculation was done by using (15).
Later, in Figs. 4 and 5, the smallness of the nondiagonal
elements of S will be shown for a few selected values of
E. In calculating o-, j, only /o =0, 1, and 2 were taken into
account.

The cross section was calcuIated for 8o ——0, pr/4, and
pr/2. We have assumed that

zr el (80) = rre I+o,Ps (cos8p) +04P4 (cos80)'
gives a good approximation to the Oo dependence of the
cross section. Then the averaged cross section is given
by "E.Briiche, Ann. Physik 82, 912 (1927); C. Ramsauer and R.

o', z= (1/15)Lzrez(0)+Szrez(pr/4)+6oez(7r/2)]. (20) Kollath, ibid. 4, 91 (1930);C. E.Normand, Phys. 35, 1217 (1930).
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within a few percent. Thus, at least in this case, the
elastic cross section based on the spherically averaged
potential is not very diferent from the averaged cross
section based on a nonspherical potential.

For N2, the mean cross section a, ~ as a function of R
at k'/2=0. 01 is given in Fig. 6. As in the case of hydro-

gen, the steep rises for E&1 8 and R(1,2 are due to the
s wave and the sharp peak at 8=1.43 is due to the p
wave. In this case, the three Hs values give p-wave peaks
very close to one another, so that the resultant 0.,j does
not have well-separated peaks, The corresponding phase
shifts are shown in Fig. 7. Here again, we have to omit
the range of E. where the low-energy cross section be-

9(o 2—
I

I

I P-VIAVE PHASE SHiFTS

I e, =o——"4
l v/2

l

1

150—

p
I I

0.8 I.O 1.2

I

1.4

~geeI
I

I.6 I.8 2.0

I

2.2 2.4

100—

50—

Pro. 7. s- and p-wave phase shifts for N~ for electron energy
k'j2=0.01 as a function of cutoff parameter.

by

o(J—+ J')
k' 1

P 2++1 sr 'im'
OQ

Q(2l+1)T'si'e'"' f(l'I', r)
kk' 0

X(l'm''M'12V„, ~lOJM) f(lIk, r)dr, (22)

300

. 1

1.0

1

1.2 1,6

I

1.8

I

2.0

FzG. 6. Average elastic-scattering cross section for N~ for electron
energy k'/2=0. 01 as a function of cutoff parameter.

200

comes around 100 a. u. or more. Thus, by studying
several values of E within the two minimum regions in
Fig. 6, we found that J'=1.75—1.8 is the best choice.
The cross section o, ~ as a function of k'/2 is shown in

Fig. 8 for a few values of K Again, the crudeness of our
potential does not allow us a very good fit with the
experimental data.

100

1

0.1

I

0.2 0.3

III. ROTATIONAL EXCITATION
~ ~ FIG. 8. Average elastic-scattering cross-section curves for N~ fox

a number of cutog radii. &he cross-hatching corresponds to the
section for the rotational transition J~ J' is given experimental data.
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TasLz I. Calculated rotational excitation cross sections for H~, given in atomic units (uP).

k'
0 —+2

R=1.2 R=1.3
1~3

R=1.2 R=1.3

J~ J+2
2 —+4

R=1.2 R=1.3
3-+5

R=1.2 R=1.3
0.004
0.007
0.01
0.015
0.03
0.1
0.2
0.3
0,4
0.6
1.0
2.0
3.0

0.1067
~ ~ ~

0.2565
~ ~ ~

0.5249
1.795
4.538
6.721
7.184
5,328
2.286
0.6581
0.3683

0.1027
~ ~ ~

0.2417
~ ~ ~

0.4420
1.137
2.276
3.087
3.329
2.786
1.464
0.4910
0.2785

~ ~ ~

0.0726
0.1188

~ ~ ~

0.2920
1.049

~ ~ ~

4.009
4.301
3.198
1.373
0.3949
0.2210

~ ~ ~

0.0689
0.1122

~ ~ ~

0.2473
0.6658

~ ~ ~

1.842
1.992
1.671
0.8792
0.2947
0.1671

~ ~ ~

0.0669
~ ~ ~

0.2305
0.8749

3.415

1.178

~ ~ ~

0.0627
~ 0 ~

0.1963
0.5572

~ ~ ~

1.570

~ ~ ~

0.7540

~ ~ ~

0.0176
0.0860
0.1949
0.7875

3.142

1.092

~ ~ ~

0.0160
0.0793
0.1669
0.5032

~ ~ ~

1.445

0.6985

where k and k' are the initial and the anal electron wave
numbers, V„,is the nonspherical part of the potential
given in (5), and JM and &n are the quantum numbers
of molecular rotation and orbital angular momentum,
respectively. The transition matrix element of the
potential is given by

(Prrs'J'M'I 2V„,
I
l OJ3f)

with the conditions

f(lI k,0) =0,

f(l ~
k,r) ~ sin(kr ——,'lrr+ri() .

For the transition J~ J+2,
Ak'= k' —k"= 12(-'J+1)B

(25)

(26)

&Q
(1'rIs'J le IP, (g. r.) Il 0J~)

Ers

where 8 is the rotational constant of the molecule in
atomic units, and

rQ= —2I —+ — c'(J3E,J'M')c'(Pm', 10) . (23)
2r4

8=2.70X10 4 for H2
=9.11)&10—' for N2. (2&)

d' l(l+1)—2V, +k' f(lIk)r)=0
dr' r'

(24)

The distorted-wave f's are the solution of the radial
equations of the form

The resulting rotational excitation cross sections for
J=O —+ J=2 are shown in Figs. 9 and 10 for hydrogen
and nitrogen, respectively. In both cases the distorted-
wave calculation gives a cross section larger than the
Dalgarno-Moffett approximation in the intermediate
energy region and a much smaller result in the higher
energy region. The cross sections for transitions be-
tween higher J-values behave qualitatively in the same

way as does the cross section for J=O —+ J=2. Nu-
merical results for the effective cross section are given in
Tables I and II.

C3

OI—

N

O

b

0
I

lo-'

k (ATOMK: UNITS)

Fxo. 9. Comparison of present results for the rotational excita-
tion (0 —+ 2) of H2 by electron impact with the curves of Gerjuoy-
Stein and Dalgarno-MoBett (k'= 1 corresponds to 13.6 eV).

IV. DISCUSSION OF RESULTS

The qualitative difference between the cross section
for hydrogen and that for nitrogen is due to Q having
opposite signs. For hydrogen, the Q and n' terms in (1)
are additive, but for nitrogen, they tend to cancel one
another. This makes the distorted-wave cross section
for hydrogen much larger than the Gerjuoy-Stein result
and the cross section for nitrogen less than that of
Ger juoy-Stein.

Both for hydrogen and nitrogen, the largest contribu-
tion to the cross section comes from the partial cross
section corresponding to incident p and outgoing p
waves, except in the neighborhood of threshold. For the
1th partial wave, the effective scattering potential is
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TanLE II. Calculated rotational excitation cross sections for N2, given in atomic units (ao ).

0 -+2
R =1.75 R =1.8

1 -+3
R =1.75 R =1.8

2-+4
R =1.75 R =1.8

J -+ J+2
3-+5 4 —+6 5 ~7
R =1.8 R =1.8 R =1.8

6-+8
R =1.8

8-+10 10-+12 15 —+17 20~22 25-+27
R =1.8 R =1.8 R =1.8 R =1.8 R =1.8

0.0003
0.0005
0.0007
0.001
0.0015
0.002
0.003
0.01
0.03
0.1
0.3
0.5
1.0
3.0

~ ~ ~

1.078

~ ~ ~

1.063
1.0203
1.129
1.324
0.2538
0.1151
0.0501
0.0083

~ ~ ~

1.078

~ ~ ~

1.061
1.0121
1,094
1.247
0.2924
0.1231
0.0490
0.0074

~ ~ ~

0.6212
~ ~ ~

~ ~ ~

0,6296
0.6098
0.6762
0.7944
0.1523

~ ~ ~

0.6209
~ ~ ~

~ ~ ~

0,6285
0.6049
0.6556
0.7480
0.1755
0.0738
0.0294
0.0044

~ ~ ~

0.5108
~ ~ ~

~ ~ ~

0.5327
0.5206
0.5786
0.6807
0.1306

~ ~ 0

~ ~ ~

0.5105
~ ~ ~

~ ~ ~

0.5318
0.5146
0.5611
0.6410
0.1504

~ ~ ~

0.0252
~ ~ ~

0.9643 0.9638 0.4694 0.4686 0.2503 0.2493 ~ ~ ~

0.3436
~ ~ ~

0.4518
~ ~ ~

~ ~ ~

0.4860
0.4758
0.5187
0.5933
0.1393

~ ~ ~

0.0233

~ ~ ~

0.3585
0.4107

~ ~ ~

~ ~ ~

0.4573
0.4524
0.4943
0.5662
0.1330

~ ~ ~

0.0223

~ 4 ~

0.3045
0.3763

~ ~ ~

~ ~ ~

0.4374
0,4367
0.4784
0.5486
0.1288

~ ~ ~

0.0216

~ ~ ~

0.3918
~ ~ ~

0.4219
0.4252
0,4665
0.5363
0.1259

~ ~ ~

0.0211

~ ~ ~

0.3537
~ ~ ~

0.3981
0.4092
0.4512
0.5200
0.1222

~ ~ ~

0.0205
~ ~ ~

~ ~ ~

0.3165
~ ~ ~

0.3789
0.3980
0.4411
0.5098
0.1199

~ ~ ~

0.0201

~ ~ ~

0.2050
~ ~ ~

0.3398
0.3787
0.4256
0.4952
0.1167

~ ~ ~

0.0195

~ ~ ~

0.2070
0.3013
0.3652
0.4159
0.4873
0.1150

~ ~ ~

0.0192

~ ~ ~

0.0771
0.2580
0.3538
0.4087
0.4822
0.1140

~ ~ ~

0.0191
~ ~ ~

(including the centrifugal term)

Vgff (1)= l(t+ 1)/2r n/2r, —for r) R. (28)

This potential has a maximum value of

V,rr (l) = Pl(1+1)g'/Sn

r=r = L2rr/l(l+1)]'~'.

(29)

(30)

pk'~'~'
(kk')-r y(P

~

k', r)
I, ki 0

X (&'mrs'J'M'12V. , ~
l OJM) f(l I k,r)dr (3l)

will eventually decrease toward zero as k' increases. In
the Dalgarno-Moffett formula, the nonspherical inter-
action has no cutoff, so that as energy increases, pene-
tration of the p and other higher partial waves will

cause the cross section to increase without limit as k'
increases.

In the neighborhood of threshold, the outgoing elec-
tron has a very low energy, so that only an s-wave
electron can come out of the interaction region. Only an
incident d-wave electron can become a final s-wave
electron D=O~ t'=0 forbidden in (23)g. Since the d
wave at low energy has a fairly large classical turning
radius, the main contribution to the transition integral

If the incident electron has an energy greater than this
barrier height for l=1, the p-wave function will be
fairly large in the inner region (r(r„),and the cross
section is expected to be enhanced for the energies
k'/2) V,rq (1) over the Dalgarno Moffett result, which
does not take account of the distortion effect. This is
actually the case as one can see in Figs. 9 and 10.
V f f (1) in these cases are 0.094 and 0.042 a. u. , re-
spectively, and both values for r &R. The classical
turning point occurs at a finite distance for all the
partial waves except for the s wave. As the incident
energy increases, the electron can penetrate more deeply
into the inner region, so that the cross section increases.
However, as we have cut off the interaction potential at
r=E, the transition integral

(31) comes not from the innermost region but the region
of r&E.Therefore, the cutoff of the interaction at r =R
does not affect our result very much. Furthermore, the
distortion of the low-energy s and d waves in the region
r)R is small as the phase shifts (modulo nrr) are small.
This is the reason why we find the distorted-wave cross
section in the vicinity of threshold to be very close to the
Dalgarno-Moffett result, which has no cutoff in the
potential and no distortion correction.

As a check on our numerical procedures, we set n=0
in our evaluation of the distorted waves in (24) and
allowed V„,in (22) to retain its asymptotic form all the
way into the origin. In this way we obtained the
Dalgarno-MoGett result to within 5%, which would be
the estimate of our numerical errors arising from the
numerical solution of (24), the numerical radial integral
in (22), and the truncation of the sum in (22) at l'=10.
Also, if we keep the correct o., while allowing V„,to
retain its asymptotic form into the origin, we see that
the cross section approaches the Dalgarno-Moffett re-
sult at high energies. This is a con6rmation that the
effect of distortion vanishes in the high-energy limit.

Recently, Schulz" directly measured the vibrational
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FIG. 10. Comparison of present results for the rotational excita-
tion (0-+ 2) of¹by electron impact vrith the curves of Gerjuoy-
Stein and Dalgarno-MoBett (k'= 1 corresponds to 13.6 eV).

"G.J. Schulz, Phys. Rev. 135, A988 (1964).
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excitation cross section of H2 by slow electron impact.
An analysis of swarm experiments by Engelhardt and
Phelps, "using the Born approximation values for the
rotational excitation cross section, yielded a synthesized
vibrational excitation cross section for H2 which was a
factor of 2 larger than Schulz's for electron energies
&3 eV. Our present results, while still containing major
uncertainties, indicate that one must question both the
magnitude and shape of the rotational excitation cross
sections based upon the Born approximation, which
have been used in the swarm experiment analysis. It is

hoped that calculations with a more realistic interaction
potential can be done in the future.
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Perturbation-Theory Expansions Through 21st Order of the Nonrelativistic Energies
of the Two-Electron Systems (2p)' sP and (1s)' 'S~
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The Hylleraas-Scherr-Knight variational perturbation method has been applied to the two-electron
systems (2p)2 3P and (is)' 'S, carrying the calculations through to tenth-order perturbation wave functions.
Various forms of expansions for the trial wave functions have been considered, e.g., the Hylleraas form and
the Schwarz form, and numerical results are given in naturally spaced groups up to and including 252-term
expansions. Estimates of the correct perturbation-energy coeKcients through 21st order are tabulated, and
the resulting nonrelativistic energies for Z =2, 3, , 10, are given with ten signi6cant figures. To complete
the tables the energies of the two states for H have also been calculated variationally, using the same ex-
pansions of trial wave functions as in the perturbation treatment, and for the (2p)' 3P state an extrapolated
energy value of —0.2507097 measured in units of Z'Rh has been obtained.

1. INTRODUCTION

'HE (2P)'sP state of the negative hydrogen ion
has already been found to be stable. ' Using a

22-term trial wave function, Wold obtained an energy
value of —0.250421', measured in units of Z'Rh.

In a preliminary investigation for bound states of the
negative hydrogen ion' an improved 22-parameter wave
function has been set up yielding an energy of

—0.250618 for H—.In the same paper the Hylleraas-
Scherr-Knight (HSK) variational perturbation method
was also applied for the 6rst time to that state, furnish-

ing a second-order and a third-order energy coefBcient
of —0.078288 and 0.003631, respectively.

The HSK variational perturbation method appears
to be very well suited for atomic calculations provided
that an electronic computer is available. The results are

TABI.E I. Contributions to the perturbation energy coetiicients (X&—X&) for the state (2p)"P.

Order

3
7

13
22
34
50
70
95

125
161
203
252

Contributions
to )~

—0.0744773381—0.0040427166—0.0002268368—0.0000340131—0.0000063734—0.0000014801—0.0000004035—0.0000001253—0.0000000433—0.0000000164—0.0000000067—0.0000000029

Contributions
to Xg

0.0013129555
0.0009572751
0.0012021496
0.0001651968
0.0000319708
0.0000074218
0.0000020003
0.0000006093
0.0000002059
0.0000000761
0.0000000303
0.0000000129

Contributions
to X4

0.0257976480—0.0239069249—0.0021170919—0.0003597004—0.0000726308—0.0000171772—0.0000046640—0.0000014133—0.0000004710—0.0000001707—0.0000000667—0.0000000278

Contributions
to Xg

0 0010557398
0.0015435888—0.0016508836
0.0003557950
0.0000963727
0.0000235745
0.0000065446
0.0000020143
0.0000006734
0.0000002425
0.0000000934
0.0000000384
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