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APPENDIX

In this appendix we derive the condition for a self-
consistent reciprocal bootstrap for the case of several
bound and resonant states. In this case the solutions
for E and D can be put into the form

are all given by

(A3)

and the condition for self-consistency arises when Eqs.
(A1) and (A2) are substituted into Eq. (A3). The
result is

X '=Pp A p) p', (A4)
(A1) or that the subcrossing matrix connecting all the reso-

nant and bound states have a +1 eigenvalue so that
Dpp((d) =ON Io (A2) det(A p

—8 p)=0. (A5)

where. only states which are either resonant or bound
are considered and 0 represents a resonance or a
bound-state energy depending upon whether it is above
or below threshold. This is now the only distinction
made between a resonance and a bound state. The 'A '

The X
' which correspond to the coupling constants

and reduced widths then form the eigenvector corre-
sponding to the +1 eigenvalue. Equation (12) is a
special case of Eq. (A5) for a system of one bound and
one resonant state.
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The Lehmann-Symanzik-Zimmermann (LSZ) asymptotic condition on the V, E, and 8 fields is shown to
be equivalent to the usual prescription for constructing scattering states as solutions of the eigenvalue equa-
tion. The reduction formula relating the scattering amplitudes to the 7 functions is given. Then the coupled
equations for the r functions appropriate to the V-Ee sector are written down and solved algebraically by
transforming to momentum space. This approach is compared with the straightforward solution of the
eigenvalue problem and the dispersion treatment found in the literature. It is concluded that LSZ formalism
elucidates the basic structure of the model in the most natural way, giving rise to considerable mathematical
simpli6cation.

I. INTRODUCTION
'

N the formal investigation of 6eld theory, the
axiomatic approach of Lehmann, Symanzik, and

Zimmermann' (LSZ) has played a major role. The
LSZ asymptotic condition, expressing the weak con-
vergence of the Heisenberg fields to the "in" and "out"
fields, allows an interpretation of field theory in terms
of physical particles. Using this condition, a reduction
formula can be obtained relating the S-matrix elements
for processes involving the physical particles to the
"r functions. "' A coupled set of integrodiGerential
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equations can then be derived for these functions from
the field equations and commutation relations. '

In this paper, the LSZ formalism is investigated as a
method of calculation in a solvable field theory, the Lee
model. 4 It will be shown that the asymptotic condition
can be understood in terms of the usual prescription for
constructing scattering states. Then, a calculation of the
lowest sector of the model, using the r functions, will
demonstrate that the structure of the theory is ex-
pressed in a most basic form.

The Lee model describes the S-wave interaction
between two fermions, the V and S particles, and rela-
tivistic, spin-zero bosons, the 0 particles. Spin and recoil
are neglected for the fermions. In Sec. II, we begin by
showing that the asymptotic conditions on the three
6elds (V, 1V, and e) are equivalent to formal solutions

'P. T. Matthews and A. Salam, Proc. Roy. Soc. (London)
A221, 128 (1953).

T. D. Lee, Phys. Rev. 95, 1329 (1954).G. Kallen and W. Pauli,
Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 30, No. 7
(1955).
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of the eigenvalue equations for the scattering states.
Then the reduction formula for the general S-matrix
element is given. Because there is no interaction
between the 0 particles, the general r function contains
only one time. The Fourier transform of the 7 function
is introduced, and it is shown that this function, when
evaluated on the energy shell, ' is just a T-matrix ele-
ment with an additional second-order pole.

Section III deals with the erst nontrivial sector of the
Lee model in which there is V-particle renormalization
and E-0 scattering. The equations for the appropriate
r functions are written down and solved by transform-
ming into momentum space. By studying the analytic
structure of the V propagator, the renormalization con-
stants are obtained. The S-matrix element for X-8
scattering is then computed. In the literature, this
sector has been solved both by solving the eigenvalue
equations4 and by using a dispersion treatment. ' We
shall see that the LSZ formalism seems to be the most
natural method of solving the model.

when n=

~!—(k!2+~2)1/2

in; n&) is a solution of the equation

Hier; n+)=E(cr,n) in; n+),
where

n

E(n, n) =nz.+P rp„',
v=1

(2)

with the boundary condition that the state in, n+& in
the Schrodinger picture represents a plane wave plus
an incoming or outgoing wave in the limit t —+ W.
f(~,&o;) is a good function' of or, centered about the

II. THE ASYMPTOTIC CONDITION AND
REDUCTION FORMULA

Ke investigate the Lee model in which there is one
stable V particle and all integrals are 6nite. The inter-
action is V~ X+8 so that the vacuum, one-particle
1V state, and e-particle 0 state are eigenstates of both
II and H0. The most general state, describing n 0
particles scattering from a V or X particle, can be
written

ll~ n~)=Z» .. ",~-f(~r', ~r) "
Xf(Cp, rp ) inz; rpr, ' ',M &) (1)

=Q(. ) F(n', n) irr; n+),
where

point co =co;, satisfying the condition

g„~ f*(rod",rp, )f(rps", rpr, ') = 0 when k~ k'. (3)
k= k'.

Let us construct the scattering state,

ll o, n, ka)=gg, f((u', cp) P(. ) F(n', n)ln, n, k'a), (4)

with an additional 0 particle having an energy
rp= (k'+p')'lz. This state is a solution of the equation

Hlln;n, k+)=Jr f(rp', rp) Q( ) F(n', n)

XLE(n,n)+~']i~; n, k'a& (o)

with the boundary condition stated above. Writing
H=Hp+Hr, (5) becomes

Qu f(~' rp) Q ( ) F(n', n) i Hp —E(o.,n) —(o']
l a, n, k'+)

= —Qs f(o',rp) P(„.) F(n', n)Hrlrr; n, k'a) . (6)

Thus, the state lln,
' n, k+) must satisfy the integral

equation

ll~; n, k+&=ll~; n, k&o—Es f(~',~) 2(-) F(n', n)

X i Hp —E(~,n) —~'+ze]—'Hr in, n, k'a), (7)

where limit e ~0+ is understood.

lln, n, k)p=—+1, f(rd', pp) g (. ) f(n', n) l
o. , nk'& p

is a solution of the equation

2' f(~'~) E(-) F(n'n)
X (Hp —E(n,n) —rp') in; n, k')p ——0. (8)

Since the state lln., n+) was a wave packet constructed
from eigenstates of H, lrr;n, k')p will not be simply
a&tier; n). Using the relation Paqt, Hp]= —cp'ar. t, we

can write the solution to (8) as

lin, n, k)p=gs f(rp', (o) P(. ) F(n', n)

XLap.t+ (Hp —E(n,n) —rp'aze) 'a„.tHr]
X l~;n~&.

The state llrr, n, k)p represents a superposition of plane-
wave states since the second term on the right-hand
side of (9) cancels the incoming or outgoing wave con-
tained in the state la; n+). The solution to the integral
equation (7) is

lln', n, k+)=ps f(rp', &p) g ( ) F(n', n)

X {aA. t —(H—E(a,n) —(u'+is) —'

X i Hr, aj. t]) i n; n+ ) . (10)

This solution can be verified by substituting (10) and

(9) into (7) and obtaining an identity, using the opera-
tor relation

'Fourier transform variable set equal to the initial or final
energy of the system.' M. L. Goldberger and S. B. Trieman, Phys. Rev. 113, 1663
(1959).P. De Celles and G. Feldman, Nucl. Phys. 14, 51'E {1960).' A. good function is one which is everywhere differentiable any
number of times, such that it and ail its derivatives are O(~ a

~
~l,

as [g[ -+~, for aG X.

1—————8——
A+8 A A A+8

U the state llu, n, k&) is written

ii.;,k~&=~t(k~)ll; n~&, (12)
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then it is clear that the operator at(k&) is the in or out
field for a 8 particle of energy c0, since the state jjn, n&)
is an arbitrary member of a complete set of states for
our system. If we take the product of this equation with
an arbitrary, fixed physical state lip; ns&) on the left,
the following expression is obtained for matrix elements
of a a'(k+):

Since

dt'e ''=—
c~te

we find by comparing with (13) that

»m Zs' f(~'~)e '" '(p ~II~"(&)Il~; n)

= (P; nil[at(ka) jjn; n) . (20)(P; nsjjat(ka) Ijn; n)
=Ps f(oi', c )(P; nsjjak. tjjtr; n)

—Qi f(oi', oi) P'(„.) F(n', n) P(„.) F*(ns',ns)

x &p; n
I L&r,a,.gin; n)/(z(p') —z(n') —~'+ie) .

(13)

Equation (20) is the statement of the LSZ asymptotic
condition satisfied by the field ast(t). The same argu-
ment holds for the fermion 6elds. Thus, we find that if
solutions to Eq. (5) with the indicated boundary con-
ditions exist, and can be expressed as (10), then the
Heisenberg fields fv(t), lt N(i), and as(t) converge
weakly to the V, X, and 8 "in" and "out" 6elds:

Thus we have a representation for matrix elements of
the in or out field in terms of matrix elements of the
Heisenberg Geld taken at time t=0. The above argu-
ment proceeds in the same manner for the fermion
fields. If the state Ijn, n&) is taken to be the vacuum,
then (10) becomes the familiar Lippman-Schwinger
equation. If jjn;n&& is taken to be the one-nucleon
state, then (10) becomes the Wick equation for meson-
nucleon scattering.

Now let us consider

lim (p; nsjje-'"-'p. t(t) jjn; n)
t-+~oo

= (p; ~III-'(~) ll~; n&,
(21)

lim ps f(cu', o~)e
—'"'(p; nsjjag, t(t)Iles, n)

= (p; nsjjat(ka) Ijrr; n) .

We have assumed that a complete set of states can be
(14) obtained by successively applying the appropriate in

or out operators on the vacuum
I 0), defined by the three

relations:

lim p/, , f(oi' oi)e '(p —
ns'jlgs, t($)jjtr,.n),

t—+~oo

where jju, n) and lip; ns) are physical scattering states
and as t(t) is the Heisenberg field. We know that

s—&s'(~) = L&s'(~),&(l)j

which has the formal solution

4v(~) Io)=o,
4~(~) lo)=0, (22)

u(ka) [0)=0.
Let us now derive the reduction formula using the

= —o~'us t+L+s t(t),&r(/)$ (15) LSZ asymptotic conditions (21). Dropping the wave-
packet notation, we obtain',

S.e = (p; ns —ln; n+ ) . (25)
t

a. t(l) = '"' t+— dl'e *-"Pa& t(e-),&r(l,')j
p

Reducing erst on the fermion "from the right, " we
obtain

S.e ——lim (P; ns —
I
e—'"'lt t (/) I

0; n+ ) . (24)

Taking the matrix element of (16) with the state [In
', n)

on the right and lip; ns) on the left, multiplying by
f(oi', cu)e '"", and summing over k', we obtain the
expression

Zs f(~'~)e '"'(p ~ll~s'(&)Il~ n)

=py, f(oi'; co)(p; nsjjag, 'jjn, n)

t

+psi f(N N)- tA e

p

X(P; ~II[ a,.t(~'),e,(f)jjj;n) . (17)

Using a time translation,

( IIL"'(~'),~.(~')3[j-; )
= e '&"'+'E& l &e'l ' (P p nsj [[as tahar]j/jn y n) .

n

I o; n~& = II ~s.'(0)
I o&

gn! i
n

II e-' "'~,'(&) Io).
Qn!

(25)

Note that the lim t +„has been interchanged with ZI, . For
this to be valid, the integrand as a function of co' and t must satisfy
certain properties. These properties are very similar to the con-
ditions under which the expression (9) is a valid solution to (8).
Recognizing that one would have to prove these properties in
order to make the above argument rigorous, we assume that
matrix elements of the Heisenberg fields are sufBciently well be-
haved that the above steps are valid.

s Henceforth, we denote energies in the state [n; I) as w. and
energies in the state [P; m) as co„'.

Since l[0; n+) is a state of n 8 particles, it is the same
as the suitably normalized bare state:



LSZ FORMALISM I N THE LEE MODEL B 999

We have used the fact that

where

ui, „t(t)e'""'=ui t(0)+D(t),

D(t) lo)=0

t.~ .'(t),D(t)3 =0

Thus, (24) becomes

S.p ——lim (P; m —let(t) l0),
where

(26)

Substituting (31) into (28), the reduction formula
becomes

S p=b p'+2mi5(m. +P p~„—mp —P pp„')
1 I

n . m

X (e!ns!) 't'(nz +P pp„—mp —Q pp ')'
1 1

XL.- (W)l =-.+.-. (32)

n a,„t(t)
nt(t) = expL —i(m +P M„)t]O„t(t) g

i i Qgz!

In the usual manner, this leads to the result

5 p=8 p'+ dt (P; m —lO '(t) g ai„t (t) l 0)
n 1

f d n n

Xl i +m—+Q pp„exp) i(m—+P p~„)tj, (27)
dt 1

where
8„p'= 8 S„p.

J

Reducing "from the left, "we obtain the full reduction
formula

Therefore, the Fourier transforms of the v- functions,
when evaluated on the energy shell, are just the T-
matrix elements with an additional second-order pole.
It can also be shown that the coefficients in the expan-
sion of the state vector can be obtained from the 7

functions. Thus, the problem of finding all the possible
scattering amplitudes reduces to solving the Matthews-
Salam equations' for the ~ functions. Now, we give a
brief review of the Lee model.

The renormalized Hamiltonian describing the system
of t/', E, and 0 particles is

NivZOv Ov+VitN4'N~4'N

(e!m!)"'

n

dt expLi(mp+g a)„')t'$
l

u(a)) pt((a)
+g OV O'N Z et+ON O'V 2

p (2pi)'t' (2pi)'&'
(33)

XDp(t')r. p(t', t)D *(t) expl —i(nz +P pp„)t], (28)
where &o is (k'+ti')'t2 and ti is the mass of a particle;
my, no~ are the masses of the V and X particles; bnzy,
Z are the mass and wave function renormalization con-
stants, and g is the renormalized coupling constant. The
summation is used for convenience. e(pi) is the cutoff
function and is chosen such that all integrals in the
tho 'lib 6't. I rd t h tbl V t l,1 1
we insist that nzv(mN+p. The interaction allows a V
particle to emit a 0 and become and N, or the X particle
can absorb a 8 and become a t/'.

The commutation relations are

fp. (p=~ z—m.—x a„)
dt

is the so-called r function. By a time translation,

tn 'n

T p(g. , ii
——&ol rLOp(s)II ~,„,(s)O.'(0) H ~,„t(0)]

I 0)
1 1

fZ' 'Ov, Z' 'Ov )= (ON, ON ) = l,
(34)= r-p(s), (3o)

1
„p(W)=-dse' '7. (s) ('(d/«)-~-)O (t) =g Z. (I(-)/(2-) )O.(t)"t(t),

(35b)so that

where s= t' —t. Thus, the most general r function in the
Lee model is a function of n+m energies and one time.

From 33, the field equations are

of the r functions,
It is convenient to introduce the Fourier transforms

(where mp ——nzv+5mv), (35a)

r p(s)= dWe '~'v" p(W—) .
27r—

(31) (i(d/«) — )~ (t)=g(N( )/(2 )'")O '(t)O (t) .
(35c)
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There are two operators which commute with H:
Qi=Zfvtg'v+PNtgie= total number of fermions,

Q2=Zgv'4v+Q) &a &)e

= total number of V particles+0 particles. (36)

Thus the model breaks up into sectors designated by
the integer eigenvalues of Qi and Q2. The first three
sectors are trivial since the physical vacuum, one-
particle E state, and one-particle 0 states are the same
as the corresponding bare states. The erst nontrivial
sector is spanned by the physical V-particle state and
the g-8 scattering states. One proceeds to each of the
higher sectors by adding 8 particles, one at a time.

III. THE V-NB SECTOR (q) ——I; q.)=1)

The physical V-particle state and the N-0 scattering
states form a complete set for this sector. There are four
7 functions approprate to this sector. In momentum
space, these correspond to the V propagator, the V-i'
vertex, and the Green's function for Ã-8 scattering. The
r functions are

r'(s) = &0 I TL4 v(s)4 v'(o) j I o&, (37a)

r'(sR) = ((2~)'"/u(~))(0l TL4iv(s)~) (s)4'v'j
l o& (37b)

r'(s; cd) = ((2cp)"'/u(cp) )(0
~
T['Pv(s)P~ta) t))i~ 0), (37c)

r4(s; p),cp') = ((4cpcp')ii2/u(cd)u(cp'))

X(0~ TPP~(s)ae(s)fietcJe. t]~0&, (37d)

Since r2(0; cp) = rp(0; cp) =0, (38b) and (38c) give

r'(s; cp) = r'(s; cp) .

An alternate equation for r'(s; cp,cp') is

(39)

(4(d/ds) —m~ cs) )r—(s; cp)cp )
= i(2p)/u'(cp) )4e +gr'(s; cp) .

Interchanging cp with cp' and using (39),

r (s;cp)cp')=r (s) cp')cp)

since

r4(0; cp,cp') = r4(0; cp', cp) = (2cd/u2(cp) )c)ee .

(40)

(W mme cd)—r"'(W—; cp) =gr'(W),

(W mN cd)—r4(W—; cp,cp')

(41b)

f'))s)ss+gr" (W; cs)') . (41c)
u'(cp)

We see that (38a) and (38b) form a coupled set. of
equations (A) for r'(s) and r'(s; cp). Since r'(s; cp) was
expressed in terms of r'(s; cd), and r4(s; cp,cp') was ex-
pressed in terms of r'(s; cp'), the entire sector is solved
when we find a solution to the system (A). This prop-
erty of the Matthews-Salam equations will persist in
the higher sectors.

Transforming (38) into momentum space,

1 g u'(cp)
(W—mp)r"'(W) =—+—Q r'(W; p)), (41a)

Z Z & 2Q)

00

r" (W; cp,cp') =— ds e'~'r (s; cp,cd') .

and their Fourier transforms are

(37e)

From (41b),
r"'(W)

7'(W; cp) =g—
(W—

mdiv
—cs)+ee)

(43)r"'(W)=Z '(W —mp —f(W)$ '
where

where lim, p+ is understood. Substituting (42) into

From (34) arid (35), the Matthews-Salam equations
are

(A)

Z——SSp r $
)ds )

i g u'(cd)
=—c) (s)+—P r'(s; cp),

Z Z & 2~

t ci

l
z zszs ) '(s; ) = ) '(s),

kds

(
cf

Z
—SZN —co r $) Go =fr s )
ds

(
cf —8$~ M r $) (d)M
ds i

(38a)

(38c)

g' u'(cp) 1
f(W) =

Z»cp (W mme p)+ee)— —

and the sector has been solved.
To obtain the renormalization constants Z and 8m~,

the analytic structure of the V propagator, r'(W), is
studied. Using the definition (37e), and inserting a
complete set of intermediate states, we obtain

dse' 'E I(014v(s) I V& I'

+2 I(0I~.() I

~.~-&l'0 (45)

Using a time translation in the integral and the asymp-
totic condition on the V field, (45) can be written in the
form

=i See +gr (s; csz)') . (38d)
u'(cd)

(46)
I&oil, l,ie &I'

r)(W) = +Z
(W mv+i e) e (W —m~ cp+—ie)—
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Thus, 2"-'(W) has a simple pole at the physical mass of
the V particle, with a residue equal to +1. insisting
that the denominator in (43) vanish at W=mp. ,

f(mz )= —8mz .
This gives the mass renormalization constant

u'((u)g2 1
bmz ————P

Z & 2Q) (mz" —m 111
—cv)

(47)

(48)

Setting the residue equal to 1, we obtain

u'((u) 1
Z=1—g' P

2(d (mz mz—z —M)
(49)

X (51)
(my —m~ (d) (W—m—11' M+—ie)

Z is restricted to lie between 0 and 1, so the coupling
constant g will lie between 0 and some critical value.

N-0 Scattering

The reduction formula for Ã-g scattering is, from
(32)

S&2 =4k + 2zri8 ((u —(a') (u ((o)u ((o')/(4axu') zlz)

X (~—~')'r"'(W; ~,~')
~
~ +„. (52)

From (41c), (42), (50), and (52)

I co Q co

Skit;~ = 8z1 +2zrz6(G& —
Gd )

(4~~ )1/2

(53)
g

(mz —m111—(a) L1—P ((o+mzz) j
The four v- functions are

"'( )=( — v) 'L —p( )3 ', (54a)

'(W2; (o) = '(W2; cv) =g (W—mlz —cu) '
X (W—mz)-'I 1—P(W))-', (54b)

24(W; cv,or') = (2(o/u2(o)) )81z (W—mz —(o) '

+g'(W —mal —cu) '(W —
mz11 —a)')—'

X (W—m;)-'$1 —p(W)$-1, (54c)

Substituting (48) and (49) into (43), we obtain

r"'(W) = (W—mz+ie) 'L1—P(W)$
—' (50)

where
u'(10)

P(W) =g'(W mv) —Z
2'

where

g2

p(W+mN) = (mz —mN —W)
4x'

oo u2 (~) (~2 ~2) 1/2d~

(55)
(mz —mal —(o)'((u —W—ze)

transforming to a continuous space.
In the literature, this sector was erst solved by 6nding

solutions to the eigenvalue equations for the V-particle
state and the S-0 scattering states. 4 In this approach,
an integral equation arises in the E-0 problem, but the
k.ernel is separable and the equation reduces to an
algebraic relation. More recently, a dispersion treatment
has been given for the X-0 amplitude and the problem
of finding the renormalization constants. ' From this
approach one salves a Low or Omnes type singular
integral equation.

IV. CONCLUDING REMARKS

We have shown in Sec. II that the LSZ asymptotic
conditions on the V, S, and 8 6elds are equivalent to
the statement that scattering states can be constructed
from the eigenvalue equation in the usual manner. The
reduction formula was derived giving the relation
between the Fourier transform of the r functions, when
evaluated on the energy shell, and the conventional
T-matrix elements. Since there is no interaction between
0 particles, the most general v- function contains only
one time variable.

The solution to the V-XH sector, given in Sec. III,
clearly demonstrates the advantage in using the LSZ
formalism as a calculational approach. The structure
of the Matthews-Salam equations is such that the
solution to one algebraic equation (or integral equation
in the higher sectors) solves the entire sector. Also, the
relations between r functions and the symmetry prop-
erties of these functions under interchange of variables
follow immediately from the equations. Thus, it appears
that the v-function approach elucidates the basic struc-
ture of the model in the most natural way, thereby
simplyfying the mathematics considerably. This will

become obvious in a forthcoming article when the solu-

tion to the V-0 sector is presented.
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