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A four-pion formalism is set up through a semirelativistic Schrodinger equation with pairwise 21-—2I- inter-
actions in the p state. Two kinds of interaction with factorable kernels, both of which reproduce the mass
and width of the p meson, are considered: (a) an intrinsically attractive interaction which has a very short
range and (b) a long-range interaction which is repulsive at low energies but becomes attractive at high
enough energies. The four-pion states of T=0 are analyzed in terms of spatial and isospin functions of appro-
priate symmetries, and these are used to examine the spin-parity states of 0 + and 1++, which are the only
kr states of T=O depending on x-m. interation in odd-l states, via Bose statistics. By the assumption of
factorable kernels, these equations are exactly reducible to "equivalent three-body equations. "The solutions
of these equations, which can be obtained under certain reasonable approximations (discussed in the text),
show that the results are incompatible with a bound pseudoscalar state of T=0, so that the q meson cannot
be understood on this model. The model also rules out an axial-vector state of T=0, bound or resonant.
However, the model predicts a resonant-pseudoscalar state at a mass very close to that ofX' (960 MeV), and
a second one at about 1.4 BeV, only when the m —~ interaction is of type b, but not if it is of type a. Certain
other implications of a type b interaction are discussed brieQy.

1. INTRODUCTION

' I" the g meson is looked upon as a composite state
~ - made up entirely of pions, one would need at least
four of them to build up the quantum numbers 0 +,
T=O appropriate to its structure. Though the rela-
tively low mass of tt (m, =550 MeV) makes it ener-
getically impossible for it to decay into four pions
(4m =560 MeV), it is interesting to study the possi-
bilities of understanding this particle as, say, a bound
state of four pions, in much the same way as co was first
looked upon as a resonant state of three pions. ' One
feature common to both co and g concerns the effect of
Bose statistics which prevents x—x interaction in even-l
states from producing their respective quantum
numbers. As for odd-I states, the dominant contribution
is of course expected from /=1. Thus if, ignoring the
effects of other channels, co and g mesons are looked
upon as 3z and 4x states, respectively, they would
provide rather clean examples of the effects of p-wave

interaction. More specifically, the quantum
numbers of these particles, so to say, "saturate" the
p-wave x~ interaction in 3s. and 4~ systems.

Analogous arguments may be extended to at least
two other particles. The P meson at 1020 MeV, with
its quantum numbers 1,T=O, should admit of a 3x
analysis in terms of p-wave interaction alone, so far as
the p+n channel is relevant to its structure. "A more
interesting case is provided by the recently discovered4
X' resonance at 960 MeV, whose quantum numbers
are believed to be either T=0 with 0 + or T= 1 with

' G. F. Chew, Phys. Rev. Letters 4, 142 (1960).
'The present experimental limits on the p+2l- decay mode of

p are 35&20% (Ref. 3).
3P. L. Connolly, E. L. Hart, K. W. Lai, G. London, G. C.

Moneti et a/. , Phys. Rev. Letters 10, 371 (1963); see also, Y.
Nikitin; Proceedings of the Dubna Conference on High Energy
Physics, 1964 (to be published).

4 G. R. KalbQeisch, L. W. Alvarez, A. Barbaro-Galtieri, 0. I.
Dahl, P. Eberhard et a/. , Phys. Rev. Letters 12, 527 (1964).

1++.' While the decay analysis of this resonance sug-
gests the most important decay channel as rt+2s. 4& it is
likely that the 4s channel (being less massive) could
play an important role in its formation, and to that
extent a 4s analysis with only p-wave s.—s- interaction,
analogous to the p case, should apply to this resonance
as well.

Some time ago one of us had proposed a scheme of
p-wave interaction through a relativistic Tamm-
Dancoff type equation in which the kernel was assumed
separable in momentum space. This interaction, with
its parameters adjusted to fit the mass and width of the
p meson, was used to study the co meson as a 3m. system
of T=O through a three-body Tannin-Danco6 type
equation. ' We propose here an extension of this scheme
to study certain 4m. states of T=O which can be gen-
erated in terms of p-wave vrw interaction.

The main disadvantage of any potential model,
however relativistic, is its failure to take account of
channels with different numbers or types of particles
from what are present in the original channel. While
this limitation can be quite serious at energies high
enough for the productiort of particles, a potential model
through a Schrodinger type equation still offers certain
compensating advantages not yet available through
dispersion-theoretic techniques. For, while dispersion
theory has reached a high degree of perfection in
handling multichannel two-body problems, it has not
yet been able to provide adequate methematical
facilities for the treatment of systems involving three
or more particles. This limitation has necessitated
suitable two-body approximations on more complicated
systems before its techniques can be applied. However,
such approximations which must regard certain com-
posite particles a,s stable ones of feted masses, cannot

5M. Goldberg, M. Gundzik, J. Leitner, M. Primer, P. L.
Conolly et ul. , Phys. Rev. Letters 1B, 249 (1964}.' A. N. Mitra, Phys. Rev. 127, 1342 (1962); referred to as A.
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simulate the effect of the internal momentum dis-
tributions of the composite particles, or the so-called
"polarization effects" due to the possibility of inter-
actions of the individual components of a composite
system with external particles. Moreover, if the com-
posite particle is a resonance, rather than a bound
state, one encounters additional di@.culties by way of
certain overlapping cuts in the physical region (for
example, as in the "Peierls mechanism"). ' Since on the
other hand, a Schrodinger model at least oHers a mathe-
matically consistent scheme for the treatxnent of more
than two particles, it is in principle free from the
necessity of making two-body approximations to many-
body problems, so that the detailed momentum
distributions of all the elementary" particles are
allowed to play their full role on the problem at hand.
We believe that these aspects of the detailed momentum
distributions in a composite system are no less im-

portant than the role of "other channels" in the study
of particle resonance. ' As for the limitation of particle
conservation, the possibility of identifying certain
particles as composite states of "more elementary
particles" (in a spirit converse to dispersion theory)'
aRords enough flexibility of approach in a practical
problem even within a potential framework.

The importance of treating multiparticle states cs
such, and not merely approximated by certain structure-
less composites in a practical calculation, has been
emphasized in the context of the three-body problem
in a very recent paper by Lovelace. "Using the three-
particle formalism of I'addeev" as the basis of his
approach, Lovelace has shown, among other things,
that in a three-body problem, the separable kernel
approximation to two-body scattering is indeed a valid
description provided each of the two-particle sub-
systems is dominated by a limited number of bound
states and resonances. In this respect, the separable
kernel approach of Ref. 6 which used a p-wave m —rr

interaction seems to have some formal justification,
because of the dominance of the p meson in the z~
system. In the present calculation of a 4x, T=0 system
with quantum numbers 0-+ or 1++, which also requires
only p-wave interaction between e.—7r pairs, we hope
that a similar justification will be available, and as such
a sepa. rable ~—e. potential in the P state, adjusted to Qt

the parameters of p, will form the basis of this paper.
In Sec. 2, the model of p-wave a.—m interaction for the

47t- problem is discussed on the basis of results obtained
from earlier calculations on 3z systems. Two distinct
types of interaction are suggested, (a) an intrinsically
attractive interaction' and (b) an interaction which is
repulsive at low energies but becomes attractive at
high enough energies. " Sec. 3 is concerned with the
application of symmetry principles to the four-pion
wave function following the analysis of Grynberg and
Koba, "and the derivation of a coupled set of equations
for the spatial functions after elimination of the isospin
dependence. In Sec. 4, certain equivalent "three-body"
equations are deduced for various combinations of spin
and parity for the 4x system, on lines closely analogous
to Ref. 6, which is referred to as A. An approximation
procedure for the solution of these equations for the
total energy (real part) of the 47r system looked upon
as an "eigenvalue problem, " is outlined in Appendices
I and II. In Sec. 5 is given a simple variational treat-
ment for the determination of the total energy, to be
compared with the result of more direct evaluation in
Sec. 4. Section 6 is devoted to a discussion of the
numerical results obtained with the two types of x~
force considered, the main conclusion being that the
energy of the p meson is too low to be explained by such
a mechanism, but that the X' meson admits of an
explanation on the basis of the type b force.

Pt+Ps+Ps+P4=0
The pairwise interaction is normalized by

(2.1)

(P'P~l ValP''»')=5(P's P'~')(—I' I V' lpv'), (22)
where

P;;=P~+P;, 2y;;= P,—P; (2.3)

a,nd the p-wave ~~ interaction is given by

&pl Vlp'&=3)tu(1)(u u')~(p)e(p') (24)

p(1) is the isospin projection operator for T=i and
v(p) is a shape factor. This interaction must be in-
corporated into a relativistic Schrodinger type equation
which was taken in A as

(cot+(os —E)%= —Vts@ (2.5)

2. m-m INTERACTION FOR THE 4m PROBLEM

Let the momenta of the four pions be taken as P;
(i= 1, 2, 3, 4), so that in the over-all c.m. system

'7 See for a detailed discussion on this question, as well as earlier
references, C. Goebels, Phys. Rev. Letters 12, 134 (1964}.

8 Indeed, if a resonance is reasonably sharp one might expect
that even a single-channel approach to it would at least locate its
position (if not the width) in a reliable way.

For example, a nucleon could be regarded as a bound state of
a pion and nucleon in order to conserve the number of particles,
namely three, in the reaction m+N ~ 27f+N.

"C.Lovelace, Phys. Rev. 135, 31224 (1964)."L. D. Faddeev, Dokl. Akad. Nauk. SSSR 145, 301 (1962)
/English transl. : Soviet Phys. —Doklady 7, 600 (1963)j; for a
more complete set of references to Faddeev's papers, as well as
to other many-body approaches, see Ref. 10.

(»+ces+tos —~)+= —(Vts+ Vss+ Vst)+ (2.6)

for the 2m. and 3m systems, respectively. Here co; is the
relativistic energy of the ith pion and

dP dP, '(P,P;l V,, lP, 'P )0(P P ). (2.7)

'~ A. N. Mitra, Nuovo Cimento BB, 1220 (1964).
's M. Grynberg and Z. Koba, Phys. Letters 1, 130 (1962).
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While this form has the advantage of incorporating
relativistic kinematics, its extension to the 47t. problem
through the equation

leads to enormous computational difficulties. A simpler
scheme which, however, ignores the retardation effects
between individual pion pairs was proposed by Schiff."
This replaces Eq. (28) by"

quantum numbers 0 + or 1++ so as to involve only
p-wave v —v interactions, is expected to throw further
light on the question of discrimination between types
a and b. We have therefore chosen to investigate
separate/y the effects of these two types of rr—rr forces
on the 4v problem. Taking the shape factor v(p) as

(2.11)

the respective parameters which fit the p-meson mass
and width are" "'~

(P,s+P,'+P -+P4' E')4 = ——P P V,;4, (2.9)

where E' is related to the total relativistic energy E by

(a) /=28. 5, o =-'rrsi9. P'= —0 99

(b) P= 0.9 o.=33.
P= 1.0, o=2.3.

(2.12)

(2.13a)

(2.13b)
4E' =E'—16@'. (2.10)

3. 4m PROBLEM: SYMMETRY CONSIDERATIONS
We shall naturally find it more convenient to use Eq.
(2.9) for the present problem a,nd our apology for this

simplified approach is that the details of the difference
between (2.8) and (2.9) are less important than the
basic assumption of a pair wise x—x interaction within
the Schrodinger framework for a four-body problem.

Now the fits to the p-meson parameters can be
obtained in either of two ways, (a) through an intrinsi-
cally attractive interaction (X(0) or (b) with the help
of a "repulsive looking" potential (X)0).rs Type a
needs a very short-ranged interaction to make the
rather large mass of the p meson (=760 MeV) com-
patible with its moderately large width of =100 MeV.
An. interaction of type b on the other hand, provides
the resonance mechanism through a long-ranged force,
the longer the range the sharper the high-energy
resonance. Since, in the language of dispersion theory,
the p-meson problem is a multichannel one, our char-
acterization of the resultant situation by an effective
potential of type a or b, is linked with the question as
to which one of the two types represents a closer
approximation to the actual situation. So far we have
examined this question in the context of the isoscalar
3rr problem for the quantum numbers of the &o and P
mesons. It has been found that whereas type a leads
to a (tightly bound) p+rr bound state with a mass too
low for co,'r type b leads to a sharp v-+p resonance
lying somewhat higher than the mass of g."Presumably
both types of forces are needed in appropriate com-
binations to account for o& and p simultaneously. How-
ever, the present study of isoscalar 4x systems with

"L.I. Schiif, Phys. Rev. 125, 77/ (1962).
"The dimensional disparity between the V;, 's in Eqs. (2.8)

and (2:9) can of course be absorbed in the de6nition of the coupling
constant X in Eq. (2.4).

"The interpretation of such potentials as repulsive at lower
energies and attractive at higher ones, h'as been discussed in the
context of s-wave forces by A. N. Mitra, Nuovo Cimento (L) 32,
506 (1964).

"N. Panchapakesan and A. N. Mitra (to be published); the
widths at the observed position of the p meson come out as 100,
80, and 120 MeV in terms of (2.12), (2.13a), and (2.13b),
respectively.

A considerable reduction of the 4~ problem is
achieved through the use of symmetry requirements
on a system of T=0, which case is particularly simple
because of certain formal similarities of the corre-
sponding representation matrices to those for a three-
body problem. "Indeed, the only T= 0 isospin functions
are, in the notation of Grynberg and Koba, "

r/$2, 2jr=—x"= -,'Xs —
s (5)'i'X, ,

rz[2, 2jzz=—x'= Xz,

rlL4)=X, = sXs+-s' (5)'"Xs

(3.1)

(3.2)

(3.3)

(3.4)

Also, if i, j, k represent 1, 2, 3 in cyclic order, the
permutations (ij) and (k4) have ideetrca/ represen-
tations. In this respect we notice a strong similarity
with the representation matrices for a three-nucleon
problem, ""the mixed symmetries (2,2) in the present
case corresponding to the mixed symmetries (2, 1) for
the three-body problem. To make the analogy with the
three-body problem closer, we define the basic per-

"Cf., M. Verde, in Haeblch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 1'/0.

"We follow here the representation of Ref. 18 rather than
Ref. 13, for the permutation matrices.

"A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963);
referred to as B.

where Xz is the four-pion isospin function of T= 0
obtained by combining two pairs of each of total isospin
I (I=0.1.2). Of these functions, the completely sym-
metric one, viz. , riL4$ can be generated only through
~~ pairs in mutual s waves, and is therefore ruled out
for the problem at hand. The permutation matrices
(ij) in this case admit of the rather compact 2X2
representations"
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mutation operators, T&, T2, T3, for the present case as
in Ref. 19, viz. ,

TmLE I. Symmetry requirements on P' and tt".

Ts ~2)(ij)+(k4)j, (3, j, k=1, 2, 3), (3.5)

so that these operators have the same representations
as (3.4). The operators corresponding to T„T', and T"
of the 3-nucleon problem" are, in the basis (3.4),

Operation

A
S

3~4
A
S

T,= T,+T2+T, ,

T'=
2 (3)'"(Ti—T2),

T"=T,—-', (Ti+T,),
(3.6)

so that the isospin functions X' and X" are expressible as

the separable potential (2.4) in the coupled equations
(3.11) and (3.12) for iP' and iP". In this connection, the
symmetry requirements on ip' and ip" for various per-
mutations of the momentum coordinates are as given
in Table I."Following the techniques of A and Bp the
only possible structures of iP' and P" a,re

where
X =T Xp& X =TXp&

&3= (ui u2)(333 u3)

(3.7)

(3.8)

D/3 (P,)P'=A3 —
12 (31+22),

Ds (P~)p"=-,'(3)'i'(A —32),

(4 1)

(4.2)

and u; is the (vector) isospin function for the ith pion.
If iP' and tt" are the corresponding (2,2) spatial func-
tions for the 4' system, the complete wave function +
which is totally symmetric is given byis

Elimination of the isospin functions X', X" from the
Schrodinger equation (2.9) is now effected by noting
that the isospin projection operators p,;(1) in the po-
tentials V,; of Eq. (2.4) are expressible as

/' =
HALI

—(3j)&

This leads to the coupled spatial equations

D .(P )P'= —(~ +~")P'+~'y"

Dx. (P )iP"= —(5' il )iP"+/1'iP'—

where

Dg (P,) =P12+P22+Pg'-+P4" P.'--
(3.10)

(3.11)

(3.12)

(3.13)

2 (+12+~34+/131+~24+~23+/114) & ( '1 )
A'=-', (3)"'(623++14 A31 +24) ) (3.17)

i1"=-2, (A12++34) 4(+31+~24+~23+~14). (3 18)

Here A;; is related to V;; through the equation

I'v=/ v(1)~v. (3.19)

The operators on the right-hand sides of Eqs. (3.11)
and (3.12) must be understood in the sense explained
in Eq. (2.12) of B.

4. REDUCTION TO EQUIVALENT THREE-BODY
EQUATIONS

our next task is to deduce the algebraic structures
for iP' and P" for various spin-parity assignments, using

= 2p, /2+2p342+Q32 —&', (3 14)

Qs=—2 (P~+P; —Ps —P3) = P~+P, , (3 15)

and the operators A.' etc, , are defined analogously to 8

A, (1+)= (p,„xp;3) [m (p;3)5'" (Q, ,P,4)
—s(p'4) ~"(Q', p') j, (4.4)

where the lettersi, j, k are cyclic permutations of 1, 2, 3,
and F and P~ are by themselves scalar and even
functions each of tao vectors. "We emphasize as in A
and 8, that the maintenance of this cyclic symmetry is
extreinely important in the vectors p;; (which arise
out of p-wave interactions) in order to bring out the
full symmetries demanded by Table I. For the same
reason, the definition of Q, as

k
'

4 (4.5)

rather than its simplified form P,+Ps through Eq.
(2.1), must be maintained, until the symmetry re-
quirements have been checked. Similar constructions
are possible for other spin-parity assignments as well.
For example in the case 0++, the factor (p;„xp,3) Q, ,
in the right-hand side of Eq. (4.3), should be replaced
by the two independent combinations

P~I ' Ps4, (4.6)

2& The notation 1 ~~ 2 stands for the interchange of the momenta
P& and P~. The letters S and A denote, respectively, symmetric
and antisymmetric behavior with respect to the operation
concerned.

» Note the plus sign in Eq. (4.3) and the minus sign in Eq.
(4.4) which meet the respective symmetry requirements for the
two cases.

where the functions A; must be chosen appropriately
for the various spin-parity assignments under con-
sideration, subject to the requirements imposed by (i)
the separable potential (2.4) in conjunction with Eqs.
(3.11)—(3.14), and (ii) the symmetry requirements
given in Table I. Thus for the assignments 0 + and 1++,
the only structures of 3; compatible with the above
requirements are

~.(o ) = (PJ3 xP,4) Q'rs(p, ')~'(Q', P,4)

+~(p.4)~'(Q', p 3)3 (4.3)
and
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and

3(y 0;) (y*s 0,)—Q,'(y, s y;3), (4 &)

~(p;3)~(0',y'4)+ ~(p;4)~(0',y 3) (4 g)

Similarly, for the case 2++, possible angular functions
ale

(4.9)P 3"P 3"+. P 3"P 3" '~.""(y 3'y 4)

(y, y')(O'"Q'" —lQ''~"") «c (4.10)

each combination getting multiplied by an independent
function of the form

where each such function gets multiplied by an inde-
pendent expression of the form (4.8). However, since
the analysis of the cases 0+, 2+, etc. depends alsa on
s=rr interaction in even partial waves (a situation not
covered by this work), the present p-wave formalism
is inadequate for their description, and as such these
spin-parity cases will not be pursued further in this
paper.

Following the general procedure outlined in A and 8,
the function F~ for the case 0 + is found, on substi-
tutinos of (4.1)—(4.3) in (3.11) and (3.12), to satisfy
the following integral equations:

(y»stys) 0» (Qs,ys)[1+»(p84'+lQ8')]= —»n(ps) dy»"(p»')(y» yrs')[(y»'ssys). 08]

x(2pis"+2ps4'+Qs' —&') '& (Qs, yrs')+3& ayts'n(pts')(y» y»')[(yst'sty24') Qs']

where
X (2pts"+2ps4'+Qs' —&') '[2 (pst')& (03')P24')+2 (p24')&'(02')yst')7, (4.11)

h(p') =2m. qsdq n'(q)(q'+p' 'E')—'- (4.12)

and the various "mixed momenta" are given by

yst &P24
= ~203—

2 (y» —yss) &

yss, yts = 208~2 (yts +yss)

03,02 =~y»+P34 ~

(4.13)

(4.14)

(4.15)

A few words on the interpretation of Eq. (4.11) may
be in order. The vectors p;; and pq4 which represent the
relative momenta of the m.—x pairs, give a realization of
the internal structure of the p meson in this composite
picture. The function P(03,P84) represents essentially
the wave function of an equivalent three-body system,
viz. , the pions 3 and 4 together with the composite of
1 and 2.'4 The resonance structure in 1 and 2 manifests
itself in the function P(08,084) through its dependence

on the factor
[1+»(psss+2Q82)] ', (4.16)

as can be seen from the left-hand side of Eq. (4.11).
Again, the 6rst term on the right-hand side of Eq.
(4.11) represents the possibility of resonant interaction
between the pairs 3 and 4, when 1 and 2 are already
in resonance. The last term in this equation stands for
the resultant effect of "crosswise interactions" between
the four other pion pairs in a representation in which
1 and 2 are resonantly associated. Thus in this picture
the "true" four-particle effects which give rise to
connected diagrams are essentially contained in the
last term of Eq. (4.11).

VVe list here the corresponding integral equation for
the function 5" of the axial vector case, viz. ,

(P12 +P84)F (03)P84)[1+)t)3(p84 +2Q3 )] —3»(p84) &yts'3 (p12 ) (P12'P12 ) (P12 33P34)

X (2prs"+2ps4'+Qs' —&') '&"(Qs,P84)+3& 432'3(prs') (yrs yss') (yst' 33 P24')

X (2prs"+2ps4'+Qs' —&') '[t (pst') &'(02')P24') —3(P24') &'(02' yst')], (4.17)

with identical interpretations for the various terms.
We note, however, that the last term in (4.17) has a
minus sign between the two 5 functions unlike Eq.

"Here the greek indices p,, v, etc., are three-dimensional tensor
indices as distinct from the letters i, j, k which label the momenta.

&The erst argument Q~ of F~ is the relative momentum

(4.11), in which the corresponding sign is positive.
Since the functions F~ ~ are ence in their respective
arguments this means that while the "last term" may
be quite important for the 0 case, it has a much smaller

between the pairs (1,2) and (3,4). The second argument p34
represents the momentum distribution within the pair (3,4),



FOUR —P ION MODELS FOR g AND X' MESONS B 987

expl —
s ps4'p-' ——,'Qs p- j. (4.18)

Thus taking account of (4.15) and. (4.17), we write

magnitude for the 1.+ case. Therefore, according to our
interpretation of the "last term" as giving rise to the
true four-particle effects, we expect these to be much
less important for the axial vector than for the pseudo-
scalar case.

So far our treatment is exact. '~ Further manipulations
of Eqs. (4.11) or (4.17) must depend on suitable
approximations which can best be made on the basis
of the physical interpretations given in the last two
paragraphs. Thus the resonant x~ structure can be
extracted by the ansatz that F~ "are both proportional
to (4.16). Again, for the Gaussian potential (2.11), it
is easy to see from the structures on the right-hand
sides of (4.11) or (4.17) that F(Qs,ys4) is also propor-
tional to

TABLE II. Calculated energies of the 0 state
(in units of the pion mass).

1
09

28.8
28.8

2.33
3.3—0.99—3.30

6.8-6.9 10.0-10.05
63—6.4 9.7—9.8

86.1
40

11.0
10.7

10.5
99

respect to cyclic permutations of the momenta, viz. ,

T= I't'+I's'+I's'+I'4'= 2p;p+2pp4'+Qs', (5.2)
and

1 =ZZ l'e
~(j'

(5 3)

is the total potential energy, The variational estimate
E' of 8' is then given by

&' ~~'= P'&+(l') (5.4)

~(Qs,i s4) = expl: —s (ps4'+ a Qs')I3 'hf(Q»ps4)
XL1+)ih(Ps4s+rrsQss)3 ' (419)

where for any operator 2
(A) = (+,A+)/(@,@). (5 5)

where we expect f(Qs, ys4) to depend less strongly on
its arguments, so that further approximations on this
function are warranted. Thus according to our inter-
pretation of the 6rst terms on the right-hand sides of
Eq. (4.11) or Eq. (4.17) the dependence of f(Qs, ps4)
on its second argument is expected to arise mostly from
the former which is primarily responsible for producing
a composite structure in the pair (3,4). These and other
d.etails concerning the effects of angular correlations in
the last terms of (4.11) and (4.17) are discussed in
Appendix II.An approximate formula for the evaluation
of certain Gaussian integrals which appear repeatedly
in these calculations is obtained in Appendix I for both
types of interaction de6ned by (2.12) and (2.13).

The results of evaluation for the pseudoscalar case
are summarized in Table II. For the axial vector case
on the other hand, it is shown in Appendix II that the
true four-particle effects represented by the last term
of Eq. (4.17) are almost negligible, so that no 4s. reso-
nance can develop in such a quantum state.

Using (3.9), we have

(~,~)=-,' (la'I'+la" I')&, (5.6)

(%,Z%) =-,' (2p,4'+2p&s'+Q, ')

where
x(ly'I'+ly" I')&. , (5.7)

dr = dptsdps4dQs. (5.8)

In deriving these expressions certain obvious 6-function
integrations have been carried out, so that only the
nontrivial momenta in the c.m. system are represented
by d7., which, incidentally, is invariant under cyclic
permutations of the indices (1, 2, 3).

For It' and II" we now write analogously to (4.1) and
(42),

It'= &s—s (&t+&s), (5.9)

0"=s(3)'"(&t—&s), (5.10)

(1"+V)@=E'@, (5.1)

where T is the total kinetic energy symmetric with

"The word "exact" is used in the sense that, apart from the
basic assumptions of a single-channel four-pion state with p-wave
n.—7I. interactions through a Schrodinger equation, no approxi-
mations have so far been made in the deduction of Kqs. (4.11) or
(4.17) from Eqs. (3.11) and (3.12).

S. VARIATIONAL CALCULATION OF ENERGY

For comparison with the direct evaluation of the
energy in Sec. 4, we outline here a variational calcu-
lation of the 4x resonance energy for the pseudoscalar
case on lines similar to Schiff's treatment for the energy
of the co meson. '4 The basis is provided by writing the
4s Schrodinger equation (2.9) in the form

where the 8; are certain functions similar to the A;
functions of Sec. 4. Since, however, the J3; have to be
determined variationally, computational convenience
should also be an important criterion in the choice of
their algebraic structures. Assuming that the 8 func-
tions are real, " the quantities relevant to the deter-

"The reality of the 8 functions is assumed primarily on grounds
of simplicity, analogously to variational functions generally
assumed for bound-state energies. Of course in the present con-
text of investigation of a resonance, such assumptions might well
need to be relaxed, especially if a program of elaborate variational
calculation were undertaken. However, since our variational
method is intended mainly as a guide for comparison with the
results of Sec. 4, we have chosen very simple forms for the func-
tions /see Eqs. (5.19)—(5.21)g. With such a limited scope, it seems
to us that not much is likely to be gained by relaxing the reality
condition on these functions.
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mination of E' are

(4,%)= -,' dr (B32——,'B,B,——,'B,B2),

(+,T+)= 2 (2p44'+2p»'+Q4')

Xd~ (B4'—2B4Bi—g BaB~),

(p, Vp) = 2 p (B,, V„B;)
i=1

—
4 E 2 (B',V34»),

(B,, V„B,) =3~ d.'B, (p, „p;„Q;).(P„)

(5.11)

(5.12)

(5.13)

elementary, though laborious, lead to the following":

Er' —1944-&+16g ~&&2P—~ (a+P—
2)—2

&& (3n'+3P '+2nP ') (5.22)

En' ——23p'+ (9/7) 0p'(36cg'+ 34cgc2+ 9c2')/
(30cP+12cgc2+Sc2') (5.23)

for the trial functions I and II given by (5.19) and
(5.20), respectively. It is clear from these expressions
that the possibility of a bound state can arise only for
X(0 (type a interaction), since this is the only case for
which the total energy is less than the kinetic energy.
To see the possibility for a jlst-boumd state, viz. , E,'= 0,
with type a interaction, we have considered Eq. (5.22)
derived from the trial function I, and determined n, 0-

variationally from the equations

E'= 0, BE'/Bn =0, (5.24)

&&(y34 y34')~(P34')B, (y~ ',p 4', Q '), (5 14)

d& =dp12dp34dQsdy34 ~ (5.15)

In writing these matrix elements the results of certain
obvious permutation symmetries have been freely used,
e.g. ,

(B,,B;)= (B&,B3)= (B&,B&), iW j, (5.16)

(B',B')= (B3,B4),

(B,,V;4B~)= (B;,Vq4B~), etc.

(5.17)

(5.18)

Further, the arguments of the 8 functions that appear
on the right-hand side of (5.14) are the ones appropriate
for bringing out the cyclic symmetries relevant to their
structure. Also, in the ((12), (34)} representation, the
values of the "mixed momenta" p;;, y;, ', , etc. , in
terms of the integration variables (5.15) are as given in
Eqs. (4.13)—(4.15).

For the pseudoscalar case, the following simplest
variational functions have been considered:

I: B;=(y; y;)F, (5.19)

II: B;=Fgc&Q; (p7 p;4)+c2(p, l, Q;)(p;4 Q,)j, (5.20)

where

F= (y, ~p'). Q«xpL —-' (P' '+P. '+lQ*')3 (5 21)

is an ievariuet function under cyclic permutations of
the various arguments. Such forms are largely suggested
by the analysis of Sec. 4, and have the strong advantage
that the exponential function, being iepariaet under
cyclic permutations of the indices, can be cast in any
representation without the introduction of angular
correlations between the momentum vectors. This
simpli6cation largely facilitates the evaluation of the
integrals in (5.11)—(5.12), since the angular functions
are contained entirely in the functions multiplying Ii

in (5.19) and (5.20). The integrals which are thus all

as was also done by Schiff for the 3m- problem. '4 The
values of n and a which make O'E'/Bn') 0, are

n= 2.75/p', o-= —3.0. (5.25)

' In writing (5.23), the parameter o. of (5.21) has been taken as
P~; see Eq. (5.26).

Note that F enters the A; function with the multiplicative
factor v(P12) so that it is the structure of v(P12)P that should be
compared with the 8; functions (5.19)—(5.21).

A comparison of (5.25) with (2.12) shows that one
needs an enormously stronger attraction to bind four
pions at about the mass of p than is provided by the
strength of the two-body interaction. This conclusion
is just the opposite of SchiR's for the 3m. case, which
showed too much binding in co for the m —7t- interaction
appropriate to the p meson.

A similar conclusion is reached with trial function II.
Thus, type a interaction can at most give rise to a 4m

resonance but certainly not a bound state.
For type b interaction P.)0), there is of course no

question of a bound state since now both the kinetic-
and potential-energy terms are positive in (5.22) or
(5.23). As for the possibilities of resonance, variational
estimates of the energy have been made by taking the
parameter n in the exponent (5.21), the s44me as was
obtained in Kq. (4.19), from the structure of the integral
equation, viz. ,

(5.26)

This assumption makes the most rapidly varying part
of the variational wave function conform to the shape
deduced from the exact structure of the 4x integral
equation. ' Using this value of e in (5.19)-(5.21),
variationa, l estimates of the resonance energy 8 can be
made with the parameters of type b interaction that
are listed in Eq. (2.13). For the trial function I there
are now no free parameters. For function II, on the
other hand, the ratio c&/c2 can be variationally esti-
mated, and the value of this ratio which makes E~~' a
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minimum is

ct/cs = —0.512.

The results for E are collected im. Table II a,long with
the results of direct evaluation described in Sec. 4 and
Appendix II, for the pseudoscalar case.

E'=2 9P' (6.1)

which is derivable from Eq. (II.11) for the parameters
of (2.12). This direct estimate of o.= —3.3 needed for
E=4IJ, is rather close to the corresponding "variational
estimate" in Table II of cr needed to give zero binding
energy, viz. , o- = —3.0."This is a fortunate circumstance
since our approximation treatment outlined in Appen-
dices I and II is formally not so much justified for type
a interaction as for type b interaction, and may there-
fore be taken to provide some support for the qualitative
validity of the formula (6.1) which is a clue to the
understanding of the extremely large value of E with
type a interaction. Without further refinement, therefore,
it is possible to say that, far from producing a bound 4m

structure like the p, the attraction provided by type a
interaction in the state of 0 + is far too little to produce
any resonance esca ie the GeV region. This conclusion
is just the opposite of those of Ref. 14 or Ref. 16 for
the three-pion energy in the T=0 state of 1,where
the problem was one of too strong attraction. It is not
easy to say whether this difference between the 3m and

~ Such rapid variation of E with 0. is in agreement with the
conclusion of Schi8 (Ref. 14) for the 3m. problem, and seems to be
a characteristic of short-range forces.

6. CONCLUSION

One definite result of this investigation is that the
4s. formalism through pair-wise p-wave intera, ction rules
out an axial vector (1++) resonance of T=0, since the
corresponding state has no properly connected four-
particle graphs. This conclusion is valid for both types
of interaction considered in this paper, and may there-
fore be regarded as a largely model-independent result.

The only other 4m state of T=O which depends
entirely on p-wave v-—v. interaction is the pseudoscalar
state (0 +). According to our investigation, such a
state can of course develop appreciable four-body
eRects of a convected type, but the energy of the com-
posite system depends rather markedly on the nature
of the x~ interaction that is assumed. Thus with type
a interaction whose parameters are given by Eq. (2.12)
and which is characterized by an intrinsically attractive
short-range force, Table II shows that the predicted
energy is about 86 p, far too high for any known meson
resonance. On the other hand, to obtain an energy
E=4IJ,, which is almost the mass of g, the required
value of the strength parameter o- is —3.3, as against
its two-pion value of —0.99, given in (2.12). The 'large

difference in the scales of o- and E can be partly under-
stood in terms of the approximate formula

4m results, using the same x—z interaction has some-
thing to do with any intrinsic difference between the
three-body and four-body problems. In our view, the
"lack of sufficient attraction" with the short-range
interaction of type a, might well be a peculiar chara, c-
teristic of the "pseudoscalar state. "3'

The situation is entirely different with type b inter-
action, which, though incapable of producing bound
states (see Sec. 5), can yet give rise to 47r resonances.
Indeed, the prospects of resonance formation at
moderate energies are much brighter with such inter-
action. For, as an inspection of Eq. (4.11) shows, the
last term on the right-hand side which represents the
true four-body effects is attractive in this case (X)0),
thus helping to bring the pions together. Moreover, the
method of treatment outlined in Appendices I and II is
much more justified with long-range type b forces than
with short-range type a. The figures in Table II already
suggest that the resonance energy with type b forces is
only of the order of a few pion masses Lrather than
several baryon masses with type a forcesj. Table II
lists two solutions, Z~ and E of Eq. (4.11),"the higher
one E lying a few pion masses above the lower one E'&.

As a check on the validity of these solutions, the results
of the variational estimates of Sec. 5 with trial functions
I and II are also listed for comparison. The values of
the variational energies Ei and A&i~, being larger than
the higher energy solutions A, seem to support our
claim on the authenticity of the results E& and F~.„of
direct evaluation.

We are as yet unable to comment on the significance
of the solution 8„in the context of the present experi-
mental data, though we are tempted to point out its
possible relevance to a heavy pseudoscalar particle of
mass around 1.5 SeV predicted by Schwinger" on the
basis of his 8'3 model. Another possibility might be to
associate it with a reported peak in the EEx system at
1410 MeV, ss Provided the latter could be regarded as a
sharp resonance of T= 0, realizable through a 4z
channel as well. '4 However, such assignments are
extremely speculative at the present stage of experi-
mental knowledge about the KE+ peak.

'" In this respect it may be in order to point out that the
analysis in A, of the integral equation for the 0 state of the 3x
system had also indicated a repulsive kernel for that state.

"The quantities E& and E„are shown as lying within small
ranges like 6.8—6.9, etc. The limits of these ranges correspond
respectively to the assumptions p34'=0 and p34'= p' in Eq. (II.10)
of Appendix II. The closeness of these limits in all the cases
justi6es the approximation made after Eq. (II.10).

3' J. Schwinger, Phys. Rev. Letters 12, 237 (1964).
"R.Armenteros et al. , Proceedings of the Siena Conference on

Elementary Particles, Siena, Italy, 1963 (unpublished).
~ A calculation by Oakes LR. J. Oakes, Phys. Rev. Letters 12,

134 (1964)) using the Peierls mechanism LR. F. Peierls, Phys.
Rev. Letters 6, 641 (1961)j suggests, on the other hand, that such
a peak could be understood through the exchange of a pion in
Z—IC* scattering, so that it need not have a de6nite isospin or
angular momentum. However, since the statistical ratio of T=0
and 1 mixtures is 9:1,it may be regarded as an almost pure T=0
state.
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As for the solution Eg, the most obvious candidate is
the X' meson' whose existence was one of the main
motivations for the present approach. Indeed, all the
figures for E~ in Table II are rather close to the experi-
mental value 6.86 p (=960 MeV) of the X mass. (There
is some variation with the range parameter P, a higher
mass corresponding to a higher p.) We therefore feel
rather strongly that our 4' model with type b inter-
action predicts the X' resonance as a pseudoscalar
particle rather than axial vector, which seems to be in
agreement with the latest findings of KalbAeisch et ul. '5

In summary, our four-pion model of pair-wise +~
interaction through a Schrodinger equation, does not
give a bound 0 state, or a 1+ state of any form (bound
or resonant). However, it predicts two 0 resonances of
moderate energies, the lower one of which is identifiable
with the X meson, provided the m-~ interaction is of
type b, namely, repulsive at low energies but changing
to attraction at high energies. In this connection one of
us (ANM) has discussed elsewhere" certain other
advantages of type b interaction. Among the more
important advantages, one might mention (i) easier
fits to the p meson, (ii) compatibility with SUs generali-
zation for K—s. interaction, (iii) qualitative under-
standing of the p meson as a p+s- resonance, and of the
more recent Exw resonance at 1175 MeV."The rele-
vance of the present investigation to the X' meson may
be taken to provide additional support in favor of type
b interaction as a useful form of parametrization of the
effective x—m force.
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APPENDIX I

The function that appears most frequently in the
integral equations reduced from (4.11) or (4.17), after
the substitution of (4.19), is

)j,k(x) =2x)j. dp p4e &'Ie'(p'+—x) '.

and

o 1—2xP-' —4(—x/P')sl'e*»'
0

where
~=-'wsr'ps),

(I 3)

(I.4)

This approximation, which is extremely good for x/P'
large and positive, works quite well also for smaller
values of x()0). It is tolerable even for negative values
of x/p', except in the neighborhood of the pole of the
function (I.S). Fortunately, however, negative values
of x are much less pertinent to the solution of our
integral equation than its positive values, so that (I.5)
is a good approximation for the integrals encountered
in Appendix II with type b interaction.

For type a interaction, viz. , large p, the corresponding
approximation is

) h(x) =3 P'j(3P'+2x), (I 6)

which again works very satisfactorily for x)0."
The formulas (I.S) and (I.6) can be combined into a

single unified formula

u (*)=-;p' (~p'+ x)-', (I 7)

5 3

for type b or type a interaction, respectively. The
approximation (I.S) for smallP, is valid also for integrals
of the form

and (I.3) is evaluated in the sense of a principal value
integral for (I.1).

As these expressions are rather unwieldy it is de-
sirable to approximate them by more handy formulas
which are reasonably accurate. A possible approxi-
mation which is certainly valid for small p (appropriate
to the case ))0) is based on the observation that the
numerator function P4e ~'~e' in (I.1) has a sharp maxi-
mum and hence varies much more rapidly than the
denominator, so that the latter may be replaced by a
constant of the form p '+x, where p

' corresponds to
the maximum of the numerator function. More pre-
cisely, p '=ssp', which yields

Xh(x) =3oP'(SP'+2x) —'. (I 5)

The exact values of this function for x&0 and x(0 are,
respectively,

dq q'e "~e'(q'+x) 'g(q'), (I.9)

o. 1 2XP '+2rr'"(X/P—')st'e'le'

where g(q') is a slowly earyilg function of q' and x)0.
Thus (I.9) may be replaced by

(I 2)
d = (psst+ x)-' dq q'e—&'»'g(q'),

where y= ~5.

(I.10)

35 G. R. KalbBeisch, O. I. Dahl, and A. Rittenburg, Phys. Rev.
Letters 13, 349 (1964).

36 A. N. Mitra, Phys. Letters 12, 61 (1964).
'~ T. Wangler et a/. , Phys. Letters 9, 71 (1964).

"The difference between the denominators in (I.S) and (I.6)
can be understood through the Grst two terms in the expansion
(for x)0) of (p'+x) ' in powers of (i) x/p' for large p and (ii)
P'/x for small P.
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The corresponding formula for large P cannot of
course be taken to be necessarily valid without a more
detailed knowledge of the structure of g(q'). However,
as our results will eventually show, the case of large P
(type a interaction) leads in several ways to the common
conclusion of an extremely high mass resonance, so that
any inacccuracies in a formula like (I.10) with y=2
v ill not make any qualitative difference to this basic
result. With this understanding we have, in Appendix
II, formally used the approximation (I.10) for (I.9) for

both cases, though its numerical accuracy can be
guaranteed only for the case of small P.

APPENDIX II

We remark at the outset that the treatment in this
section will apply with much better accuracy for type b
interaction than for type a interaction (see Appendix I).

Substitution of (4.19) in (4.11) leads to an integral
equation for f"(Qs,y34) of the form

(P1234P34) Qsf (Qsy34)= —42rX(P1234p ) Q dqe "'e'f (Q,q)[1+&(q'+-,'Q')j '

X (2q'+2Ps4'+Qs' 8') '+Q dy»'(P» y»')t (P,2' x P34) Qs)

f~(p»'+P34, 2Q3+2P34 2P12)
Xexp( —p1 "p ') +(Qs —Q ), (11.1)

—(2p12"+2ps4'+Qs' —&'){1+&&(p24"+2Q2"))

where the mixed rnomenta are given by (4.13)—(4.15), and Qs+~ —Qs signifies a term obtained from its prede-
cessor by the replacement indicated. According to the arguments given at the end of Sec. 4, the dependence of

fp on its second argument P34, comes mainly from the first term of (II.1), which already shows an integral structure
of the form (I.9). Thus, according to (I.10) the dependence on ps4 is simply described by the factor

Therefore we use the ansatz:

so that (II.1) reduces to

f'(Qs P34) =&(Qs)(P34'+2es'+P'7 —2&') (II.2)

&(Qs)t:(y» 24 P34) 'Qsf
1+22'

(P34'+ 2es'+O'V 2&')—

dqq e "'~'

o q'+&P'+ses' 2~'+—2~P'

=9 &pls (P12'P12)$(P12 ssp34)'Qsf(2pls +2p34+Q3 ~) +(pls+P34)

Xt 2x/(x 4(Q3' (ps4 P12 )) )3)l (II 3)

where

and

X0+2P34' P12

xo= 0'v+ 4es'+ 4 (ps4'+ p»")+ 2~P' 2&'—
(II.4)

(II.5)

Now, the last factor on the right-hand side of (II.3) may be approximated simply by (2/x), provided xs))41LQ3
~ (P34—p12)]', a condition satisfied to within less than 2'po error near the maximum of the Gaussian function,
namely for p»' =7P'. This facilitates the integration over the azimuthal angle p of y»', which is necessary for
extracting the "pseudoscalar factor" from both sides. Then (II.3) reduces to

II (Qs) g 2
2

dq d8q4e '"&'sinsOH(sl+P34)x '

X (2q'+2p342+Qss —Z')-' (II.6)

where cos8= q p34, and (I.1) has once again been used to simplify the left-hand-side integral in Eq. (II.3).
To "match" the p34 dependence on both sides of (II.6) we must first carry out the angular integration on cosg.
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For this purpose we ignore the angular correlations in H(q+p34) and z, viz. ,

H(iI+ @34)=H((q'+P34')'")

S~go ~

(U.7)

(II.S)

This approximation can of course be tested for (II.S). Indeed, an expansion of x in powers of (yq4 q)/2xo shows
that the first "correction term" is less than 6% in the "worst case" which occurs when

q2 p342))2oP2.

Since now (II.S) is a good approximation for x, we hope (II.7) to have also a similar validity, as the functional
form of H is essentially governed by that of x . Using (II.7), (II.S) and (I.10) in (II.6) gives

H(Q )$1+'oP'(2y-P'+ 'oP'+ '-Q '—-'-E') ']=47rX dq q'e "~'H((q'+p ')'i') ~x (II.10)

The left-hand side is now independent of P84 but the right-hand side still shows some dependence on this momentum.
This is due to our ansatz (II.2) which neglected the P&4 dependence of f(Q3,y34) coming from the last term of (II.1).
The only obvious approximation which now suggests itself is to regard the right-hand side as independent of p34
and evaluate it by setting p34 0. A crude estimate of the error which may be made by evaluating the first correc-
tion term in the expansion of xo ' in powers of P34, yields a correction of 10—12% for P34' P' and q' yP'. A similar
estimate may be assumed valid also for the function H((q'+P34')"'). Ignoring these corrections and setting p&4

——0
on the right-hand side of (II.10) now enables us to reduce this equation, through repeated application of (I.10),
to the form

e o'/e'q4—(2pP2+ i q2 i g'+—3 o P2)
dq (2''+ 2 q' k~'+3o—P') 3~q'+ l ~P' k&'+ (7—/4)vP']

(II.11)

whose numerical solutions for E according to (2.10) are summarized in Table II 'of the text.
For a closer estimate of the order of error in neglecting P~4 from the right-hand side of (II.10), an equation

similar to (II.11) may be derived by assuming P34' as constant. Taking P&4'=P', the numerical solutions for type
b interaction which is also listed in Table II, seem more than to bear out our assertion that the correction is in-
deed small due to the neglect of P842 from the right-hand side of Eq. (II.10).

For the axial vector case, the presence of the minus sign between the two terms of the "mixed integral" in Eq.
(4.17) leads, with an analogous treatment, to an equation like (II.3), but with the replacement

03 (Ii34—p»')

z' —4L03 (Ii34—li» )j' ~'——.'L03 (li34 P&~ )]'

Therefore according to the argument given after (II.3), this integral is negligible compared to the corresponding
term of the pseudoscalar case. Since, on the other hand, the "mixed integral" is the only one which can give rise
to a properly corn&ected graph for the 4x system, it is clear that the axial vector state of the 4x system consists of
two essentially uncorrelated pairs, viz. , (1,2) and (3.4) in our representation, and is therefore incapable of de-
veloping any resonance.


