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Approximate Solution to Partial-Wave Dispersion Relations
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The partial-wave dispersion relations of the scattering amplitude are considered by means of the inverse
amplitude technique. The sense in which the X/D and inverse amplitude methods of solution are equivalent
is discussed. A method of solution that is symmetric and free from subtraction parameters is given. The pro-
cedure is illustrated for the ~~p bootstrap problem for the single-channel case. A self-consistent solution is
obtained.

I. INTRODUCTION

" 'N the study of partial-wave dispersion relations there
~ ~ have generally been given two methods of solution:
the 1V/D method' and the inverse A method. ' A good
deal of interesting work has been done on the E/D
approach, where a given input force L(s) is assumed.
It has been shown that for a given symmetric input
force L(s), the partial-wave amplitude is symmetric
either for the unsubtracted dispersion relations' or for
the subtracted one. ' lt is further shown that formally
the scattering amplitude is independent of the choice
of the subtraction point. 4

The determinantal method' has often been used to
solve approximately the X/D equations for the single-
channel problem' as well as for the coupled-channel
problem, 7 because its application requires simply the
evaluation of integrals rather than the solving of
integral equations, and probably because it is not at all
clear that an exact solution to the X/D equations is a
better approximation to A than just the first-order
iteration when the input force I (s) is merely some
approximation to the left-hand cut in A (s).

However, the determinantal method gives an approx-
imate solution rvhich is not only dependent on the sub-
traction point so but also nonsymmetric, thus violating
time-reversal invariance. The solutions obtained by the
determinantal method are sensitive to the choice of
subtraction point, though it i~ computationally simple.
An alternative formulation o1 the approximate X/D
method which is symmetric and independent of a sub-
traction point has already been presented. ' However,
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we shall present a more general formulation of the
problem which yields the results of the above-mentioned
work as a special case.

It has been claimed that virtually all statements that
can be made for the X/D method can also be applied to
the inverse A method. ' This, however, has not been
discussed for the approximate solutions. The purpose of
this paper is to discuss some aspects of this claim, and
to present an approximate solution which is symmetric,
independent of subtraction parameters, and yet can be
applied to the interesting case of bootstrap technique.
Although our formulation is essentially a many-channel
one, we present here an application to a single-channel
case of pox as an example.

In Sec. II the inverse amplitude method is discussed
along lines similar to those of the customary lV/D
method. Section III presents the derivation of an
approximate solution for the partial-wave dispersion
relations that is symmetric and free from subtraction
parameters. The procedure is applied to the single-
channel bootstrap problem in Sec. IV. Section V con-
tains concluding remarks.

II. THE INVERSE AMPLITUDE METHOD

The purpose of the formalism is to solve for the
scattering amplitude A (s) for a particular partial wave
as a function of s, in case of rs-coupled two-body
channels. The partial-wave dispersion relation takes the
form

1 ImA (s')
A (s) =L (s)+ ds'—,

gg S —S Z6

where C~ denotes the right-hand cut in the s plane
coming from un. itarity, and L(s) is the symmetric
"input" potential which is the left-hand cut contribu-
tion. The unitarity condition reads

—LA,, (s)—A,;*(s)$=PA, s*(s)pt. (s)e(s—st.,)A t.,(s), (2)

where ps(s) is the kinematical factor, ss is the threshold

' M. Sugawara and A. Kanazawa, Phys. Rev. 126, 2251 (1962).
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for the state, an s—s~k, d 8( —s ) is the usual step function gre ular we have from (5)
s. If'

h
'

that the right-hand cut starts at sp.
s—spb A*s)~ '(2) ismultipliedbyA '(s) ontheright and yL (s j

on the left, the unitarity condition becomes

p (s')I (s')

a (s' —s) (s' —so)

Im(A —'(s));;= —5;;p;(s)8(s—s,) . Im(A '(s')1.(s'))

)The dispersion relation (1) implies t ( )
'

e is
' -, ' ' '

hat A~s~ is itself a
boundary value of an analytic function.

Analyticity and unitarity are satisfied if we consider

s —s s sp

P(s) =A-'(s)L, (s)

assunling A (s) is nonsingular, and writem

s—so p (s')L;(s')
il '(s)L(s) =1—— —ds'

7t gg s —s s —s()

rThe dispersion. reLation (5) tacit y assumes that

(4) s' which contribute significantly to the integra

and Im(A '(s')L(s')) is small for the effective s', one
may neglect the third term in (6) to obtain the approx-
imate solution

s—sp Im(A '(s')I. (s'))
ds', (5

s —s s —sp

A~'i(s)= L '(s)

p(s')L(s')
~ ~

where the subtraction point so is taken at the position

infinite, such as the beginning of the left-hand cut Cl,
when L(s) includes a one-particle exchange orce. n

(5) it is understood that L(s) is infinite in
hold so thateneral at some point sq below the thres-o

L s) will dominate the amplitude A (s) in the vicinity
of s&. The existence of such so may be justified by view-
in all. the exchange forces between strongly interactinging a e
par ices at l as governed by the Yukawa mec a

'

the h .sicali ion& cdd't' there are pole terms closer to e p y
'

than the beginning of the left-hand cut Cl. oof suchregiont an e
a kind, it will then be assumed that they will ddominate
the scattering amplitude. If L,s~

4

~s~ does not become
infinite at any finite point below the threshoM, one may

~5~ F r the left-hand cut contribution
t the scattering amplitude on the distant

situationleft-hand cut in this case; one may have the situa
'

which A (s)~L(s) as s ~—~. In writing the once-ln whlc s ~ s
is also ke t insu trac eb t d dispersion relation (5), it is a p
5 will roceed

'
d th t theformalismresuIting from 5 wi p

arallel to the once-subtracted Itr/D formalism.
'

m. Then
in the physical region where the input pototential I. ,s is

1 ImI. (s') 1
I.(s) =— —ds'=——

7l gL S —S 71

InlA (s )—ds) 8
L s —s

where it. is recalled that

ImL(s) =—ImA (s) for s on Cq (9)

from (1).On the other hand, we get from

ImL, (s) = Im(A (s)F(s)) for s on Cr, , 10

and thus from (5)

ds I» s —zp s
cz s —s s' —so

We observe that (7) is the approximate solut:ion one
the X, D formalism by the determinantal

e determi-method. It is interesting to remark that t e d
nantal method in the cV/D formalism is consistent with
neglecting the left-hand cut integral other than L(s) in
this formalism.

As was mentioned before, Ad,.t(s) does contain a
su cbtraction parameter sp and is not ymt s metric. Ke can

r e uations beliminate the dependence on so in our equa
'

y
using the following relations:

( s —so
IlllL (S)= $1mA (S)ji

p (s')I (s')

, (s' —s) (s' —so)

s—sp—l' ds'
i

14eA (s)Im(A-'(s) I (s) ) . (11)
S —S S —So

while the tllird term itl (5) is complex thei. e.
'

gInsertin 11) into (g),The second term in (5) is real for s on Cr, w i e t e ir

. Salam LNuovo Cimento 16, 54 (&960 for the sIngle channel
d+s are two diff tf to1 t It '

ot d th t 3-I( )I.( )'()The fact that one writes a nonsubtraction re a ion orI(' ent to zero as 1/ fo 1,threlation for A '(s)1.(s). If A (s) and Lyse wen o z
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one obtains

1
L(s) =- S —Sp—[ImA (s')]

I jr1, $ —S

p (x)L (x) s' —so
dx— -+-

(x—s') {x—so)

Inr(s}-'(s)l (s)))dx—
X—S X—Sp

I—ReA (s')Im(A-'(s')L(s')). (12)
1

7l CLS S

or s on z,
'

real (12) becomes, by making use of (8For s on Cg, where L(s) is rea, , e

—L (s') L(—s))s (s') L (s')L(s) =L(s)+ —— s
cg S —S

e ' —— n A
—' s')L(s')) — —ReA(s )I.m s'n A
—' s' L s — —- '

. A
—' s')L(s')) (13a).——ReL(s') ——L(s) Im(A —'(s' L s — — . s'

)('

on the right of (13a) is not a principal value integral because s —. — ' —s

Similarly, for s on CL, where L s ecomes

1
L(s) = L, (s)+

ds $ So 1
—,—L(")—— -L( ) lp(")L(")—

I
Lt S —S S —Sp

—r
RsL (s))Irrr ( I ' (s') L ( r ') }——ReL s' — -- ~e s

L $ —S S —$0

I}uL(s')

S —$ S —Sp

S—Sp—ReA (s')Im(A-'(s')L(s'))+i
c~ S —$

d the Poincare-Bertrandrations we have useer of re eated principal value integ~Here in interchanging the order o repea ec)
lltransformation formuIa

p(s', x)
dS

S —S X—S

p{s',x)
dx= —~'q (s,s)+

dS——I'
L S —S I X—$ CL,C C

en s. e i . t e ri ht of. (14) exists inends. The integral over. x on t e rignot coinciding with one of its en s. e i t e ri
b f ll to ofonepol b th th r.

Therefore, it follows from (13aq and . a

S—Sp

for s on Cg, and

$—Sp

p(s')L(s') s —so

('—)('—o)

1
= L—'(s)

p(s')L(s') s—s,

S —S S —Sp 7I

Im(A —' (s')L (s') )

(s' —s) (s'-s )

L (s') p (s')L(s') 1
l

S —S

Im(A —' {s')L (s') )
dS

S —S S —Sp

11(IaeL (s') —ReA (s') )
dS

S —S

= [ReL(s)+i ImL(s)g —' ,L(s')p(s')L(s')
ds'- — +-

S —S

ReL (s') —IteA (s')
(S

S —S

for s on CI.. Inserting (15) into (5), we get

A-'(s)L(s) =1—L '(s) I'—L(s')p {s')L(s')
CS—

S —S
Im(A —'(s') L (s')) —ip(s) L (s) (17)S

1
S —S

G. Fr e andra/ L&' ucctions (P. Noordhoff Ltd. , Groningen, T e e er"N. . us. I. M khelishvili, Singular Integra/ Equations . oor
R. L. Warnock, Phys. Rev. 1B, (
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for s on Ca while we obtain from (16) and (5)

A '(s)L, (s)=1—L '(s)—
L(s')p(s')L(s') 1

ds—
$ —$

ReL (s') R—eA (s')
ds- Im(A '(s')L(s'))

$ —$
(18)

for s on Cr,. Thus, it is noted that (17) and (18) are free from the subtraction parameter so. It is not surprising
that so is eliminated since A (s) in principle should not depend on any subtraction point. ' We prefer (17) or (18)
to (5) since they will give the correct residue at all singularities, in the unphysical region, where the input force
L(s) becomes infinite. However, this is true for (5) only when there is one such singularity present, and when so

is taken at the point where L(s) becomes infinite.
In principle, one can solve for A (s) from (17) by calculating ReA (s) and Im(A '(s)L(s)) from (18) by iterations

and by inserting into (17).However, it is clear that the process brings in computational difficulties, and in practice
one is using only some approximations to the left-hand cut input force L(s). Thus we might as well use only the
approximated form for (17) or (18).In making approximations one has to be sure that the scattering amplitude
should manifest time reversal invariance; that is, we should preserve the symmetry of the expressions.

III. APPROXIMATE SOLUTIONS

In this section we give a symmetric, approximate solution to the scattering amplitude obtained from (17) and
(18), which is applicable to the many-channel problems.

The simplest approximation is to neglect the left-hand cut contribution beyond L '(s) in (17) or (18):

A, (s) = I.—'(s) —I.—'(s) I'—L(s')p(s') L(s') )
IL (s) &p(s)-—

s' —s
(19)

C(s)=——
L (s') p (s')L (s')

dS
$ —$

(21)

One gets from (20) and (21)

L-'(s)A (s)

j.= &+(&+ I—'(s)C(s))C—'(s)C(s). (22)
1—L-'(s)C(s)

"The notation A, (s) is after Ref. 8.

for s on Cg.
This is exactly the same as the approximate solution

to the X/D equations obtained by Shaw. "It is observed
that Shaw's procedure of arriving at (19) is less trans-
parent and does not provide a clear way of obtaining
higher order corrections of the left-hand cut contri-
butions beyond L '(s). However, the present procedure
provides a straightforward way of obtaining such higher
order corrections, if necessary.

We want to get an approximate form for the integral
over Cr, in (17), by calculating (18) near the starting
point of the left-hand cut where L(s) becomes infinite.
We start with an approximate form of (18)

(1 L(s')p(s')L(s')
A-'(s)I. (s) = 1—L—'(s)

l

— ds' (20)
sly ca s s

for s in the unphysical region where A (s)=L(s). The
form (20) is equivalent to A, (s) of (19) evaluated in the
unphysical region. It is noted that the integral over C&
in (20) is real for s below the physical threshold and is
denoted there

ReI.(s)—ReA (s) —C (s) (23)

Im(A '(s)L(s)) —LImL '(s))C(s) (24)

in the unphysical region. Thus, it follows that

ReL (s') —ReA (s')
ds'— Im(A —'(s') L(s'))

$ —$

C(s')ImL '(s')C(s')
ds—

$ —$
(25)

and finally from (17) and (25) we obtain

A(s)= L '(s) —L '(s) I'—I.(s') (s')L(s')
dS

$ —$
1

C (s') ImL—' (s')C (s') )ds— IL
—'(s) —ip (s)

$ —$
(26)

in the physical region. It is apparent that A (s) like
A, (s) does not contain any subtraction parameters and
is symmetric. Equation (26) is applied here to the boot-
strap problem. It is realized that its applicability is not
limited to such problems. One may use it to simply
calculate the scattering amplitude. Higher order cor-
rections beyond the last term within the inner bracket
of (26) may be obtained by including more terms in the
expansion (22). Near the starting point of the left-hand
cut, (22) converges absolutely, so that the higher order

By neglecting terms in (22) beyond 0(L '(s)), it
reduces to



PARTIAL —WAVE DISPERSION RELATIONS

terms will not change appreciably the integral over CL,
in (17) from (25). In the vicinity of the region where
L(s) dominates A (s), the integral over Cr. in (17), and
thus the estimated form (25), will be very small when
compared to the integral over Cii. Hence (26) becomes
very similar to (19).This small term which plays a role
as correction beyond L '(s) in this formalism, however,
may become important when a derivative condition is
involved.

It should be mentioned that our procedure is not
exactly the same iteration scheme as the one we face in
the S/D equations. There, under each iteration, the
right-hand cut contribution in the D equation should
be re-evaluated. It is also well-known that the L(s)
from exchange considered in Sec. IV necessitates a
cutoff in order to obtain a fully iterated solution to the
partial-wave dispersion relations. Hence instead of
iterating (18), we start with an approximation in the
expansion (22), while keeping the same right-hand cut
contribution, to estimate the integral over Cz, in (1'7)
rather than simply neglecting it. By including more
terms in the expansion (22) the integral over Cz, in (26)
only changes and it still converges without introducing
a cutoff at least for the L(s) considered in the following
section. For the example discussed in Sec. IV, when we
included up to C'(s) term in the expansion (22), it
turned out that the integral over Cr, in (17) was not
very different from. (25) and the final result did not
change appreciably from that of (26). Thus for our
example in Sec. IV, it is felt that the form (26) is good
enough.

It might seein that the approximation (26) involves a
lot more work than the approximation (19). But since
one is iterating only one integral C(s) of (21) in (26),
instead of whole A(s), the whole procedure is not so
much involved. Actually the integral C(s) of (21) is
determined completely by the knowledge of L(s) in the
physical region and it is merely an analytic continuation
of the right-hand cut integral below the physical
threshold. The estimated form (25) seems reasonable
especially in the region where L(s) dominates A (s). The
point is that one may estimate the integral over Cz, in
(17) starting with the first-order approximation via the
customary procedure of the inverse amplitude tech-
nique, for this may be important as far as its derivatives
are concerned.

One may try to compare numerically the various
approximations (19), (26), and similar forms with
different integrals over Cz„and even the determinantal
method (7) for a given input L(s), if one so desired.
However, when the input L(s) is just some approxi-
mation to the left-hand cut contribution in A (s), it is
not at all clear that an exact solution to (7) is neces-
sarily a better approximation to A (s) than (26) or (19)
or even (7) with a properly chosen ss. Hence it is felt
that the comparison may not be a very conclusive one.
For this reason, in Sec. IV, we apply the approximations

(19) and (26) to the p-exchange bootstrap problem for
which there exist calculations by the determinantal
method, ' ' and corn.pare their results instead of com-
paring numerically the various approximations with the
fully iterated solution of (17) for the approximate L(s).

It is seen that when L(s) is given by a single-pole
term, both (19) and (26) give the same amplitude as the
one from (17). The determinantal method (7) gives
also the same answer provided so is taken at the pole
position.

1 " A '(s, t,u')
+— du'-, (27)

7l I —I
where the pion mass is taken to be unity. The absorptive
parts are shown" as

A '(is, t, )u=Q Xrr A('(t, s,u)

=p &rr ImAr'(t, cos8i), (28)

A '(s, t,u)= (—1)'P &rr A '(u, s, t)

= (—1)'P Xrr. ImA'(u, cos8„), (29)

where (Xrr ) is the 3&&3 crossing matrix. The tth partial
wave is defined by

1

A ir(s) =- d(cos8, )Ei(cos8,)A i(s,cos8,). (30)
2 ]

Thus, we get from (27), (28), (29), and (30) the, t

1 4
A i'(s) =-

ms —4
dt's xri.

2t
XImA'(t, cos8i)Qi~ 1+ ~, (31)

s—4i'
and

-s+4
ImA i'(s) =

s—4

&&+ Xir ImA'(t, cos8i) (32)

in the unphysical region. The one-channel approxi-

"K.Kang, Phys. Rev. 184, 31324 (1964).

IV. APPLICATION TO A SINGLE-CHANNEL
BOOTSTRAP PROBLEM

In this section we want to apply A (s) of (26) as well
as A, (s) to the bootstrap of the p meson in s.s. scattering.
The input force L(s) is calculated from the single dis-
persion relation

1 " A, '(s t', u)
A I (s,t,u) = dt'—
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Then we get from (31) and (32)"

4
B(s) =-- —---4 «'(s)

s—4

mp' —4+2s
-= I2I'

(s—&)'

INPUT DIAGRAM

and

ll11B(s)=1111 = A «(S)
s—4

1n 1. —— —2 (37)

'«r«p —4+ 2$ 2««sp )=121
' 1+-

~
(38)

(s—4)' s—4)

OUTPUT DIAGRAM

(R) (b)

F«o, 1.(a) The input diagram, describing the exchange force for
the process s~~«r«r. (b) The output diagram, describing the
appearance oe of the p as a resonance in the 7f.m state.

mation considers only the 1=1,3=1 partial wave and
ignores all others. In fact there is good evidence of an
I=0, 3= 2 em- resonance at around 1.25 BeV."In some
calculations" the s waves are shown to be important.
Nevertheless, they will not be included, for the present
calculation is merely an illustration of the «materia o
Sec. III. It will be shown that our procedure provides a
self-consistent solution; namely, the same values which
we put into (31) and (32) for the position and the width
of p are produced in (26), for this oversimplified model.
LCompare Figs. 1(a) and 1(b).j

In order to have correct threshold behavior, the
scattering amplitude is redefined

1 «"+' C(s')ImB '(s')C(s')
B '(s) —s (s)

s —s

where B—'(s) = 1/B(s) in the single-channel case,

p(s) = (s) (s—4)'"/s",
and

ImB—'(s) = —ImB(s)/~ B(s) ~'.

Then A (s) will depend on x =s/4, r= nz'/4, a,nd I';

2 (x) =B(x)/D (x),

(39)

(40)

(41)

(42)

in the unphysical region. It should be noted that the
width I' corresponds to s (y,' /4«r) of Ref. 7 where they
obtained the input force from calculating the exchange
graph LFig. 1(a)). From (26) A (s) is given by",B(").(")B(")
A(s)= B—'(s) —B '(s) I' ds'—

T 4 s —s

A «(s) -+ — A «(s) .
s—4

where
(33) 1 " B(x')p(x')B(x')

D(x) =1—B '(x) Pdx'—
S'—S

, 1 e a Breit-signer form for the p resonanceKe also assume a

A«= r=«(t)=
3—4 r«z

' t sI'(t —4)'«'/t'«'— —(34)

"+' C (x') ImB—'(x') C(x') —sp(x)B x .

We want r and F such that
If we further make the narrow-width approximation,
we get from (34) ReD(r) = 0, (44.)

ImA, ,« «(t) = I'=(t 4)S(~n„'-t)—
T'hus, the approximation amounts to

(35) dReD (x)~= —B()
dS g

(45)

2s )P Xzz Q (2t+1)P«1+- ~1«nA «'(t)
t—4i

=$7rI'(t 4+25)b (m—p' t) . (36)—

14%. Selov, V. Hagopian, H. Brody, A. Baker, and E. Leboy,

Sinclair, and J. C. Vander Velde, Phys, Rev. Letters 12, 342

The inverse of the scattering amplitude 2 ' is calcu-
lated for a set of values of m, and j. which specify the

'6 It should be observed that (37) is actually an approximation
to the whole amplitude A (s) in the unphysical region rather than

t t the left-hand cut contribution, However, we further assume

nantal method can satisfy crossing symmetry roughly by ta ing
nt at the be inning of the left-hand cut sincedtthAq, q(zs)=i(ss) there. See Ref. 7. 8 s eno es e

appi'oxiil1a ing s It' I ( ) in the main text for the px«r example.
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input mass and width of the resonance, respectively.
For the given input mass and width, the output mass
m, obtained from the zero of Re(A ') or ReD(x) of
(43), as well as the output width given by (45), are
readily obtained. A self-consistent mass occurs if the
input m, value agrees with the output ns, value.
Similarly a self-consistent solution in the width occurs
if the input F value agrees with the output 1 value. A
completely self-consistent resonance is obtained when
both m, (input) equals m, (output) and I' (input)
equals I' (output). It turns out that there is such a
self-consistent solution, and the position and width of
the p resonance are found to be m, =322 MeV, F=O. l12
(=45 MeV). The resulting parameters are determined
clearly by insisting that Re(A ') should not have ghost
zeros near the physical threshold. It should be noted
that if B(s) contains a dynamical zero, it may produce
a spurious pole in the approximation (26) like that in
(19). One may avoid a ghost pole below threshold by
including this dynamical zero in p(s). Indeed the B(s)
of (37) contains such a zero at s= 2——,'m, ' and thus such
zeros in Re(A ') may still exist in the unphysical region.
Our Qmal Re(A ') with the resulting parameters is
examined and found to have no spurious zeros for
2—2mp Qs+4 in the unphysical region. The behavior
of ReD(x) for large x is such as to reach a minimum
negative point beyond which it approaches the real
x axis asymptotically from below. However, we do not
attribute any physical signi6cance to this behavior,
since our approximation does not hold for large x.

Similar calculations are carried out using the expres-
sion A, (s). Although a self-consistent solution in the
mass is obtainable at about m, =3SO MeV, input
I"=0.15, the output width is found to be of the order of
one half the input width. Thus it is seen that the addi-
tional term in our expression 2 (s) plays a role in the
output width value to bring about a completely self-
consistent solution. This may not mean that the
approximation (26) is necessarily better than the
approximation (19), in the sense that the output width
calculated from a plot of the phase shift instead of (45)
may give different results for the two approximations.
Insofar as the determination of the parameters is

concerned, using (45) instead of the phase-shift plot
reduces the work greatly. It should be noticed that both
(19) and (26) give a similar value of the self-consistent

0

The calculation was performed with the aid of the
University of Michigan IBM 7090 computer.

V. CONCLUDING REMARKS

Despite the fact that our results in the example of
Sec. IV are considerably oG the measured values of the
p resonance, we feel that the present calculation gives
good results when compared to previously published
results. Further, our procedure is free from subtraction
parameters and is symmetric.

It should be kept in mind that the calculation in the
previous section makes the following approximations
which shouM be improved for a more realistic calcu-
lation:

First of all, the input force L(s) is taken from the
exchange force in the 5=1, L= 1 state, neglecting all
other partial waves, and is assumed to be valid all over
the left-hand cut. Secondly, the contributions from
other inelastic channels to the scattering amplitude
have been ignored.

The procedure developed in Sec. III is basically a
many-channel one. It is easily applicable to the many-
channel problem. Other forms of L(s) that can render
the dispersion relations algebraically soluble can be
discussed within the present framework. Also the pro-
cedure can be applied to the Reggeized bootstrap
problems. Any improvement on the calculation should
be preceded by an improvement on the calculation of
the input force L(s).
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