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The vector-spinor theory is examined to find whether there are any Kronecker-delta terms in the angular-
momentum plane or, in other words, to find whether all particles are on Regge trajectories. It had previously
been shown in lowest-order perturbation theory that a remarkable cancellation resulted in the vanishing of
the Kronecker-delta term from the spinor channel. This conclusion is re-established by general reasoning
which is independent of perturbation theory. The channel with the quantum numbers of the vector particle
is examined, and here there is no cancellation. The vector particle is not on a Regge trajectory. It is concluded
that the absence of Kronecker-delta terms in the j plane may still be used as a criterion for a "bootstrap"
system.

I. INTRODUCTION

HEN scattering amplitudes calculated by La-

~

~

~

~

grangian field theory are expressed as a Regge
representation, it usually happens that the represen-
tation must be modified by the addition of polynomials
in s, the cosine of the scattering angle. A polynomial
P (s) will only affect the rtth partial wave and will
therefore leave the Regge continuation a(l, s) unchanged.
The existence of such a term will mean however that
the function a(l, s) is not equal to the physical partial
wave at I,=n. In other words, the Regge function will
have a "Kronecker-delta" singularity at 1=m if it is to
represent all physical partial waves correctly. Since the
channels in which the Kronecker-delta singularities
occur depend on the elementary particles in the La-
grangian, the existence of such singularities has been
suggested as a criterion for determining which particles
are elementary. We shall see that one cannot obtain a
criterion for determining unambiguously in all cases
whether a particular channel possesses elementary
particles. However, we shall be able to determine
whether a theory has any elementary particles or, in
other words, to obtain a criterion for a "bootstrap"
solution. Such a solution will be one in which there are
no Kronecker-delta singularities in any channel.

Kronecker-delta singularities occur in the following
instances: (1) If a theory has an elementary particle
of spin 0, a Kronecker-delta singularity will occur at
j=0- in the channel with the quantum numbers of the
elementary particle. To show this we need merely
consider the integral equation one has to solve to obtain
the scattering amplitude. Generally the "potential'" will

be an analytic function of j, so that we can hope to prove
that the scattering amplitude is a Ineromorphic function
of j. When there is an elementary particle of spin o.,
however, there will be a term in the integral equations
which a6ects only the partial wave j=r. The integral
equation for this partial wave does not therefore have

*This work. was performed under the auspices of the U. S.
Atomic Energy Commission.' By "potential" we simply mean the input to whatever integral
equations are to be used. We do not imply that we are inserting
the potential into a Schrodinger equation.
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the same analytic form as the integral equation for the
other partial waves, and the scattering amplitude for
j=o. will not be equal to that obtained from other
values of j by analytic continuation. There is thus a
Kronecker-delta singularity at j= 0-.

(2) In a theory with two elementary particles of
spin 0-& and 0.~, a Kronecker-delta singularity will occur
at j=o &+os—1 in the channel with quantum numbers
equal to the sum of the quantum numbers of the ele-
mentary particles. ' The reason for this singularity is
the presence of unphysical or "nonsense" states. If we
expand the scattering amplitude in orbital angular
momenta 1, the smallest possible value of l is j—o-&—0-2.

At j= o.&+a. s1, there will thus be a state with t= —1.
If we first consider the equations for the scattering
amplitude at high values of j and then continue to
j=o&+os—1, the nonsense state will be coupled to the
physical state. In the equations for the correct physical
scattering amplitude, however, the coupling to the
nonsense state should not be included. Thus, the Regge
continuation of the amplitude to j=o.&+a s

—1 will not
be equal to the physical partial-wave amplitude at
this value of j.

Gell-Mann and Goldberger' have raised the question
whether there might be cancellations, so that the
Kronecker-delta singularities would not occur at the
positions just stated. They have suggested in particular
that the cancellation might occur in a theory of nucleons
interacting with vector mesons, and that the singularity
might be absent from the channel with the quantum
numbers of the nucleon. Such a channel has both an
elementary particle (the nucleon) with a = ~s, and a pair
of elementary particles (the nucleon and meson) with
o. +o.t1s= —',. The suggestion of Gell-Mann and Gold-
berger has been examined further, and a factorization
criterion has been given for the cancellation to occur.

' S. Mandelstam, Nuovo Cimento 30, 1113 (1963).
3M. Gell-Mann and M. L. Goldberger, Phys. Rev. Letters

9, 275 (1962).
M. Gell-Mann, M. L. Goldberger, F. E.Low, and F. Zacharia-

sen, Phys. Letters 4, 265 (1963).M. Gell-Mann, M. L. Goldberger,
F. E. Low, E. Marx, and F. Zachariasen, Phys. Rev. 133, 3145
(1964). M. Gell-Mann, M. L. Goldberger, F. E. Low, V. Singh,
and F. Zachariasen, ibid 133, 3161 (1964)..
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(b) (c)

I'zG. i. Lowest-
order perturbation
diagrams in the
nucleon on vector-
meson channels.

When the criterion was applied to the nucleon channel
of the spinor-vector theory, it was found that the can-
cellation did indeed occur in the lowest order of pertur-
bation theory. In other words, the nucleon lies on the
Regge trajectory in lowest order. The cancellation can
only occur if nonsense channels are present, but it
certainly does not always occur in such cases. For
instance, it does not occur in the theory of scalar
"nucleons" interacting with vector mesons.

The fact that the lowest-order perturbation amplitude
in the vector-spinor theory satisfied the factorization
criterion appeared to be somewhat of a miracle. The
perturbation terms were just such as to produce a
Regge behavior (without a Kronecker-delta singu-
larity), but no deeper reason for this was evident. It is
the aim of the present paper to show directly, without
detailed calculation, that there is no Kronecker-delta
singularity at j=—,

' in the nucleon channel. We shall
thus be able to con6rm the conjecture of Gell-Mann
et al. that the cancellation of the Kronecker-delta
singularity is not con6ned to the lowest order of per-
turbation theory, but is general.

We shall also examine the channel with the quantum
numbers of the vector meson in the vector-spinor
theory. There is of course an elementary particle in
this channel at j= 1 and, while there does not exist a
pair of particles with 0.~+02—1=1, there exists a
triplet of particles, namely three vector mesons, with
0~+oq+0,—2= 1. It has therefore been suggested that
the cancellation of the Kronecker-delta singularity
might occur in this channel as well. The theory would,

then be free of such singularities. We shall 6nd, however,
that the singularity is in fact present. We shall make the
approximation of neglecting intermediate states with
more than three particles, but such an approximation
appears to possess all the essentials of the problem.

The characteristic feature of the nucleon channel in
the vector-spinor theory is that the diagram Fig. 1(a),
with a one-nucleon intermediate state, cannot exist by
itself but must be taken together with Fig. 1(b). Either
of these diagrams taken separately would give an ampli-
tude, the asymptotic behavior of which is in conAict
with unitarity. Stated more loosely, the individual
d,iagrams are not gauge-invariant. The vector-meson
channel does not have this feature. The diagram Fig. 1(c)
is gauge-invariant and can certainly exist alone. It had
been suspected that this difference between the nucleon
and meson channels might lead to a difference in their
Regge behavior, and we shall show that such is the case.
We should emphasize, however, that the necessity of
adding a diagram like Fig. 1(a) to one like Fig. 1(b)

does not in itself guarantee a Regge behavior. One must
compare the number of threshold conditions with the
number of free parameters in a partial-wave integral
equation. The scalar-vector theory also has a diagram
Fig. 1(b) which goes with Fig. 1(a), but it is not of
Regge-type.

From the remarks made in this section, it is clear that
one cannot use the Kronecker-delta singularities in the
j plane as a universal criterion for distinguishing ele-
mentary from nonelementary particles. Even in theories
without vector mesons one cannot obtain an unambigu-
ous criterion. If a theory has elementary fermions of
spin —'„ for instance, one cannot use such a method to
test for the existence of an elementary particle with
spin zero in the two-fermion channel. This channel has
a pair of particles, the two fermions, with 0 &+0.2—1=0,
and. there will therefore be a Kronecker-delta singularity
whether or not there is an elementary particle present.
One can still use the criterion to test whether there are
any elementary particles present in a theory. The
vector-spinor system does not provide a counter-
example, since there is a Kronecker-delta singularity
in the meson channel even though there is no such
singularity in the nucleon channel.

A =Xi+A~, (2.1)

where A~ is the integral over the left-hand cut and A ~

the integral over the right-hand cut. In general we would
know A~, either explicitly or from a previous iteration,
and we would then find A ~ by unitarity. We shall refer
to A~ as the "potential" and shall denote it by the
symbol U. We shall use the subscripts s and e to denote
sense and nonsense states.

When the angular momentum j approaches the value
0.,+02—1, the matrix elements of the potentia/ will

behave as follows:

V„—+ 6nite,

I'-~ &/v'(j —~i—~2+1)

V„„~c/(j ~, ~, —+1)—

(2.2a)

(2.2b)

(2.2c)

The pole in the element V arises from the fact that
a nonsense amplitude involves a value of l equal to
—1 (or another negative integer). We recall that the
Froissart-Gribov formula for the analytically continued
amplitude contains the function Q~, which has poles
when l is a negative integer. The sense-nonsense ampli-
tude will also include a factor Q~ with l= —1 but, on the
other hand, such an amplitude always has a factor
g(j—a&—a.q+1) from the Clebsch-Gordan coeKcient,

II. THE BEHAVIOR OF THE POTENTIAL AND
OF THE SCATTERING AMPLITUDE

NEAR j=e1+e&—1

Before treating our problem it will be necessary to
review some properties of the amplitude in the j-plane
near j=0 1+0.2—1.We write the scattering amplitude as
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III. THE PHYSICAL PARTIAL WAVES COMPARED
WITH THE REGGE CONTINUATION

Before we treat the spinor-vector system, let us
examine a general channel which has a pair of elmentary
particles with spin cT~ and 02, and in which the special
features of the spinor-vector system are not present.
We shall compare the correct physical partial wave at
j=o&+a2—1 with the Regge continuation and shall
investigate how they diGer. We shall 6nd that the effect
of the coupling to the nonsense states can be replaced
by a hctitious elementary particle. In Sec. IV we shall
apply this result to the nucleon channel of the vector-
spinor theory, and shall deduce the results stated in
Sec. I.

The scattering amplitude can be determined from
the potential by solving the integral equation

N( j,s) = V(j,s)+—
S —S

and this factor vanishes at the integer in question.
Thus V,„only has a factor g(j—o&—a2+1) in the
denominator.

If we examine the unitary scattering amjlitude instead
of the potentials we must bear in mind that each matrix
element of the scattering amplitude will be bounded by
unitarity. The square-root branch point at j= 0&+02—1
will still be present, so the amplitude will have the
behavior

2,„—+ BQ(j—0 ~
—0 2+1), (2.3a)

(2.3b)

Equations (2.2) and (2.3) indicate a difference between
the behavior of the potential and the unitary scattering
amplitude near J=o.&+0.2—1.

A question closely related to the singularities of the
potential is the behavior of the Regge trajectories as
the coupling is turned on. In a theory without spin, the
leading trajectory begins to move from the value j= —1
as the coupling is increased. If, however, there is a
nonsense channel at j=e, where m is a positive integer
or zero, a trajectory will move from j=e. This is an
immediate consequence of the pole in the potential at
j=n since, when the coupling is very small, the scat-
tering amplitude must be almost equal to the potential
and must have a pole very near j=e. Similarly, if
there are r nonsense channels at j=e, there will be r
separates poles in the potential at j=e, so that r Regge
trajectories will move from the value j=e. In general,
there will rot be particles or resonances at the points
where these trajectories cross the lines j=e, because
the physical partial waves at j=e are not given by the
Regge function. In the exceptional case of Gell-Mann
et c/. , however, the nucleon will lie at the point where
the trajectory crosses the line j= —,'.

1
D(j,s) =1—— ds'

7r s —s
k (s')N (s'), (3.1b)

ImA, g= kA, *A,p, (3.2)

where the summation is over sense intermediate states
c in the physical partial wave, and over sense and non-
sense intermediate states c in the Regge continuation.
We have already seen however that the scattering
amplitude between a sense and a nonsense state is zero
at j=o&+02—1 tEq. (2.3)j. If, therefore, a and b are
sense states, the summation c need be taken over sense
states alone, even in the Regge continuation. The
unitarity condition for the physical partial wave is,
therefore, the same as for the Regge continuation.

The diGerence between the physical partial wave and
the Regge continuation must, therefore, lie in the C.D.D.
ambiguity. We have mentioned in Sec. I that r Regge
trajectories start from the value j=e in question, where
r is the number of nonsense states. For very small
coupling, some or all of these trajectories may pass
through the value j=n at a particular value of s. The
solution of the equations for the coupled sense and
nonsense states will have particles or resonances at this
value of s. If, therefore, we take the solution and ex-
amine only the sense states, which we have seen to
satisfy the unitarity equation among themselves, we
may 6nd that they represent any C.D.D. solution up
to the (r+1)th

One may ask whether Levinson's theorem does not
forbid the higher C.D.D. solutions if elementary parti-
cles are not introduced explicitly into the calculations.
However, Levinson's theorem applied to the partial
wave j=e would refer to the physical partial wave,
not the Regge continuation. One could also apply

where k is a kinematic factor. The quantities E, D,
and V will be matrices of order equal to the number of
channels. If we are calculating the physical partial wave
we must include only the sense channels, whereas we
must include all channels for the Regge continuation.
Since the ro.atrix elements of V involving the nonsense
channels are certainly not zero, the physical partial
wave will differ from the Regge continuation.

To investigate the matter further, we shall examine
the conditions which led to Eq. (3.1). The equation is
a consequence of the following three requirements:

(i) analyticity,
(ii) unitarity,

(iii) the choice of the lowest Castillejo-Dalitz-Dyson
(C.D.D.) solution,

and we must determine whether these conditions when
applied to the physical partial wave are different from
when they are applied to the Regge continuation.

The analyticity requirements (in the s plane) for the
physical partial wave and the Regge continuation are
of course identical. The unitarity equations are
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Levinson's theorem to values of j other than j=e, and
then proceed to j=e by analytic continuation. In that
case the theorem would involve the sum of the phase
shifts in the sense and nonsense channels. The theorem
does not say anything about the phase shift of the sense
channels alone in the Regge continuation. Thus, if we
solve the equations for the coupled sense and nonsense
channels and examine the sense channel of the solution,
we may find that it is a higher C.D.D. solution, even if
elementary particles have not been introduced into
the calculation.

To summarize, the sense states of the Regge continu-
ation may represent any of the C.D.D. solutions up to
the (r+1)th where r is the number of nonsense states.
In other words, there may be up to r+1 fictitious
elementary particles in the sense states of the Regge
continuation. The parameters corresponding to these
particles cannot be found without solving the equations
with the nonsense states included, but, once they are
known, the nonsense states can be ignored. The dif-
ference between the physical partial wave and the
Regge continuation will, therefore, be that the physical
partial wave involves the real elementary particles which
are introduced explicitly into the calculation, while
the Regge continuation involves the fictitious elemen-
tary particles which replace the nonsense states. In
general, the number of elementary particles for the
two cases and the parameters associated with them will
be di8erent, so that the physical partial wave will be
different from the Regge continuation.

tween the asymptotic behaviors, we cannot conclude
that the Kronecker-delta term must vanish

We shall proceed to investigate this question by ex-
amining the dispersion relation for the partial waves.
For simplicity we shall con6ne ourselves to the equal-
mass case. We shall find that the parameters cannot
be varied in the vector-spinor theory but that they can
in the vector-scalar theory. Our reasoning will not de-
pend upon the precise value of the discontinuity across
the left-hand cut, so that we will not be limited to an
input corresponding to Fig. 1(b). The conclusions are
therefore, independent of perturbation theory. The
partial wave of interest is that in the nucleon vector-
meson channel with j=~ and positive parity. There
are two sense states and one nonsense state involved:

Sense: 5=—', /= 1; Nonsense: 5=-,', I= —1.

The variable 5 is the total spin, / is the orbital angular
momentum. When we write down partial-wave disper-
sion relations in a channel with half-integral spin, we
have to take m, the square root of s, as out variable,
otherwise the amplitudes will contain kinematical
singularities at s= 0. On going from m to —m, the partial
waves will go into linear combinations of the partial
waves with the same value of j but with opposite
parity. The possible states are then:

Sense: 5= —,', 3=2; Nonsense: S=~, l=0.
5= —,', 1=0.

IV. THE NUCLEON CHANNEL IN THE
VECTOR-SPINOR THEORY

For the nucleon channel of the vector-spinor theory,
the above results must be supplemented by our knowl-
edge that the parameters associated with the ele-
mentary nucleon cannot be varied arbitrarily if the
analyticity-unitarity equations are to be soluble. We
have pointed out that a potential represented by Fig.
1(b) has an asymptotic behavior which violates the
unitarity limit, and that the equations will not be
soluble unless Fig. 1(a) is also included. Further, the
parameters associated with Fig. 1(a) cannot be varied
arbitrarily if the asymptotic behavior of the terms as-
sociated with the two diagrams is to cancel. The ques-
tion, therefore, arises whether the parameters associated
with Fig. 1(a), i.e., the position and residues of the
pole, can be varied at all without destroying the cancel-
lation between the two diagrams. If they cannot, we
may conclude that the parameters associated with the
real elementary particle in the physical partial wave are
the same as those associated with the G.ctitious ele-
mentary particle in the Regge continuation. The two
amplitudes then cannot differ, and there will be no
Kronecker-delta term in the j plane. If on the other
hand, we may vary the parameters associated with the
elementary particle and still obtain a cancellation be-

We now have to investigate the threshold and
asymptotic behavior of the partial waves. We shall
normalize the partial waves so that the unitarity con-
dition contains a factor q(w, where q is the center-of-
mass momentum. The amplitudes will then be free of
kinematical singularities at w=0 (in the equal-mass
case). There will be three sense-sense amplitudes corre-
sponding to the two sense states, and they will all have
a constant asymptotic behavior at inanity. At the
thresholds w=2m (for positive parity) and w=2m (for
negative parity) they will have the behavior:

m=2m: all three waves are P-waves, which behave

like m =m;
DD (w+m)',
DS (w+m),
SS const.

U we set up an 1V/D calculation for the sense states
with a given left-hand cut, we can put in three sub-
traction constants corresponding to the constant asymp-
totic behavior of the three partial waves. On the other
hand, we have six threshold conditions to satisfy. We
therefore have too few parameters available and unless
the left-hand cut has special features, we shall not be
able to solve the problem.
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We can overcome this difficulty by introducing an
elementary particle into the channel. As there are two
sense states, we shall have three further parameters at
our disposal, and we can just solve the problem. None
of the parameters will be free; they must all be given
particular values i.f the threshold behaviors are to come
out right. This conclusion cannot be modi. 6ed by as-
suming the left-hand cut to have special features. The
E/D equations for the problem with an undermined

elementary-particle pole are linear integral equations
with no free parameters and, therefore, have a unique

solution, the case where the homogeneous equation is

soluble being easily accounted for. With suitable left-
hand cuts the residues at the pole could turn out to be
zero, though this does not occur in the problem under
consideration. The equation would then be soluble

without any elementary-particle pole, but it cannot
happen that the equations are soluble with a variable
elementary-particle pole.

We can now conclude that the physical partial wave
must be identical with the Regge continuation in the
nucleon channel. The physical partial wave has one
elementary particle, and the Regge continuation has
one fictitious elementary particle which replaces the
effect of the single nonsense state. Since we have just
proved that the parameters associated. with a single

elementary particle are fixed by the threshold condi-

tions, it follows that the parameters associated with
the real and the fictitious elementary particle must be
the same. The physical partial wave is thus identical
with the Regge continuation.

We can also treat the scalar-vector problem, and we

shall examine the amplitude for the scattering of scalar
particles by vector mesons. In the positive-parity state
with j=0 there is one sense state (t= 1) and one non-
sense state (/= —1). The sense state must have a con-
stant asymptotic behavior at inhnity and must satisfy
one threshold condition. The X/D integral equations
are thus soluble without any free parameters whatever
the position and residue of the elementary-particle pole.
The parameters of the elementary particle are not de-
termined by the remainder of the problem, and the
Regge continuation need not be the same as the physical
partial wave. ' Such reasoning does not of course prove
that the two amplitudes will not be equal, but direct
examination shows that they are in fact unequal.

~ The above reasoning would appear to indicate that one could
obtain a solution with arbitrary values of both the position and
residue of the elementary-particle pole. Actually only one of these
parameters is arbitrary. The reason is that there is a relation
between the helicity amplitudes at s =0, analogous to Eq. (7.15a)
in the paper of Goldberger, Grisaru, MacDowell and Wong,
Phys. Rev. 120, 2250 (1960). This relation must hold for the
Kronecker-delta term, and will reduce the number of parameters
from two to one.

(5.1)

The quantities a, b, and c are independent of the energy.
If there are several sense and. nonsense channels, a and
c will be square matrices, b a diagonal matrix. We note
that the type of singularity in the sense-sense amplitude
is completely different from that in the nonsense ampli-
tudes. In the sense-sense amplitude it is a Kronecker-
delta term, and it may arise from diagrams such as
Fig. 1(a) or Fig. 1(c) which affect only one value of j.
In the nonsense amplitud. e it is an infinity, and it arises
from the fact that the function Q~ has a pole when l is
a negative integer.

Gell-Mann et al. showed that the Kronecker-delta
term in the scattering amplitude cancels provided. that

a=b~c 'b. (5.2)

They did not show conclusively that (5.2) was a suf-
ficient condition, as there were some uncertainties
regarding subtraction terms in dispersion relations.
However, (5.2) was definitely a necessary condition, and.
it was obtained from the factorization property of
residues at Regge poles. Note that (5.2) provides a
separate equation for each sense state, so that we may
examine only those sense state which are convenient if
we are trying to prove that the equation is untrue. On
the other hand, the equation involves a sum over all
the nonsense states.

If the nonsense states in question are three-particle

V. VECTOR-MESON CHANNEL IN. THE
VECTOR-SPINOR THEORY

We have remarked that there is no correlation be-
tween diagrams in the vector-meson channel analogous
to that between Figs. 1(a) and 1(b) in the nucleon
channel. The arguments which we have given above for
the cancellation of the Kronecker-delta term in the
nucleon channel cannot, therefore, apply here. We now
wish to examine the amplitude in that channel in order
to show that the cancellation does not occur and. that
there is a non-Regge term.

We have already mentioned that the simplest inter-
mediate state which might Reggeize the vector meson
is the three-meson state. A complete treatment of the
problem will, therefore, require a knowledge of complex
angular momentum in the three-body systems. We hope
to give a discussion of that topic in a subsequent paper.
In the present paper we shall assume some general
results concerning the three-body problem, and shall
then show that there is a Kronecker-delta term in the
vector-meson channel at j=1.

We erst summarize some results of Ref. 4. It is shown
there that the potential has the following behavior i.n
the j plane near j=e, where e is an integer at which
non-Regge terms occur:



S. MAN DELSTAM

(b)
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FIG. 2. Perturbation diagrams in the vector-meson channel.

' The assertion that c must be of order g' for (4.2) to hold could
possibly be wrong if the matrix b~c 'b vanished in lowest order.
Thus if b=bgg, c=c6g +egg and b3 c6 'b3 ——0, the right-hand side
of (4.2) would be of order g'. We shall show in our paper on the
three-body problem that this does not occur for the case in
question.

states, the quantities a, b, and c will be integral operators
instead of finite matrices, and the question arises
whether the expression c ' has a meaning. We hope to
show in our subsequent paper in the three-body problem
that the operator c only spans a 6nite number of the
three-particle states, even though an infinite number of
three-particle states exists (at given values of s and j).
Thus, the equations (5.1) remain finite matrix equations.

Let us, therefore, investigate a nucleon-antinucleon
sense state and the three-meson nonsense states. The
potentials U„and V, will be given in lowest order by
Fig. 2(a) and (b). Since they are of order g' and gs,

respectively, the potential V„„will have to be of order
g' if (5.2) is to hold. The only diagram of order g' for
the process 3 mesons —+ 3 mesons is the disconnected
diagram Fig. 2(c), and it has been suggested that this
diagram might provide a contribution to c in (5.1)
which fulfills the criterion (5.2).'

We can conclude, however, that the diagram Fig. 2(c)
does not provide a contribution to the quantity c in

(5.1).Let us take as our angular variables the helicities
P and ) ' of the incoming system AB and of the outgoing
system A'8', together w'ith the total angular momentum

j. The angle corresponding to j will be the angle of
scattering of C. The scattering amplitude will then con-

FIG, 3. A diagram obtained by iteration
of those in I'ig. 2.

I(
I

I

1,

tain a factor 5(s), so that its angular-momentum pro-
jection will be 6),z, which is independent of j. This
diagram, therefore, has no pole at j= 1, and it will not
contribute to the quantity c of (5.1).

We can see in another way that the potential repre-
sented by Fig. 2(c) cannot give a contribution to the
quantity c. Figure 2 (b), together with repeated iteration
of Fig. 2(a), would give Fig. 3. Now the reasoning in
Ref. 4 shows that repeated iteration of the potential
diagrams must give increasing powers of the logarithm
of the momentum transfer if they are to result in
cancellation of the Kronecker-delta term. However, Fig.
3 was precisely the type of diagram considered by
Mandelstam~ and, by a slight variation of the arguments
used in Sec. 2 and Appendix l of that paper, it can be
shown that the increasing powers of the logarithm do
not occur.

Our conclusion is, therefore, that there is no contri-
bution to c of order g4, so that the Kronecker-delta term
in the vector-meson amplitude at j= 1 is not cancelled.
As a matter of fact, the three-meson states do not give
any pole at all in the potential at j= 1, and c is zero to
all orders of g'. There is thus no Regge trajectory which
moves from j= 1 as the coupling is turned on. We shall
prove this result when discussing the three-body
problem. The conclusions of the present paper are, of
course, independent of the last assertion.

' S. Mandelstam, Nuovo Cimento 20, 1127 (1963).


