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ber of fissions resulting from each of the three uranium
nuclei and the weighted average mass numbers of the
fissioning nuclei were calculated from the P„/PI ratios
of Vandenbosch and Huizenga. "For fission of U'" and
U" with 14.6-MeV neutrons, the average numbers of
neutrons emitted from fragments per fission were
estimated from these values to be 3.74 and 3.40,
respectively, giving curves II and III of Fig. 1. The
average mass numbers of the fissioning nuclei are 235.2
and 238.0. The neutron-emission curve of Whetstone" for

' R. Vandenbosch and J. R. Huizenga, in Proceedings of th:
Second International Conference on the PeacefNL Uses of Atolnic
Energy, 1958 (United Nations, Geneva, 1958), Vol. 15, pp.
284-294."S. L. Whetstone, Phys Rev.. 133, B613 (1964).

14-MeV neutron fission of U'" is quite different in shape
from the curves considered above and has much larger
uncertainties, but it gives essentially the same values
of v in the mass regions of interest.
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A calculation of the E -d low-energy elastic-scattering cross sections is carried out with the intent of de-
termining the importance of multiple scatterings. Under the assumption that the two-body interactions are
S-wave nonlocal separable potentials of the Yamaguchi form, an expression for the scattering amplitude in
terms of a set of one-dimensional integral equations for each partial wave is derived. The derivation does not
take into account Coulomb forces or the n-p and E -E mass differences. A transformation from real to
complex dummy variables that allows a rapid numerical computation of the solution to the integral equa-
tions for the scattering amplitude is presented and discussed. With the use of the Humphrey and Ross kaon-
nucleon scattering lengths, the elastic angular distribution and cross section, as well as the total cross section,
are calculated for incident kaon lab momenta of 105, 194, and 300 MeV/c. The results of the multiple-
scattering calculation for the elastic cross section are two to three times smaller than the impulse approxima-
tion results throughout this momentum range. The multiple-scattering corrections to the impulse approxi-
mation for the total cross section are small (&10%) only at the largest momentum used.

I. INTRODUCTION

HE intent of this theoretical investigation is to
determine the contribution of the multiple scat-

tering terms in low-energy E -deuteron elastic scatter-
ing. By multiple scattering (MS) terms we mean that
part of the expansion of the E -d t matrix beyond the
sum of the free E rt and E Pl matr-ices. By lo-w-energy

we mean those center-of-mass energies which lie above
the threshold for deuteron breakup and belov about
70 MeV. Our attention will be focused for the most part
on E -d elastic scattering, but the formalism developed

may be applied with varying degrees of modification to
E+ d, or-d, or 1V-d scat'te-ring (elastic or inelastic), or any
scattering problem in which the forces are of short range
and the target may be considered to be a two-particle
composite.

*Work supported in part by the U. S. Atomic Energy
Commission.

In the past two types of approximations have been
applied to the Ms series for scattering from deuterons.
In the first of these the motion of the neutron and proton
are treated adiabatically and the recoil of th se particles
when struck by the incident particle is neglected; i.e.,
the incident particle is considered to be scattered by
two potentials a fixed distance apart, this distance being
averaged according to the deuteron ground-state prob-
ability distribution after the scattering amplitude has
been calculated. Here it is found that for several types
of simplified two-particle t matrices the MS series for the
scattering amplitude may be summed into a closed form.
Such simplifications included nonlocal separable (NLS)
t matrices, ' zero-range t matrices, "and t matrices whose
matrix elements off the energy shell, "or in all but one

~ S. D. Drell and L. Verlet, Phys. Rev. 99, 849 (1955).' K. A. Brueckner, Phys. Rev. 89, 834 (1953); 90, 715 (1953).
3 R. Chand, Ann. Phys. 22, 438 (1963).
4T. B. Day, G. A. Snow, and J. Sucher, Nuovo Cimento 11,

637 (1959); Phys. Rev. 119, 1100 (1960).
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angular-momentum channel, ' ' vanished. The contribu-
tion of the MS terms calculated in this manner for
E—-d scattering is not insigni6cant for incident kaon
lab momenta up to 200 MeV jc.'

In the other type of approximation the MS series is
truncated. The most violent such truncation is the
impulse approximation in which only the single-scatter-

ing terms are retained. "Some calculations have been
performed in which, in addition to the single-scattering
terms, the double-scattering terms have been retained. ~'
In these calculations simplified forms for the two-
particle t matrices, such as those mentioned above, were
used in order to make the expressions for the various
cross sections amenable to numerical treatment.

We wish to investiga, te the importance of the MS
terms when neither a truncation nor a fixed scatterers
approximation is used. The assumption that we make
in order to carry out this investigation is that the
two-body potentials have a particularly simple form:
They are assumed to be S-wave NLS potentials.

Our primary concern here is not to obtain agreement
with experiment, but rather to test the validity of the
truncation approximation with a particular form for the
two-body potentials. The parameters in these two-body
interactions are chosen to fit the low-energy experi-
mental data, but mainly to insure that a,ny general
conclusions drawn from our results are applicable to the
physical problem.

It should be noted that NLS potentials have been

previously applied to similar problems by Mitra, who

treated the triton binding energy' and neutron-deuteron

scattering at zero energy. " Our work differs from
Mitra's in that we work with the t matrix rather than
the wavefunction and our discussion is not restricted to
the case of identical particles —a case which is actually
simpler than the one treated here. Most importantly,
we calculate cross sections at energies above the thresh-

old for deuteron breakup. In this energy region the
numerical evaluation of the theoretical expressions is
more complicated than it is at lower energies.

In Sec. II.A we derive the basic set of integral equa-
tions from which the scattering amplitude may be
calculated. These equations are of the I'"addeev-Lovelace

type. ""With the use of the assumption that each two-

' For ~-d calculations see S.Fernbach, T. Green, and K. Watson,
Phys. Rev. 84, 1084 (1951); R. M. Rockmore, ibid. 105, 256
(1957); j.13, 1696 (1959).

' For E-4 calculations see E. M. Ferreira, Phys. Rev. 115, 1727
(1959); V. J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho,
G. Goldhaber, and S. Goldhaber, ibid. 134, 81111 (1964).

r A. Everett, Phys. Rev. 126, 831 (1962).
' A. K. Bhatia and J. Sucher, Phys. Rev. 132, 855 (1963).
A. N. Mitra, Nucl. Phys. 32, 529 (1962).

"A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963).
"L.D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)

[English transl. : Soviet Phys. —JETP 12, 1014 (1961)g; DokL
Akad. Nauk 138, 561 (1961) [English transl. : Soviet Phys. —
Doklady 6, 384 (1961);Dokl. Akad. Nauk 145, 301 (1962) [Eng-
lish transl. : Soviet Phys. —Doklady 7, 600 (1963)g."C. Lovelace, Lectures at Edinburgh Summer School, in Stfong
Interactions in High Energy Physics, edited by R. G. Moorhouse
(Plenum Press, New York, 1964); Phys. Rev. 135, B1225 (1964).

particle interaction is an S-wave NLS potential, they
reduce to a set of one-dimensional equations for each
partial wave. Explicit results are presented for the case
of /C -d scattering with Yamaguchi potentials. Spin,
isospin, the identity of the nucleons and charge exchange
scatterings are taken into account, but Coulomb forces
and the ts-p and E E' m-ass differences are neglected.

In Sec. II.B a method for solving the basic equations
numerically at energies above the threshold for deuteron
breakup is developed. At these energies the kernels of
the integra, l equations in a momentum-space representa-
tion contain singularities at distances of the order of g,
g

—+ 0+ above the real axes: i.e., at distances g from the
contours of integration. In the method presented we let
all the momenta over which we integrate become com-
plex and evaluate each integral on a contour in the
complex momentum plane that lies relatively far away
from all singularities of the integrand. Each integrand
is thus made a fairly slowly varying function of its
arguments, so that the solution to the integral equations,
and hence the scattering amplitude, can be calcula. ted
numerically.

In Sec. III we introduce kaon-nucleon scattering
amplitudes whose scattering lengths are adjusted to the
results of Humphrey and Ross,"but whose ranges are
chosen rather arbitrarily. The nucleon-nucleon potential
parameters are those originally used by Yamaguchi. "
Several plots illustrating the eRects of the deformation
of the integration contours are presented. Results for
the K -d angular distribution, ela, stic cross section a,nd
total cross section are presented for incident kaon lab
momentum of 105, 194, and. 300 MeV/c. These results,
especially as they concern the validity of the single
scattering and double scattering approximations, are
discussed in detail. The dependence of the calculation
on the K -S parameters is briefIy investigated.

A summary of the work is given in Sec. IV.

II. THE MULTIPLE-SCATTERING EQUATIONS

A. Derivation

We calculate the matrix element 5R,~ for elastic E -d
-scattering a,t a total energy E,

The states
~
u),

~
b) are each a product of a spatial wave

function and an isospin wave function. " The spatial
wave function is a product of a bound-state wave func-
tion for the relative motion of the nucleons, a plane
wave for the relative kaon-deuteron motion, and a plane
wave for the motion of the center of mass of the whole
system. The isospin wave function consists of an isospin

"W. R. Humphrey and R. R. Ross, Phys. Rev. 127, 1305
(1962).

'4 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
~5 We have not included any spin-Rip mechanism in our calcula-

tion. The spin dependence of the wave function is therefore trivial
and has been omitted.
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singlet function for the nucleons coupled to the kaon
isospin to form a state of total isospin —,

' and s component
—~. The t matrix T is an energy-dependent operator,
but, as for all such operators this energy dependence is
suppressed.

We let particle 2 be kaon and particles 1 and 3 the
nucleons. The operator T satisfies the Lippmann-
Schwinger equation"

T=(Vi+Vs)+(V«+V«)G«T, (2)

where the Green's function G2 is defined by

G, = $E K V—«+i—«i) '
«i ~ 0+.

Here K is the total three-particle kinetic energy operator
and V; is the potential between particles j and k where
j4i and k@i.

As the first step in the analysis, we convert Eq. (2)
into a set of coupled equations involving the two-particle
t matrices rather than the potentials. The formal solu-
tion to Eq. (2) is

T=(Vi+V«)[1—Gs(V«+Vs)j-'. (4)

Using the identity

Gs ——[1—GV«j—'G

where 6 is the free three-particle Green's function

G=PE K+i«ij ', —

we obtain after some straightforward operator algebra

(7)

with

T"=V*8',i+V'[1 GZ Vi, j—'GU, , i, j=1,2, 3, (8)

8;,; being a Kronecker delta. Equation (8) is the formal
solution of

Separating out from the sum on the right of Eq. (9) the
term with k=i, combining it with the left-hand side,
and multiplying the result by [1—V,G) ', we obtain
the desired set of coupled equations'~

P=p«+pi+pi,

il'= P~+Pi,

k;= («««, ps —«««ip;)/OR;.

(14)

Here «««, is the mass of the ith particle, 9R;=m;+ «««i„and
ijk is a cyclic permutation of 123. In the ith natural
momentum-space coordinate system we have a complete
set of plane wave states

I P,q, ,k;&.
The isospin coordinates can be treated in an analogous

manner. The ith isospin basis set is labeled by the total
isospin p, its s component t, and the total isospin of
particles j and k (i', «Ak) which we denote by I.
(We denote the total isospin of particles i and k, i',
k& j, by J and the total isospin of particles i and j,
iWk, j/k, by K.) Combining this state with the ith
natural momentum state we obtain the ith basis state

IP,ii;,k;; p,f,I)=—I«).

Taking the matrix element of Eq. (10) between the
state

I
p', q ',k, ', u', O', I'&—=

I j'&

on the right and the state (il on the left, we have, after
insertion of the complete set

The operator t; is the t matrix for the two-body
scattering of particles j and k (i', iAk) with particle i
as a noninteracting spectator, the total energy of all
three particles being E. The iteration of Eq. (10) gives
the multiple-scattering series

T'&= t;S;,;+I,;G'0;+i,G"«&G"i;+", (13)

for i, j=i, 2, or 3 and in the triple-scattering term
kNi, k/ j.This expression shows that T'& is just that
part of T in which the initial scattering takes place with
particle j as the spectator, while in the 6nal scattering
particle i is the spectator.

Our next step is to take matrix elements of Eq. (10).
This is most conveniently done in terms of the "natural"
coordinate systems for the operators t;. Since t; is the
i matrix for the scattering of particles j and k (iWj,
iAk), the natural system in which to take momentum-
space matrix elements of this operator includes the total
momentum q; and the relative momentum k; of these
two particles. For the third momentum vector in each
system we take the total momentum I'. In terms of the
lab-system momenta p;, p;, pi, of particles i, j, k,
respectively,

where
i;=V;[1—GV j '

G' =G(1—8 )

(11)

(12)

IP"e"" &&P" «1~" "I=lk"&&k"I

between G'~ and T~&',

(«I T"
I
j'&= &«I t'I «'»',

"3.A. Lippinann and J. Schwinger, Phys. Rev. 79, 469 (1950l.' These equations were originally given by Faddeev, see
Ref. 11.The derivation has been included here for completeness.
See also the work of Lovelace, Ref. 12.

~"k&«li'G" Ik"&(k"
I
T"

I
j'&, (17)
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where

d"k=—(2v) ' Q Q Q dP"dql, "dkA, .". (18)
all f1I ~l I

(12) this latter matrix element is equal to

D '(p; p p.)(1—~;.)(2~)'

X&x,x 8r, r 6z,z g 8(p;—p,'), (22)

The kernel of Eq. (17) itself may be expanded as where

&(p',p,p.) =&—(2~') 'p
—(2ns, ) 'p' —(2nza) 'pg'+ig, (23)

with i, j, k distinct. With the a.id of Eqs. (14), (15), and
(16) we may transform from the p&, p&, pa coordinate
system to the P, q;, k, system and from the p&', p2', pa'

system to the P', qz', kA,
' system. We can perform

analogous transformations in isospin space. By use of all
of these transformations we obtain

(ii t;G' ik")= d"'i(i
j
t;ii"')(i"'i G'"ik"). (19)

In the two-body scattering described by (i~ t, ~i') the

total momentum of the three-body system and the total
momentum of the two scattering particles are conserved,

as are the isospins p, f, a,nd I. This matrix element has

the form then
( IG" k')=(2 )'(1—& )&(P—P')~„~r,& U'"(I,~')

'(P—q', q.+q~' —P, P' —qk') ~,k(, ') ~k;(', ), (24)(i~t;~i')=(2v)'5(P —P')5(q; —q )bp, p hr r. 8r r. XD
X(kit'(q;, P; I) ~k ). (2o)

The matrix element (k;~ t;(q;,P; I)
~

k ) is the isospin I
amplitude for the scattering of particles j and k in their
center-of-mass system from a state of relative mo-

mentum k to a state of relative momentum k;. The

energy at which this two-body scattering takes place is

Z—(2~,-)-'(P—q,)2—(2m;)-'qP. (21)

The matrix element (i
~

G'"
~

k') may be obtained from

the matrix element

(p»p2pa~ »I', ~lG""lp»p2, pa', &',I"g'),

where X, I", Z are the s components of the isospin of
particles 1, 2, and 3, respectively. From Eqs. (6) and

&,A. (,') = 5(P—q,—(m;/m&) q„'+k„'),
6k, (', ) = 8( P'+—qp'+(mp/mt, )q,ak, )

(25)

In the last two equations the upper (lower) signs are
used if the numbers i, k are a cyclic (anticyclic) pair of
the numbers 1, 2, 3. The matrix elements of the isospin
space transformation from the kth to the ith natural
system U'"(I,K') are given in Appendix A.

We now combine Eqs. (17) through (20) with Eqs.
(24) and (25). In doing so we factor out the total-
momentum conserving 6 function and the Kronecker
6's which conserve total isospin and its s component.
For convenience we continue the analysis in the zero-
momentum frame of reference with our basis states
now having the form ~q;,k;; I). We obtain the set of
coupled equations

(q;,k,", I~ 7"Iq/ »~" I')=(2v') ~(q' —q~')( 'It'(q' I) Ik'')~', &r, z

+Z(1—&', a) 2
z"=o

(2v.) 'dq~"D '(q., q;+qi, ",q ")U"(I,E")

X(k;I t,(q; I)
l
~(~~/'tII')q'+qI, ")(q~", ~q'+(~'/~1)q~"; &"

~~ I'"'~q, ',k, ', J'), (26)

where t, (q;,I)=—t;(q;,0; I).
Equation (26) is exact, but too complicated to be

useful for numerical application. In order to proceed
further, we make the simplifying assumption that all
three two-body potentials are 5-wave NI S potentials;
i.e., in terms of isospin and configuration-space matrix
elements

where

v;(k, ,I) = dr, kv, (r,I„I)expLik; r,pj,

'(q', I)=~'(I) L1—~'(I)~'(q', I)3 ',

(29)

(30)

(rq, I
~
7;~r, l, ', I') = X,(I)v,(r, q, I)v;(r;a', I') 5r,r, (27)

where I,I, is the relative position of particles j and k,
and r, I„.——

~
r,. ~, ~. It follows that

(k, i t;(q, ,I) i
k )=v;(k;,I)r;(q;,I)v;(k,I), (28)

7;(q;,I) =
dk v,'(k;,I)

(2v) 'LE —(5K/2m;5E )q
'—(k '/2p, )+irt]

(31)

5K=my+nz2+ms, p;= 5R; 'rem), .
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Although it is not at all necessary to the development
of the analysis, we assume for convenience that each
potential is of the Vamaguchi form":

OR~/~' 5R„q, msq
Z2= ——

2m2g gg, 2m2g 2 5R7(~

(41)Zg~=Z~2 with y+-+ 2 and q ~q„,
Z2y=z2y wltli p2 ~ Q2 q

col (2tt2~2) y Ãa 8srct2ps(ct2+P2)

~"(&*I)= L&"+P"(I)] ' (33)

(42)

(43)

Using Eq. (28) in Eq. (26) we may factor out the
dependence of the latter on 4; and k, '. The kernel of the
resulting set of six coupled equations depends only on
the magnitudes and the relative angle of the momenta

g; and q~,".By manipulation" we reduce this set to a
set of three coupled equations. A partial-wave analysis
is then carried out leaving a set of three simultaneous
integral equations in one dimension. By taking the
range of the kaon-nucleon potentials to be isospin-
independent' and combining these equations with Eq.
(1), we obtain the following set of equations":

1/2
L~.]=

/2

In Eqs. (41) and (42) "~"means "replaced by" and"~" means "interchanged. " In Eq. (43), P2 js the
deuteron binding energy.

For each partial wave the matrix Rt p(q, q') satisfies
the equation

011.b = (2n)'ti(P.-Pb) 8—o, titty. b, ,

M, b
——gi(23+1)Litt "+stl ]Pl(qo jb) ) (35)

(34)
&t-p(q, q') =«-p(q q')+2 «. (q,q")"(q")

7 0

X& (q" q')(2 ) '( ")'d " (45)
4 l,2(q, q.)r&(q)C l,2(q, q.)(2sr) 'q'dq, (36)

~l.2(q, q.)"(q)~t-p(q, q') "(q')

m. mpmo& ~.pz,.p(q, q')=g, (z.p, zp z.p(z)) —
I

—,(46)
4m. mp (qq')'

0. P p

X C «, (q', q.) (2~) 'q'q"dqdq-'. (37)

Z.p
——Z~t with qs

—b q' and 2 —+ P,
Zp =Z p with q~q' and u+-+P,

(4&)

(48)

In Eq. (34) p,f (p', f') are the total isospin and its
s component in the final (initial) state, respectively. The
vectors —q, and —q~ are, respectively, the final and the
initial kaon momentum in the zero total-momentum
frame. The meaning of the rest of the notation used in

Eqs. (34) and (35) is manifest.
The vector r'r(q) is given by

ri(q, 0)
L&'(q)7= &2(q 0)

, ri(q, 1)

For the 3th partial wave the vector Cl~~(q, q,) is

given by

m2m, E,C,
4 ly2(q)qa) Ql(Zy2&Z2y)Z2y) y (38)

8mgm, ' (qq.)'
where

gl(Z„Z„Z,)

L(z —)(z —)(z —)] '& ( )d, (39)

' See Appendix B for details of the manipulations mentioned
in this paragraph.

"As the low-energy E' -X data is 6t with a zero range model,
the range of the E=E potential is at our disposal. See the discus-
sion in Sec. III.A."For analogous results with a scalar "kaon" and distinguishable
scalar "nucleons" see L. H. Schick and J. H. Hetherington,
Proceedimgs of the 1964 Midwest Coefererlce ort Theoreticat Physics
{to be published).

F~ mo Kpg Kerf
Z-p(~) =

qq' 2m q' 2mpq

—1/2 1/v2 v3/2
Lnr. ,]= 1/V2 0

V3/2 ~/-,' 1,/2
(50)

For scattering at energies above the threshold for
deuteron breakup Eqs. (34) through (51) are not yet in
a, form that allows a rapid numerical evaluation. The
difhculty lies in Eq. (45). In particular there exists a
range of values of q, q' such that El p(q, q') is a rapidly
varying function of these variables.

E+=F.+t'rt, rt —& 0+; me= 5R—m —mp. (51)

Equations (34) through (51) represent our final equa-
tions for the E -d elastic scattering matrix elements.
We have used 5-wave NI S potentials of the Yamaguchi
form for the two-body interactions. Our method is not
restricted to this case, however. The same type of
analysis could be carried out if the interactions are
generalized to include sums of separable potentials of
any reasonable form in more than one angular mo-
mentum channel. For such generalizations, the kernel
becomes a matrix of larger order, but the basic result
that the problem reduces to a set of one-dimensional
integral equations still obtains.

B. Method of Solution
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To see that this is so, we note that from Eq. (39)
g~(Z„p,Zp, Z p(E)) has branch points at Z p=&1,
Zp =+1, and Z p(E) = %1. From Eqs. (40) and (47)
Z p

——+1 yields

—p, s = Lq'+ (mp/OZ. )q$',

a relation which cannot be satisfied for q, q' real. In
fact Z p+1 is negative for q, q') 0." Similarly, we see
from Eqs. (40), (47), a,nd (48) that the branch points at
Zp ——%1 are never reached for q, q'&0. On the other
hand from Eq. (49) Z p(E)=&1 gives

(sit p/m )q'+ (mt„/mp)q" a2qq' 2E—+ms 0——, (53)

or, since (ORp/m ))1
yS

)

Z~~ (E)- K,ANE

Zg (&) -PLANE

(q+ q') ' 2E+m—o &0 (54)
'WaaaaaaaaLaa aaaaaaaaaaaV

~ ill ll 111

For scattering at an energy below the threshold for
deuteron breakup 8&0, so that even in the limit g ~0+
Eq. (54) cannot be satisfied. For E)0 however, there
exist values of q, q' for which Z p(E) comes within a
distance proportional to g of the branch points at
Z,p(E) =+1.It is for these values of q, q' that E ~ p(q, q')
is a very rapidly varying function of its arguments. At
best a large number of points would be required for the
numerical representation of E'~ p(q, q'); a large amount
of computer time would be needed to obtain a good
solution to the set of integral equations given in Eq. (45).

To circumvent this difhculty we allow all the mo-
mentum variables to become complex and solve Eq. (45)
for q, q', and q" on contours that are sufFiciently far
from any singularities. The amplitudes given in Eqs.
(36) and (37) are calculated by integrating over the
same contours used in the solving of Eq. (45). We make
sure that in distorting each contour of integration from
its original position along the positive real axis, we do
not cross any singularities of the relevant integrand. In
such a case Cauchy's theorem insures that the numerical
values of g~'~ and ggM remain unchanged.

First we determine suitable contours along which to
solve Eq. (45).The behavior of Z'& p(q, q') may be traced
in detail in the q and q' planes, but it is sufficient to
consider the behavior of this kernel in the Z p, Zp, and
Z p(E) complex planes.

From Eq. (49) it follows that for a given q&0 the
contour 0&q'&~ in the Z p(E) plane has the form
shown by curve A of Fig. 1. This contour passes an
infinitesimal distance above the branch points at
Z p(E) = &1.We wish to move this contour away from
these branch points into the upper half-Z p(E) plane.
Furthermore we wish to perform this dist'ortion of the
contour in a manner that treats the variables q and q'

symmetrically. Curve A of Fig. j. hoMs equally well for
fixed q') 0 and 0&q& ~; as we must eventually inte-

grate over both q and q' to obtain the scattering ampli-
tude, we want to preserve this symmetry.

YVe let q and q' become complex by the transformations

q
—+ xe '&, q' —+ x'e '& (55)

where g is a fixed angle and x, x') 0; i.e., in the q plane
we rota. te the contour 0&q& ~ (about an axis through
the origin) an angular distance p into the fourth
quadrant and we do likewise to the contour 0&q'& ~
in the q' plane. The angle P is merely a parameter to be
chosen such that the new contours lie as far as possible
from the singula, rities of the integrands of Eqs. (36),
(37), and (45).

From Eq. (55), Eq. (49) becomes

moEe"& 5Kpx 5R x'
Z.p(E) =

SX 251

coax

2~pg
(56)

where, having made use of g to tell us in which direction
to move our contour, we have taken the limit q ~ 0.
In order to have ImZ p(E))0 we see from Eq. (56) and
the fact that Z&) 0 that we must take

0&@ &pr2/. (57)

For fixed x, the new contour 0&@'&~ is of the form
given by curve 3 of Fig. i.

To see that we have not crossed any of the other
singularities of the integrand of Eq. (45) we combine
Eqs. (40), (47), (48), and (55) to obtain

(b)

Fzo. 1. Loci of Z;;(E) in the cotnplex plane (a) for the case
2Emom;)SR;g' and (b) for the case 2Emom;&OR;g' The .curves
labeled A are for integration along the real axis, curves labeled 3
axe for integration along the contour described in the text.

P~Z
p
—+ —1 as both ( and g'~ ~ with (g'/g)=(mP/sir )

Other factors in E'g p(g, g) cause this limit to give a vanishing
contribution to the kernel. 2mpxx 2 5K~x 2tgpg

5K p 'e"e mph 5R x'
p (58)
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with respect to the positive real axis. We let p be the
smallest of

~ g; ~, i = 1, 2, 3. For p &p, our rotated
contour in the q plane will not have crossed any of these
branch points. An identical analysis of iIiip2(q', q,) holds
in the q' plane.

Finally we note that the integrands of Eqs. (36) and
(37) vanish fast enough at large q (or q') that when we
join each rotated contour to the corresponding positive
real axis by an arc of infinite radius, the value of each
integral along such an arc is zero. Thus, the numerical
values of q~

"and g~ are the same when the integrals
are evaluated along the rotated contours as when they
are evaluated along the original contours.

FIG. 2. Loci of Z;;. Curve A is for integration along the real axis,
curve 3 is for integration along the distorted contour.

The branch points of Ei p(q, q') and the contour
0&q'& ~ for fixed q (curve A) in the Z p plane are
shown in Fig. 2. For p) 0 the contour is distorted into a
form such as curve 3 of Fig. 2. It is clear from Eq. (58)
that the branch points are not crossed during such a
distortion. By the same argument the branch points of
E'& pat Zii ——&1. have not been crossed either. Finally,
it follows from Eqs. (27), (28), and (33) that the
"weight function" r&(q) in the integrand of Eq. (45)
has no singularities in the fourth quadrant of the com-
plex q plane.

We next consider the integrands of Eqs. (36) and (37).
We note that since Eq. (48) is of the Fredholm type it
is sufficient to consider Eq. (37) with R& ~(q, q') replaced
by Eiq (q, q') . Th'e only functions on the right of
Eqs. (36) and (37) that we have not discussed are
C'i72(qiqii) and @ip2(q iq.)

From Eqs. (38) and (39) C i~~ has branch points at
Z~2 ——~1, Z2~ ——&1, and Z2~ ——&1. With Z~2 ——&1,
Eq. (45) gives

q= (mr„/m, ))aq.+ip,7, (59)

where from Eqs. (38) and (44) we need only consider

y = 1 or 3. Since q, is the magnitude of the kaon mo-
mentum in the final (or initial) state, Cii~2(q, q,) has a
branch point in the fourth quadrant of the q plane.
With Pi as the angle between the positive real axis and
the line from the origin to this branch point, we have
from Eq. (59),

yi ———tan '(P~/q. ), y= 1, 3. (60)

Similarly from the branch point at Z27 =~1, we obtain
a branch point in the fourth quadrant of the q plane
that lies at an angle

@,= —tan-'(m, P,/m, q.), q = 1, 3, (61)

with respect to the positive real axis. The branch point
at S2~——~ 1 gives a branch point that lies at an angle

f3 —tan —
'(mt2Q2/m~q ), y= 1, 3, (62)

III. RESULTS

A. Preliminary Computations

Before any computations could be perf ormed, the
parameters of the two-body potentials had to be Axed.
The parameters chosen for the e-p spin triplet potential
were those given in Ref . 14:

n2 ——45.706 MeV/c, p2
——6.255n2. (63)

The selection of the kaon-nucleon scattering parameters
was not so straightforward

The low energy E-X data is 6t with a zero-range
model. "The Humphrey and Ross (H. R.) solutions for
the isospin singlet (A 0) and triplet (A i) scattering
lengths are'4

I. Ao ——(—0.22+i2.74) F, A i= (0.02+i0.38) F,
64

II. A 0 ——(—0.59+i0.96) F 2 i ——(1.20+i0.56) F .

"J. D. Jackson, D. G. Ravenhall, and H. W. Wyld, Nuovo
Cimento 9, 834 (1958); R. H. Dalitz and S. F. Yuan, Ann. Phys.
8, 100 (1959).

The model we used had a complex strength parameter
and a real range parameter for each isospin channel;
i.e., we had two arbitrary range parameters p '(0) and

P '(1).However, we reduced the number of free param-
eters to one real parameter P ' by taking the range to
be the same for both isospin channels. We then found
that for relative momenta in the region (&150 MeV/c)
where multiple scatterings should be most important,
with the H. R. II solutions the E-E scattering in
both channels w as dominated by the contribution from
the scattering length when we chose P '&0.4 F. For the
H. R. I solutions and the same range of momenta,
the scattering lengths dominated for p '&0.1 F. As the
value for the range parameter seemed the more physi-
cally reasonable, most of the computations were per-
formed with the H. R. II solutions and P '=0.4F.

Several further preliminaries were performed before
the main computations were under taken. To reduce the
integrals in Eqs. (36), (37), and (45) to a more con-
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distribution, elastic cross section, and total cross section
for a given energy and a given set of K-sV parameters
was found to take about 20 min on a CDC 1604. A
different numerical scheme than the one used could be
devised which would allow for the computation of the
integrals in Eq. (37) on a finer mesh than the mesh
used to solve the integral equation. This would allow

p to be increased to a value nearer p,„making the
kernel of the integral equation even more slowly vary-
ing. Since the solving of the integral equation is in-
herently a more time consuming operation than the
evaluation of the final integrals, the computation time
would be shortened. We felt that such efforts would be
worth while for more complicated potentials —such as
sums of NI.S potentials —than those used here. For the
present problem, however, no great numerical sophisti-
cation was necessary.

4s

E
b1c',

IO

0
0 90

SCATTERING ANGLK

I 35 I 80

Fn. 6. E=d elastic differential cross section for kaon lab
momentum pp

——300 MeV/c, P '=0 4F, using the H R. solution IL
The curve labeled IA is the impulse approximation, the curve DS
contains double scattering corrections, MS labels the exact
multiple-scattering curve.

1.0

0.5

0,0 I

'ao o.1 aa a3 ae as ae av aa o.e 1.o
7

FIG. 5. The real part of +p, f, p(T) for pp= 194 MeV/c, P '=0.4 F,
H.R. solution II. Here the presence of the branch point at &=30.6'
is manifest by the increasingly rapid variation of the function as p
increases.

B. Cross Sections

and (37). The double scattering approximation tfi ——rfira
+riins was obtained through the replacement of
Ri s(q, q') inEq. (37) byKi s(q, q'). Wefoundthatfor all
cases we could cutoR the partial-wave sums after /= 7
for the IA contribution, after /=3 for the DS contribu-
tion, and after /=i for the MS contribution without
introducing an error &1% in any of the computed
quantities. These then were the maximum values of /

used in Eqs. (68) through (70).
In Table I we list the cross sections that were calcu-

lated for various sets of E-S parameters at the three
kaon lab momenta used. Column 5 of this table indicates
the appropriate figure number for the corresponding
angular distribution.

From the elastic angular distributions Figs. 6. 7, 8,
30,

The elastic angular distribution, elastic, total, and
reaction cross sections, respectively, were calculated
according to the following formulas:

(dapi/dQ) =(liras/2pr)'[P(2E+1)riiPg(q, jp) [', (68)

o„i——(irxg'/pr)Q(21+1)
~

r) ~' (69)

o;.„=—(2 «ip/q. )P(2l+1) Im(ri&), (70)

20
ha

l5

hie,
'

IO

&rf.pet 0 tot 0el y (71)

where p~g is the kaon-deuteron reduced mass. These
quantities were calculated in the impulse approximation
(IA), the double s"attering approximation (DS), and
with the exact multiple scattering equations (MS). For
the impulse approximation pl~ in Eqs. (68) through (70)
was taken to be rlir" given by Eq. (36). For the multiple
scattering case, we used pl&

——rf&'"+ pl&Ms with Eqs. (36)

0
0 90

SCATTERING ANGLE

I

135 180

FIG. 7. E=d' elastic differential cross section for kaon lab
momentum pp= 194 MeV/c, P ' =0 4 F, using the H R. solution II.
The curve labeled IA is the impulse approximation, the curve DS
contains double scattering corrections, MS labels the exact
multiple scattering curve.
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TABLE I. Elastic and total cross sections for E'=d scattering at various kaon lab momenta and for di8erent potential parameters. Values
are given for the impulse approximation (IA), double scattering approximation (DS) and the exact multiple-scattering case.

1
2
3

5
6
7
8
9

10

0.4
0.4
0.4
0.2
0.1
0.1
0.1
0.1
0.1
0.1

H, R.

II
II
II
II
II
II
II
I
I
I

Pp
(MeV/c)

300
194
105
194
300
194
105
300
194
105

Fig. for
do/dQ

6
7, 10

8
10

10

11
12
13

IA

35 ~ 1
128
346
164
64.7

177
383
28.8
84.9

245

0;) (mb)
DS

30.3
136
493
189
59.4

206
592
23.7
75.5

235

MS

18.6
50.4

138
49.6
24.0
44.4
88.2
16.4
40.2

100

IA

96.2
209
434
240
141
252
454
103
204
488

0~of. (mb)
DS

101
240
604
282
147
296
655
99.3

199
489

MS

85.1
171
379
182
114
180
317
90.0

163
347

11, 12, and 13, it is clear that the major contribution of
the double and multiple scatterings is in the l=0
channel. The effects of diGraction scattering from the
deuteron wave function are evident as I& increases—
compare Figs. 6, '7, and 8—but the main contribution to
this effect comes from the single-scattering term. From
Figs. 6, 7, and 8 there seems to be no obvious correlation
as to the size of the IA, DS, and MS results. However,
in Fig. 9 we have plotted the contributions of the impulse
approximation, double scatterings, and high, er multiple
scatterings to qo for each of the three energies. From this
diagram an orderly progression from one energy to the
next is apparent.

Table II shows q~'", q~, and g~M for the sets of
parameters used in lines 1, 2, 3 of Table I. Again we see
that the MS (and DS) contributions are strongest in the
l=0 channel. Furthermore, for larger 1 we see that
gM —+ g

8 which indicates that for these l the solution
of Kq. (45) can be well approximated by the inhomo-

geneous term. This is not unexpected. For /)0 the
kernel becomes smaller in the sense that g~ becomes
smaller. For a "small" kernel the Liouville-Neuman
series should converge rapidly.

TABLE II. Values of qg qp cps for p '=0.4 F, H.R. solution
II at the three kaon lab momenta 300, 194, and 105 MeV/c. The
entries in the table are in units of 10 ' MeV~.

po
(Mev jc) l

0
1
2

300 3
4
5
6

—2.302 —3.131i—0.587 —0.815i—0.157 —0.222i—0.047 —0.067i—0.016—0.022i—0.005 —0.008i—0.002 —0.003i

~ DS

1.411 —0.213i-0.074 —0.057i—0.002 7 +0.0048i-0.0003 +0.0004i

1.186 +0.976i—0,066 -0.044i—0.002 7+0.0049i

0 -4.757 —6.359i 2.705 -1.536i
1 —0.709 —0.984i —0.115 —0.024i

194 2 —0.120—0.173i —0.0006+0.0053i
3 —0.024 —0.035i -0.0004 —0.0000i
4 —0.005 —0.008i
5 —0.001 —0.002i

3.497 +1.901i—0.101 —0.016i
0.0006+0.0053i

—9.257 —9.738i—0.568 —0.611i—0.043 —0.048i—0.004 —0.005i—0,000 —0.000i

0 2.415 —4.809i 9.018 +1.340i
1 —0.067 +0.054i —0.055 +0.051i

105 2 —0.002 +0.000i
3
4

-IO
I

9o

The "range-dependence" of the angular distribution is
shown in Fig. 10. The three curves were calculated at
ps=194 MeV/c using the exact theory, the H. R. II
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FIG. 8. E=d elastic diQ'erential cross section for kaon lab
momentum p0=10r5MeV/c, P ~=04 F, using the H.R. solution
II. The curve labeled IA is the impulse approximation, the curve
DS contains double scattering corrections, MS labels the exact
multiple-scattering curve.

FIG. 9. The contributions to the complex number gp from the
impulse approximation, double scattering and higher multiple
scattering for the P '=0.4 F, H.R. solution II case at each of the
three momenta 300, 194; and 105 MeV/c. For each momentum
the arrow beginning at the origin is the impulse approximation
gp~, the second arrow is the double-scattering term qpDH and the
third arrow is the higher multiple-scattering term gp —qP .



LO% —EN E RGY ELASTI C X —d SCATTERI N G B 945

IO

0
0

I

45
I

90
SCATTERING ANGLE

I 35 I 80

FIG. 10. E -d elastic differential cross sections at kaon lab
momentum 194 MeV/c for the H.R. solution II and for three
values of the range. All multiple scattering is included.

From a perusal of Table I in its entirety we may make
some further statements. First, for the elastic cross
section the MS "corrections" to the impulse approxima-
tion a.re very large at the smallest value of po investi-
gated fo.Ms = (0.23—0.40)o'~ for the H. R. II solutions)
and are still large Lo.Ms=(0.3/ —0.53)o'"j at Pe=300
MeV/c. At this latter value of po, however, the MS
corrections to the reaction cross section are of the
opposite sign to the corrections to fT,i so that the correc-
tions to the total cross section are fairly small (=10%).
The double scattering corrections to the impulse ap-
proximation results are either fairly small (=10%%u~) or
are in the wrong direction, i.e., the DS results are no
better and at times are worse approximations to the MS
results than is the impulse approximation. The higher
(above double) multiple scatterings make a large con-
tribution to the S-wave scattering amplitude in com-
parison with double scattering. This is evident from

solutions, and E /V ranges P -'=0.4, 0.2, a,nd 0.1F,
respectively. These angular distributions and the corre-
sponding cross sections given in rows 2, 4, and 6 of
Table I are clearly not sensitive to the value of P ' used.
Unfortunately the more and more rapidly varying
nature of E& p(q, q') for large q and q' as P ' becomes
smaller and smaller prevented our continuing the in-
vestigation to values of P '(0.1 F without the use of a
finer mesh and a more sophisticated program. Although
such modifications are easily carried out, we have not
done so at this time. We do not claim, therefore, that
we have reached the "zero-range" limit. A direct com-
parison of our results with calculations using a "zero-
range" interaction may be somewhat questionable.

Figures 11, 12, and 13 show the elastic angular dis-
tribution at momenta p, =300, 194, and 105 MeV/c,
respectively, for the case of P '=0.1 F with the H. R. I
solutions for the scattering lengths.
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FIG. 12. E -d elastic differential cross section at kaon lab
momentum po

——194 MeV/c, p '=0.1 F, for the H.R. solution I.
The labels IA, DS, and MS refer to impulse approximation, double
scattering, and multiple scattering, respectively.
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FIG. 1i. E -d elastic differential cross section at kaon lab
momentum po=300 MeV/c, p '=0.1 F, for the H.R. solution I.
The labels IA, DS, and MS refer to impulse approximation, double
scattering, and multiple scattering, respectively.

Fig. 9 as well as from the eGects of multiple scattering
on the various cross sections presented. Calculations
have shown that the largest contributions to multiple
scattering come from terms in which a scattering be-
tween the two nucleons takes place. It is therefore quite
clear that our impulse approximation is quite different,
numerically, from the impulse approximation given by
Watson" where all such scatters are included in the
"single scattering" term. Our double scattering term
cannot contain any such scatters and is probably much
smaller than the third-order multiple scattering term
which does. Thus our double scattering term is not com-
parable to double scattering as calculated in Ref. 8 since
these authors include such interactions in double scatter-
ing by using the interacting two-nucleon propagator.

"K. M. Watson, Phys. Rev. 105, 1388 (195/).
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I'iG. 13. E=d elastic differential cross section at kaon lab
momentum pa= 105 MeV/c, P '=0.1 F, for the H. R. solution I.
The labels IA, DS, and MS refer to impulse approximation, double
scattering, and multiple scattering, respectively.

The results for o.,i and o-t, & are range-dependent enough
to mask the diBerences between the results for the H. R.
I solutions and those for the H. R. II solutions. In any
case these differences are smaller than those of previous
calculations. ' ' The ambiguity in the E-S scattering
lengths may not be as easily resolved by E -d scattering
experiments as had been previously supposed.

IV. SUMMARY

We have presented a multiple-scattering formalism
for low-energy E-d elastic scattering. We assumed that
all two-body interactions were separable S-wave po-
tentials of the Vamaguchi form and that the E-S range
was isospin independent. Coulomb forces and the
K K' and e-P -mass differences were neglected. A
method for performing a rapid numerical evaluation of
the scattering amplitude at energies above the threshold
for deuteron breakup was derived.

Results were presented for calculations of the elastic
angular distribution, elastic cross section and total cross
section for incident lab momenta of 105, 194, and 300
MeV/c. These calculations were performed with both
the Humphrey and Ross I and II scattering lengths and
with E-lV "ranges" from 0.1 to 0.4 F. From these results
we made the following conclusions:

(i) The major contributions of the double scattering
and multiple scattering terms are to S-wave scattering.

(ii) For higher partial waves, the impulse approxima-
tion is dominant while the double scattering terms
account for the bulk of the multiple-scattering
contribution.

(iii) Only for o~,~ at 300 MeV/c could the multiple-
scattering and double-scattering eBects be considered
corrections (i.e., &10%).For o,t at 300 MeV/c and for
both |r,i and 0.~,~ at the lower kaon lab momenta the
impulse approximation and double scattering results
were at best within a factor 2 or 3 of the correct multiple
scattering answer.

APPENDIX A

Equation (24) gives the matrix elements of the free
Green's function between a state of the kth "natural"
coordinate system on the right and a state of the ith
"natural" coordinate system on the left. In order to
obtain a consistent set of such matrix elements we must
specify each natural coordinate system, being especially
careful to dehne its phase. "To form the isospin part of
the three basic sets we couple two of the particles to
form the total isospin of a pair, then couple this to the
third particle to form the total isospin of the system.
The ith natural state is then denoted by its total isospin

p, the s component of total isospin and the total isospin
of the ith pair I. To de6ne the phase of the coupled
state, we must specify the order of the coupling of the
individ ual isospin into each coupled state. The un-
coupled basis set is de6ned as the product of each of the
individual isospin states and is labeled by X, V, Z, the
s components of each of the individual isospins S~, S2,
S3, respectively. In order to make our choise of phases
explicit, the following equations, which define the three
natural, isospin states, are presented:

ip,f,It)= Q' C(Ss,Ss,It, F',Z)
X,Y,Z

&& C(SIt, r;pX, F+Z)iX, F',Z), (A1)

IpZiIs)= +' C(S'riS'siIsi»Z)
X,Y,Z

XC(Ss,Isipi F, X+Z) iX,F,Z), (A2)

jp, f,I,)= Q' C(Sr,Ss,Is, X,F)
X,Y, Z

XC(Is,Ss,p; X+F&Z)iX,F,Z). (A3)

Here I&, I2, Is are the isospin of the pairs 23, 13, 12,
respectively, and the primes on the summations indicate
that the summation is restricted by the condition
X+F+Z=t The C's a.re the Clebsch-Gordan coeK-
cients as de6ned by Rose."

We wish to take matrix elements of the isospin part
of the free Green's function. The 3-components of the
isospin enter the expression, Eq. (22), for the matrix
elements of the Green's function between uncoupled
states only in the product bx,x 8Y,Y bz, z . For this
reason, the product 5~,~ 5r, r U's(I, K) appearing in Eq.
(24) is given by

(p,t,Ii Q iX,F,Z)(X,F,Zip', f', K). (A4)
X', Y,Z

2' A. R. Edmonds, Angular Momentum in Quantum 3fechanics
(Princeton University Press, Princeton, New Jersey, 1957).

"M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley R Sons. Inc. , New York, 1957).
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Here the state on the left is in the ith natural set while
the state on the right is in the kth natural set. Combining
Eq. (A4) with Eqs. (A3) and (A1) we obtain

U31(K,I)= Q' C(S,,S,,K; X,V)C(E,S,,p, X+V, Z)
X, Y,g

XC(S2,S3,I; V,Z)C(S, ,I,p, X, F+Z)
= [(2K+1)(2I+1)j W(S1,S2,p&S3& K,I),

where 8' is the Racah coeQicient as de6ned in Chap.
6 of Rose. Similar considerations yield

U12(I J) ( 1)2s1+1—P+s3—J
X[(2I+1)(2J+1)3 %'(S2 $3 p S1 I J)

U32(E J)—( 1)st+s2 —x

X [(2K+1)(2J+1)]'"W(S2,S1)p)S~, K)J) .

we obtain

T'&(q;,I; q, ',J') = (2v ) '8(q;—q, ') b, ,,br, g

3 1

&=1 X'~=0
E"(q;,I; q1,",E")

(2v)'

X ~1,(q1",K")T"(q1,",K";q, ',J'), (81)

(q, ,k, ; Il T' lq, ',k, ', J')
=v;(k;,I)T"(q',I; q1',I') r1(q1,J')v~(» J') (82)

with

K'&(q I q' J')=D—'(q q+q' q')U'&'(I J')(1—&;,)
Xv,(W(m~/~;)q;Wq, I)

Xv,(Tq,+(m;/5R, )q, ', J'). (83)
Now in E dscattering -S,=S2——Ss——1/2 so that the
expressions Since none of the interactions can cause spin Rip of the

nucleons, the nucleons are always in a relative spin
triplet state. Thus the interaction in the isospin triplet
state will be absent because we have only included
S-wave interactions and the space part of the wave
function cannot be an 5 wave in this case. We may
therefore set the potential v2(k, 1) equal to zero.

Since particles 1 and 3 are identical and the isospin
triplet nucleon-nucleon potential is zero

E23(q2,J; q', K') =E"(q2,J; q', K')
K"(q K q

' J') =K"(q E; q2', J')

—1/2 K3/2
LU"(E I)j=l U"(I K)3= (A5)

K3/2 1/2
—1/2 v3/2

[U"(I,J)j=[U"(JI)]= (A6)
V3/2 —1/2

1/2 v3/2
LU"(J,E)j= [U"(K,J)jt= (A7)—K3/2 1/2

give the explicit numerical values of U'~(I, E)for the'
case of E -d scattering.

APPENDIX B E"(q K q' E') =E"(q E q' K')

Substituting Eq. (28) into Eq. (26) and factoring out The matrix-integral equation (81) can therefore be
v, (k, ,I) on the left and r, (q, J) v(k,', J) on the right, written symbolically as:

T11 T12 T» $ 0 0 0 ~12 ~13 7-1 0 0 T11
T" T" T" = 0 1 0+ E" 0 E" X 0 r2 0 X T"
T» T» T» 00 & X»X» 0 0 0 ~, T»

According to Eq. (7), the entire scattering matrix T is given by

T= 2v1(k,I)[T"(q,I; q',I')+T"(q,I; q', I')171(q',I')v1(k'&I') .

T12 T13
T22 T21
T12 T11

(85)

P2 T21V2T» - -& 0- — 0 v2E21- 7. 0 — T22

%2T" (T"+T") 0 1 v2K" K" 0 r1 v2T" (T"+T")

T22

Since only the sum T"+T"is needed for the evaluation of T, Eq. (84) can be reduced to

(86)

Now each of the elements of the matrices in Eq. (86) is itself 2X2 matrix in isospin space. Since the isospin-1
potential is zero in the nucleon-nucleon channel, however, T22 has only one nonzero element and T»=T" has
only one nonzero row. Therefore, when the matrix equation (86) is expanded to explicitly represent the isospin
dependence of its elements, it becomes an equation in only 3X3 matrixes. The kernel in Eq. (86) when written
out explicitly is thus

0 VXE21(q,Q; q', Q) V2E21(q,Q; q' 1) '

Q2E12(q Q ~ q~ Q) K13(q Q q~ 0) Kla(q Q
~ q~ 1)

,
42K"(q, 1; q'&0) K"(q 1 q' 0) K"(q,1;q', 1)

(87)
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q"dq'(2~) —'C &.,(q)
n, P&2

XLTi-p(q q') P(q') j4'i (q')

C i.2(q) =(2-)- I'i(q q.)C'.2(q)«„(»4)
T-p(q, q') =(2~)'~(q —q')~-p

and where T& p(q, q') is de6ned by

The subscripts on the variables q have been dropped
here since they are dummy variables. The elements of
the matrix (8/) are denoted by K p(q, q') where n, P
refer to rows and columns in (87) but such that n=1
(P = 1) refers to row (column) 2, n = 2 (P = 2) refers to
row (column) 1 and n=3 (J3=3) refers to row (column) where Ci 2(q) is defined by
3. This particular order will lead to simplification of the
notation. The integra, l equation (81) now becomes

+2 (2~) 'dq"K-, (q,q")"(q")T,p(q",q'), (88)
y=l

M.g=2(2v. ) " Q
a, P&2

dqdkdq'dk'y. (q, k) U "(O,I(n))

X (~,I( ))T- (e,q')"(q') (~',I(I3))

X U "(O,I(I3))y (q', k'), (810)

where le, (q, k) is the product of the deuteron wave func-
tion and a plane-wave kaon wave function, both written
in the natural coordinate system number 1. Here the
isospin I(n) equals 1 if n=3 and equals 0 if n= 1. The
factor (2v.) 'J'P, (q,k)vi(k, I(n))dkX U"(O,I(n)) is easily
evaluated due to the 8 function representing the plane-
wave kaon and is found to be

where r~(q") is given in Sec. II.A (where the numbering
of the rows and columns is normal) .The matrix T p(q, q')
is defined in terms of the left member of Eq. (86) in the
same way that K p(il, q') has been defined in terms of the
kernel of that equation. Equation (85) now becomes

T=2v, (k)I)T~p(q, q')r (q')vi(k'lI'). (89)

Combining this with Eq. (1), the matrix element cV,q

becomes

Ti-p(q, q') =(2~) ' I'i(q q')T-p(a, q')d~l, (»5)

The factor in square brackets in Eq. (813) can be
rewritten as

Ti-p(q, q')" (q') = "(q')(2~/q)'~(q q')—
+r (q)R& p(q, q')rp(q'), (816)

where

Ri p(q, q') =Ki.p(q, q')

( ll) 2dqll

K&,.(q, q")r&(q")R&,p(q", q'). (45')
(27r)'

Equation (816) together with (813) immediately yields
Eqs. (36) and (37). Equation (812) thus becomes
Eq. (35), while Eq. (45') is identical with Eq. (45).
Derivation of Eq. (38) is straightforward from the
definition Eq. (814), after noting that the deuteron
wave function for the Vamaguchi potential is just

lfi)(k) =N(n22+k') '(I82'+k') ',
where

N'= Smn2p2(n2+p2)',

vi((m2/ORi) il+q„I(n) )&D((nzi/OR2) il.+q) and

X U"(0 I(n)), (811) n2'= mB2.

M. t, =Pi(2/+1) g(Pi(q. qb), (812)

where ltii(k) is the deuteron wave function written in
its natural coordinate system (i.e., No. 2) and q, is the
initial momentum of the kaon in the c.m. system. This
entire factor (811) is denoted by C 2(q).

Making a partial wave analysis of Eqs. (88) and
(810) leads to the equations

where m is the nucleon mass and 82 is the deuteron
binding energy. Note that C2 is de6ned equal to zero
in Eq. (44), so that the summations in Eqs. (36) and
(3"/) do not need to be restricted. The derivation of
Eq. (46) is entirely similar to th, e derivation of Eq. (38).
The matrix 8'

p includes the appropriate elements of
U'"(I,K) as given at the end of Appendix A together
with the occasional square roots of 2 appearing in (87).


