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the reaction 27Al(n,0)*Na, the cross section for which
is 115 mb at a neutron energy of 14.6 MeV."® The
disintegration of *Na is always accompanied by the
emission of a y ray of energy 2.76 MeV and a relative
measure of the source strength of 7As and #Na could
be obtained from measurements of the v spectra. For
these measurements, an Intertechnique 400-channel
analyzer was used. The ratio between the cross sections
of the (n,0) reactions in 3'Br and ?’Al was determined by
this method and was found to be 0.070.03. This
confirms the results given above.

Cross sections of (n,p) and (n,a) reactions may be
more accurately determined if the different activities are
separated by chemical methods. An experiment of this
kind was carried out parallel to our own experiments by
E. Steinnes® from the Institute of Nuclear Chemistry,
University of Oslo. The SAMES J accelerator was used
in this case too. Steinnes obtained a very low value for
the cross section of the reaction 8'Br(n,a)"8As.

Our cross section values for bromine are listed in
Table II, together with values obtained by other
groups.58 19,20

2 E. Steinnes (private communication, 1964).
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CONCLUSION

There is very good agreement between the results
obtained by the annihilation method and the extrapola-
tion method for phosphorus and copper. The agreement
is not so good for bromine. Examination of this element
is more complicated since so many activities are present,
but there certainly is a discrepancy here. Unfortunately
the measurements could not be repeated, since the
accelerator had to be used for other purposes.

For the (n,p) and (n,a) reactions in phosphorus and
for all (,2n) reactions our limits of error are relatively
small. The reason for this probably is that a large num-
ber of measurements were always made. We have no
special reason to expect any systematic errors to be pre-
sent, but obviously the possibility cannot be excluded.

As mentioned above, there is a large disagreement
between earlier values and our value for the cross
section of the (#,e) reaction in 8'Br. Otherwise the agree-
ment between our cross-section values and those
obtained by other groups seems to be satisfactory.
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A three-dimensional WKB approximation for high-energy electron scattering on nuclei is derived and
approximated analytically in the vicinity of the nucleus. This approximation contains five parameters which
can be calculated from the charge distribution and are not adjustable. It is applied here to calculations of
elastic scattering and monopole and quadrupole excitation; the method employed involves an asymptotic ex-
pansion in inverse powers of ¢R, where ¢ is the momentum transfer and R is the nuclear radius. In spite of
the several approximations, the calculations reproduce qualitatively all the features of the exact results,
such as position and filling in of diffraction minima, and they are quantitatively very good as well. Although
the charge and excitation distributions treated here are somewhat idealized, it should be straightforward to

extend the results to more realistic situations.

I. INTRODUCTION

HE examination of nuclear shapes by measure-
ment of high-energy electron elastic scattering has
the great theoretical attraction that the interaction with

* Supported in part by the U. S. Atomic Energy Commission
and the U. S. National Science Foundation.

individual nucleons is electromagnetic, and well under-
stood. The assumption that for elastic scattering the
nucleus can be represented by a static charge distribu-

T Present address: Cornell University, Ithaca, New York.
I Present address: Chico State College, Chico, California.
192; Sle9n6i2r NSF Fellow at the University of Rome during
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tion reduces the theoretical problem to that of solving a
Dirac equation for the electron in which the effect of
the nucleus is contained entirely in the static Coulomb
potential. The salient physical features of the observed
differential cross sections may then be associated with
properties of the charge distribution.! For the lightest
nuclei, where the Born approximation may safely be
employed, this association, involving only the Fourier
transform of the charge distribution, the form factor, is
very direct and useful. For heavier nuclei (and for light
nuclei beyond the region of the first diffraction dip) it is
necessary to make an exact, perforce numerical, solution
of the Dirac equation. The procedure is straightforward
but lengthy, and one loses the direct connection be-
tween the charge distribution and the structure of the
resulting differential cross sections. The cross sections
obtained, however, turn out to be very similar in char-
acter to those of the Born approximation.? The pur-
pose of this paper is to develop a physical picture of the
scattering process involving high-energy electrons and
heavy nuclei, and from it to derive an approximation
which reproduces very closely the exact partial-wave re-
sults for elastic scattering.

Preliminary announcements of such a paper were
made a number of years ago in connection with earlier
work on this subject.®* We will try to clarify the rela-
tionship of the present method to those earlier studies,
and to approximations suggested by others. The problem
of analytic high-energy approximations to potential
scattering is common to a number of fields, of course.
The individual feature of the electron-scattering prob-
lem is that the part of the differential cross section useful
for investigating nuclear structure occurs at large
angles, many times the classical scattering angle. At
such large angles the cross section is very small, and
makes negligible contribution to the “total” cross sec-
tion. The many recent attempts to discuss the close-to-
forward scattering are thus not directly relevant to our
problem, and we shall not refer to them in detail.’
Although the method we derive is describable as a
distorted-wave Born approximation, the extensive cal-
culations of inelastic nucleon scattering which go under
this name are different enough in purpose and scope
that we have not attempted to make comparison with
them.

The necessity for an approximate method was forced
on us when scattering experiments with strongly de-
formed heavy nuclei were made which included in-

1 A general discussion of electron scattering and nuclear shapes
is given in the review article by R. Hofstadter, Ann. Rev. Nucl.
Sci. 7, 231 (1957).

2 See, for example, D. R. Yennie, D. G. Ravenhall, and R. N.
Wilson, Phys. Rev. 95, 500 (1954).

3 B. W. Downs, D. G. Ravenhall, and D. R. Yennie, Phys. Rev.
106, 1285 (1957), Ref. 7.

4 D. G. Ravenhall and D. R. Yennie, Proc. Phys. Soc. (London)
A70, 857 (1957), reference to Yennie, Ravenhall, and Tiemann.

% See, for example, R. J. Glauber, Lectures tn Theoretical Physics
(Interscience Publishers, New York, 1959), Vol. 1, p. 315.
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elastic with the elastic scattering.®! The similarity
of the exact partial-wave cross sections to the Born-
approximation results had been noted earlier, and em-
pirical scaling rules for the angles of the diffraction
structure developed.® A regularity in the behavior of
the scattering phase shifts and radial wave functions re-
inforced our intuitive reasoning that the electron wave
functions inside the nucleus were approximately plane
waves, with modified wave number and amplitude. The
phase-shift regularity implies also that they were not
exactly plane waves, but were distorted by the smooth
Coulomb potential. It was possible to give an analytic
form to the three-dimensional wave function, i.e., to
analytically sum the Legendre series of partial waves, in
the region of the nucleus. The physical assumption was
made that this wave function represents the effect of the
smooth part of the potential, in other words, the low
Fourier components. The scattering at angles larger
than the classical maximum angle must be due to the
high Fourier components of the potential. The effect of
these was calculated in first-order perturbation theory,
taking the distorted plane waves as zero-order wave
functions. This approximation was called a modified
Born approximation (abbreviated M.B.A.). The scat-
tering amplitude as calculated by this approximation
thus bore a close resemblance to that of the Born
approximation. The method reproduced the angular
variation of the partial-wave cross sections, and be-
cause of the distortion of the incident and final waves,
it also filled in the diffraction zeros, which are a notor-
ious inadequacy of the Born approximation, to about
the correct extent. The absolute value of the cross sec-
tion was not reproduced very well, however, a de-
ficiency which our recent investigations improve on
considerably.

At the same time as we were developing this approach,
Schiff” proposed another approximation for this process.
His method was to make a summation of the infinite
series of scatterings given by the Born approximation.
A result of the stationary-phase method he employed to
evaluate the Born integrals was that, because of the
long tail of Coulomb field of a heavy nucleus, all but
one of the scatters were at very small angles. The
change in phase of the wave function due to the small
angle scatterings was summed analytically by assuming
straight-line trajectories for the electron (i.e., zero-
angle scattering). The scattering amplitude then comes
from the one large-angle Born collision, with wave func-
tions which have a modified wave number. The approxi-
mate evaluation of the scattering amplitude according
to this approximation, by Tiemann,® gave differential
cross sections in which the angular position of the dif-
fraction structure was in good agreement with partial-

6 See Ref. 2, Sec. 6.
7 L. I. Schiff, Phys. Rev. 103, 443 (1956).
8 J. J. Tiemann, Phys. Rev. 109, 183 (1958).
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wave results, but for which the maxima were too low by
10-50%, and the minima much too deep.

A development of Schiff’s approach was suggested by
Saxon,® who emphasized its connection with the WKB
or eikonal approximation. A later version, by Saxon
and Schiff,'® while confining itself to the Schrédinger
equation, made a detailed analytical development. In
the final form the scattering amplitude appears to be
very similar to Schiff’s first approximation, since at an
early stage the assumption of straight-line trajectories
was made. Error estimates were made, but no detailed
numerical comparison with an exact treatment was
given. A further contribution was made by Tiemann,!
who developed Schiff’s approximation somewhat, and
included some effects suggested by the work on the
M.B.A. His results were in much closer agreement with
the partial-wave cross section, except for the depth of
the diffraction dips, and the over-all normalization. Re-
cently Baker!? has developed from the nonrelativistic
treatment of Glauber an approximation for the present
problem which closely resembles the results of Schiff.”
Rather than introducing distortions in both the inci-
dent and outgoing waves, he assumes as an axis for the
distortion the recoil momentum. It is somewhat un-
expected, therefore, that the numerical agreement he
obtains is in closer agreement with the partial-wave cal-
culations than was Tiemann’s evaluation of Schiff’s
approximation. The improvement may well result
from a more accurate calculation by Baker of his
approximation.

The method we present in this paper has the same
basis, fundamentally, as the earlier modified Born
approximation, but now rests entirely on analytic ap-
proximations, rather than on empirical regularities in
the partial-wave results. As has been briefly described
previously,*13 we imagine a division of the potential
into a low-frequency part and a high-frequency part.
Fortunately, the work we present here does not need
an explicit statement of the division. The low-frequency
part, a potential which in configuration space approxi-
mates the actual potential, but which has all sudden
changes in function and derivatives smoothed away, is
well-treated by the eikonal approximation. The small
amounts of reflected wave arising from sudden changes
in a potential, which the eikonal approximation ignores,
are in fact not present even in an exact solution because
of the removal of the high frequencies. A verification of

9 D. S. Saxon, Phys. Rev. 107, 871 (1957).

0P, S. Saxon and L. I. Schiff, Nuovo Cimento 6, 614 (1957).

117, J. Tiemann, Ph.D. thesis, Stanford University, 1960
(unpublished).

12 A, Baker, Phys. Rev. 134, B240 (1964). It should be noted
that the partial-wave cross section given in Fig. 5 of this reference
is somewhat misleading. The expected diffraction structure at
small angles is absent. We thank Professor K. Ford for a helpful
correspondence concerning this work.

13 A simple physical description of some recent calculations on
electron and positron scattering in terms of our approximation is
given in R. Herman, B. C. Clark, and D. G. Ravenhall, Phys.
Rev. 132, 414 (1963).
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this can be provided by the exact numerical differential
cross section from such a potential. This cross section
tends rapidly to zero for angles greater than the classical
maximum angle, which for typical cases of current in-
terest would be from 5° to 10°. The scattering of elec-
trons at angles from 30° to 150°, the phenomenon of ex-
perimental and computational interest, is a wave-
scattering phenomenon involving the high-frequency
part of the potential. We treat it in perturbation theory
with the low-frequency wave functions (approximated
by the eikonal wave functions) as the zero-order states.
It is fortunate for us that the first-order expression
seems to provide the major part of the contribution. to
the large-angle scattering. Our use of the eikonal
approximation has led us to small changes in the ampli-
tude of the wave function, too subtle to recognize from
the empirical study of the partial-wave solutions, which
remove to a large extent the discrepancy in absolute
magnitude of our earlier approximation to the cross
section.

Our present approximation has a resemblance to the
Saxon-Schiff approach in its use of the eikonal (WKB)
approximation. In our treatment, however, as with
Schiff’s original development, it is crucial that the
large-angle scattering appear as a dominant, lowest
order contribution, rather than in successive improve-
ments of the eikonal approximation. The aspirations
and general method of the various approximations pro-
posed are quite similar, especially comparing Schiff’s
with ours. It is perhaps as an explicit demonstration of
the validity of our particular method that our work is
worth reporting on at this time. Of great importance,
practically, is the inclusion in our actual formulas of the
several small but very important terms describing the
slight distortions of the electron wave. Without them
it is not possible to obtain the correct filling in of the
Born zeros or the correct absolute magnitude. An
accurate approximation such as ours has an obvious
application in inelastic scattering, of course. Partial-
wave calculations of inelastic scattering, modeled on the
corresponding nucleon-nucleus calculations, are very
lengthy.1415 The results seem to bear out our physical

4T, A. Griffy, D. S. Onley, J. T. Reynolds, and L. C. Bieden-
harn, Phys. Rev. 128, 833 (1962); D. S. Onley, T. A. Griffy, and
J. T. Reynolds, 7bid. 129, 1689 (1963). These papers discuss
electric-quadrupole excitation, the first with uniform charge
distributions, and the second with the realistic Fermi distribution
to describe the elastically scattered wave.

156 K. Alder and T. H. Schucan, Nucl. Phys. 42, 498 (1963). This
paper contains calculations of monopole excitation cross sections
with a uniform charge distribution for the elastic wave. Later in
this paper we present an alternative method for calculating
monopole excitations, using only the elastic partial-wave program.
In the one case we have checked in detail, Z=80 and 2R=7.09,
our results are in significant disagreement with those given in
Fig. 3 of the above reference. Their cross section lacks the third
diffraction dip expected from the Born approximation, and which
does occur in our partial-wave calculation. We understand from
Dr. Schucan that more recent calculations of theirs are in much
closer agreement with our results [T. H. Schucan, thesis, Univer-
sity of Basel, 1964 (unpublished)].
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predictions as regards shifting of the minima, etc. Our
method, albeit an approximation, is simpler and more
transparent.

II. SEMICLASSICAL APPROXIMATION FOR
SCATTERING WAVE FUNCTIONS

The purpose of this section is to develop a simple, use-
ful, and fairly accurate approximation to the electron-
scattering wave function in the vicinity of the nucleus.
The physical basis of the approximation is that only a
very small part of the incident flux which passes through
the nucleus scatters into large angles. This suggests that
the main part of the wave function in the vicinity of the
nucleus is simply a distorted incident wave. Originally,
we were led to this approximation by an empirical study
of the properties of the numerically-calculated exact
wave functions. The main features appearing in this
study are the following: (i) Near the origin, the radial
wave functions can be approximated well by spherical
Bessel functions with the local wave number replacing
the asymptotic one, and, equally important, with a
normalization which is independent of angular momen-
tum. If this were the only modification, it would im-
mediately suggest a plane wave with a local wave num-
ber. (ii) For small angular momentum, the phase shifts
can be represented well by the empirical fit

ni=mn0—"0'7(j+1). (2.1)

A little study shows that this difference in phase be-
tween the different partial waves corresponds to a
curvature of the wave fronts in the vicinity of the
nucleus. It is worth noting in passing that two charge
distributions whose phase shifts are representable in the
form (2.1) with nearly equal parameters may yield very
different angular distributions at the wider angles;
examples are given in Ref. 4. This is a consequence of
the often-noted fact that, when wide-angle electron scat-
tering is calculated by means of a partial-wave expan-
sion, there is a very sensitive cancellation of the various
terms in the sum and very slight differences in the phase
shifts may produce large relative differences in the cross
section. This reinforces our view that the wave function
near the nucleus [ represented by 7o and b in (2.1)] de-
pends only on very general features of the charge dis-
tribution while the scattering amplitude at large angles
depends on fine details of the charge distribution.

It is possible to develop an approximation to the wave
function by using the empirical phase shift behavior
(2.1) together with the properties of the radial functions.
In addition to the modified wave number and wave-
front curvature, which are already contained in Schiff’s
work, two new features emerge. The first is the posi-
tional dependence of the spin direction, which is always
perpendicular to the surfaces of constant phase. The
second is the change in magnitude of the wave function
across the nucleus, corresponding to the fact that the
nucleus acts somewhat like a lens, tending to bring the
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rays to a focus at a point somewhat beyond the nucleus.
These qualitative properties of the wave function
strongly suggest that a three-dimensional WKB, or
eikonal, approximation may provide a quite accurate
estimate to the wave function at small distances. This
procedure will now be studied; and, incidentally, the
physical significance of (2.1) will be discovered.

Eikonal Approximation

The starting point of the analysis is the two-
component Dirac equation which is valid at high
energies

(o-p+V)Y(0)=Ey(r). (2.2)
We assume a solution in the form
Y1) =u(r)es®, (2.3)

where S is to be chosen so that the rapid variations of ¢
are contained in the exponential and the slow variations
are in the spinor function #. It should be remarked that
this form of wave function cannot be valid everywhere
with these restrictions. For example, in the asymptotic
region it would not be possible to write the sum of the
incident and scattered waves in this form with » slowly
varying. Thus it would not be feasible to solve the scat-
tering problem directly using the form (2.3) together
with the restriction that # be slowly varying. However,
if we are willing to forego a direct calculation of the
outgoing wave, it should be possible to determine the
distorted wave at the nucleus.
The result of substituting (2.3) into (2.2) is

(6 VS+V—Eu=ioc-Vu. (2.4)

Since we want # to be a slowly varying function of posi-
tion, we define the zeroth approximation by

(6+VS+V—E)uo=0. (2.5)

Multiplying this through by (¢:VS—V4E), we see
that this homogeneous equation for the components of
#o has solutions only if

(vS):—(E—-V)2=0. (2.6)
We shall come back to the physical interpretation of
this equation later on. As they stand, (2.4) and (2.6)
together are presumably equivalent to the Dirac equa-
tion (2.2). In particular, since it is a differential equa-
tion, (2.4) has wave-like solutions. Now, however, we
will proceed to solve it by iteration, starting with ,;
the wave-like solutions will accordingly be lost. As has
been repeatedly emphasized, this should not adversely
affect the validity of the approximation at small dis-
tances. The higher approximations are now given by an
iterative procedure

u=uoturt+ust- -

(0 VS+V—E)stp1=i0-Vu,. (2.7)
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It is expected that this will be an asymptotic, rather
than a convergent expansion.

Although there appears to be no practical interest in
the higher terms of the expansion, it is interesting to see
how each one may be computed in principle from the
preceding one. For this purpose it is convenient to split
each spinor into its positive and negative helicity parts

=14 D10,

(0. VS)u, P =L (E—V)u,®. (2.8)

This may be accomplished most easily with a projection
operator

P =[(E=Vxe-VS)/2(E=V)Ju.. (2.9)

It is seen from (2.5) that %, has positive helicity [we
may of course reverse all helicities by reversing the sign
of the o term in the Dirac equation (2.2)]. The negative
helicity part of #,(#>0) is determined immediately from
(2.7), which reduces to

Un T =—1(0-Vitn_1)/2(E=V). (2.10)

The positive helicity part of #, is determined by a
“solvability condition” on (2.7), required because the
matrix on the left side is singular. The right side must
have a certain ratio between the two spinor com-
ponents given by

(6:VS—V+E)e-Vu,=0,
which may also be written

o' @-Vu,=0. (2.11)

For the lowest order this may be expressed in the form

V- (uotﬂ'uo) = O . (212)

This is just the expression for current conservation in
lowest order; current conservation is also easily verified
in higher order. The positive helicity part of #, may be
written

un =N\, (2.13)

where A, is a scalar function of position. It is then easily
found that

A VA= —uto Vu, O /uitu,, (2.14)
where 7 is a unit vector in the direction of V.S:
A=VS/(E-TV). (2.15)

The systematic procedure for developing the eikonal
expansion is now clear. The function S is to be deter-
mined from (2.6) together with boundary conditions.
Equation (2.5) then fixes the local spin direction; i.e.,
it gives the ratio of components of #, at each point.
Normalization of #, is fixed by (2.12). Finally (2.10) and
the solution of (2.14) generate the higher orders in
terms of the lower ones.

AND RAVENHALL

The Semiclassical Approximation

The zeroth approximation is defined by (2.5), (2.6),
and (2.12) together with the boundary conditions. Be-
cause of the close connection with the classical scatter-
ing problem which will soon become apparent, this
approximation will be called the “semiclassical approxi-
mation.” This connection is immediately obvious be-
cause (2.6) is just the Hamilton-Jacobi equation for
particles of zero rest mass. Since we wish to exploit some
properties of the classical scattering problem, the con-
nection will now be traced out in some detail.

Any solution of (2.6) corresponds to a family of tra-
jectories of classical particles; each trajectory is or-
thogonal to the surfaces of constant.S and the classical
momentum at any point of the trajectory is given by

P.=vS. (2.16)

Because of the zero rest mass, the speed of the particle
is always the speed of light (=1 in natural units).
Letting s be the distance along the trajectory, the equa-
tions of motion of the particle may be written

dr/ds=p./(E-V),
dpa/ds=—VV.

(2.17)

There are two important constants of the motion for
the particle (along a trajectory):

pcl+ V=E ]
r%Xpa=L.;

(2.18)

the latter holds only in a central potential.

The next step is to find the family of trajectories cor-
responding to each type of scattering eigenfunction. For
the plus type (incident plane wave plus outgoing
spherical wave), the required family of trajectories cor-
responds to incident particles of momentum k;=Fk#;.
For the minus type eigenfunction, the final particles all
have a definite momentum k;=Fk#A;. The unit vectors
#; and 7, refer to the asymptotic limit of (2.15) in the
initial or final direction respectively; these vectors com-
pletely characterize the scattering eigenfunction. Clearly
the two types are related; by reversing the sign of .S,
the plus type solutions are converted to the minus type
ones, with final momentum the negative of k;. The two
types of eigenfunctions are illustrated in Figs. 1(a) and
1(b). For definiteness, the plus type eigenfunction will
be discussed in detail; rather than proliferate notation,
an index 7 will be omitted from S, #,, etc., whenever no
confusion will result.

The function S may be determined by integrating
along classical trajectories

S(r)=S(r0)+/r (E=V)ds. (2.19)

Since for finite impact parameters we wish the incident
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Fic. 1. The 4+ and — type scattering eigenfunctions near the
nucleus are illustrated in (a) and (b), respectively. The classical
trajectories are represented by solid lines with the direction of AS
indicated by arrows; the dashed lines represent the surfaces of
constant S. A tube of flux is shown in (c), and the area change is
indicated.

wave to approach a plane wave at large distances, it is
convenient to choose S(ry) in the following way:

S(ro)=ki-ro—y In2kr,, (2.20)

where y=Ze2. With this choice S(r) is independent of
ro in the limit k;-r,— — . Equation (2.20) then
amounts to a boundary condition on .S, which may now
be computed from (2.19) if the classical trajectories are
known.

Assuming that S has been determined, we may ex-
press the general solution of (2.5) in terms of an arbi-
trary constant spinor v

wo=N[2(E=V) e -VS+E—TV). (2.21)

The normalizing factor N is to be determined from
(2.12), which may now be expressed

\'A (ﬁ%(ﬁ%g) = 0, (222)
where 7 is defined in (2.15); a more complete notation
for 7 is 7:(r), where r indicates its dependence on posi-
tion and 7 its dependence on incident direction (7).
This equation has a simple geometrical interpretation.
Consider a tube of trajectories [Fig. 1(c)] and let 4 be
the cross-sectional area of the tube. Upon integrating
(2.22) over the volume of the tube, it is found that

iN24 (144, %)= constant,
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or

N=[381+#;-A)]72, (2.23)
where 3=A4/A4, and where v has been chosen to satisfy

=1, o-Ao=v.

This corresponds to a uniform flux density for the inci-
dent wave. Finally, then, we may write

so=[28(1+AsA) T 12(a- A+ Do, (2.24)

Higher Approximations

We shall confine ourselves here to a few general re-
marks. Using the results of the semiclassical approxima-
tion, (2.14) may be rewritten

d\,/ds= —Buste-Vu, (2.25)

where ds refers to a derivative along the classical tra-
jectory. Now we may discuss why the eikonal approxi-
mation can never give wide-angle scattering directly.
According to (2.10), the negative helicity part of the
spinor in any given order (#,), is just a derivative of
the spinor in the preceding order. It will thus not con-
tain an outgoing wave unless the preceding order did.
On the other hand, the positive helicity part is given by
integrating a quantity along the classical trajectory,
and can therefore not give scattering outside the classi-
cal region. To sum up, if the classical scattering does
not extend beyond a certain angle (and typically, it
does not), we cannot hope to determine the scattering in
the nonclassical region by an finite number of deriva-
tives of the semiclassical scattering amplitude.

Another feature of the scattering which is not in-
cluded in the eikonal approximation is the possibility
of reflection of the wave from rapid changes of the po-
tential. The condition for this approximation to be valid
is that the change in local wave number is small in one
wavelength:

RV/orkk or dV/dr<k?.

For a nucleus of charge Z, radial extension of order R,

this means
v/(ER)2%K1.

This condition will in fact obtain in those situations in
which we are interested. Of course, while the reflection
of a tiny fraction of the incident flux at a rapid change in
the potential or one of its higher derivatives may be a
completely unimportant correction to the wave func-
tion at small distances, it could give a relatively im-
portant contribution to the scattered wave which has
a very small magnitude at large angles.

Another apparent difficulty appears if there exists a
focal point in the semiclassical wave function; this may
occur without the presence of rapidly varying poten-
tials. In that case 8 would become very small, and the
higher approximations would not converge in the region
near the focus. The eikonal approximation would
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then break down. Beyond the focal point, where
several trajectories pass through each point, the func-
tion S becomes multiple valued. Presumably the ap-
proximate wave function should then be expressed as a
sum of terms of the form (2.3). In the case of our high-
energy approximation, a focal point does exist; fortu-
nately it is not in the region for which we wish to de-
termine an approximate function. As will be seen in the
following paragraphs, for electron scattering from nuclei
the focus lies a distance of order R(ER/v) beyond the
nucleus. For positron scattering, the nucleus acts like a
diverging lens and there is a virtual focal point on the
incoming side of the nucleus.

Estimates of the Eikonal Wave Function

Ideally, one would like to calculate the eikonal wave
function and employ it in other calculations without
further approximation. However, this would not be a
simple matter and we wish to develop another pro-
cedure. The difficulty may be understood by considering
(2.19). On the surface, this appears to be linear in V
and hence linear in the parameter y= Ze?. However, the
actual situation is more complicated; each trajectory
depends on ¥ and hence .S(r) is a very complicated non-
linear function of . Let us attempt to find S as a power
series in v by setting

S=S5(0)+k-r+S1(1)+So(1)+- - -,

where S;(r) is proportional to v* and each .S; vanishes at
the origin. Substituting in (2.6), we find for the first
few powers of v

(2.26)

k-vS;=—EV, (2.27a)
2k-VSy=V2—(VS.)?, (2.27b)
k‘VS;;z—VS1'V52. (2270)

The solution to (2.27a) is easily written down. Let
1 [=I%X(r><fe)] be the component of r perpendicular
to k and z=zk be the component parallel to k. Then the
solution which satisfies the boundary condition (2.20) is

L
S1(r1,2)= ILim [/ V(\)dx
>0 o

L
—/ V(O\?—}—rl?)lfz)d)\:!=S{—|—S1", (2.28a)
where -

Sy= / [VO)— V(42 ) ]dn,  (2.28b)

S{’=—/V(()\2+7’12)1/2)d>\- (2.28¢)
0

The solution to (2.27b) may now be expressed in terms
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of 51:

1 z 651(1'1,2/) 2
Sp=—— [~—*—] & . (2.29)

2k —0 or 1

Using dimensional arguments it is easy to find the order
of magnitude of the various contributions. It is clear
that, since Sy is independent of %, it is of order v. The
additional terms are successively smaller by factors of
the order v/kR, where R is a measure of the spatial
extension of the charge distribution.

While it would be desirable and perhaps feasible to
use (2.28) and (2.29) directly in further calculations, we
shall pursue the simpler procedure of expanding these
functions in powers of r. For a typical charge distribu-
tion which is flat at the center of the nucleus, the poten-
tial may be written

V(r)=V(0)+%4ak"*r*+---. (2.30)

For example, inside a uniformly charged sphere of
radius R, one finds V(0)=—3y/2R and a=v/(k'R)?,
with no higher powers; &’ will be defined shortly. In the
remainder of this work, we shall treat only the a terms
in (2.30), but higher powers of #* could be included
if necessary. With (2.30), Eq. (2.28c) is easily
integrated

Sy"'=—V(0)k-r—3a(k"rit%s+3k"5).  (2.31)

The V(0) term should clearly be combined with the

plane wave term in (2.26) to give k’-r, where
K=FE, E=E—V(0). (2.32)

We have used already %’ in defining ¢; this is simply a
matter of convenience which permits writing later ex-
pressions in a more unified form. Next (2.28b) may be
expanded in powers of 7,

ey [ 1
S1~ 271 d\
o NOA

© 7192V 19V
[ (LT,
o \AZ OAZ A3 9N

) ] 1 ap
= —-1’127r'y/ p()\)d}\—"%ff‘ﬂ”}’/ ——d\
0 0

A ON
= —b1(7’1k/>2+61(1’1k,)4, (233)
which serves to define 4; and ¢;:
o vy /1
b=t / - <—>  (2.34)
k/2 0 4k/2 7’2
and
1oy [*109p
c1=——— ——dX\. (2.34b)
8k*Jy \NOA
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TasLE 1. Comparison of values of b and ¢ from eikonal theory and phase shift analysis. All examples are for electron scattering from
gold; for notation see Hahn ef al.* The phase shifts used in cases (a) and (c) are from Ravenhall and Yennie®; those for case (b) are
from Clark ef al.c The quantities dmin, dmax, ¢1, and ¢ are defined in the text; by, and ¢p, are obtained from the phase shifts and bay is

the mean of dmin and dmax. Entries are in units of 1075,

Charge distribution

ctc2

bmax Cph C1 c2

bmin bph bav
(a) Uniform 550 58242 580
kR=8
(b) Smoothed uniform 571 603
kc=1.58
kt=2.79
(c) Three-parameter
kc=1.0
kt=3.30
w=1.20

60341

490 50741 516

610 1.044-0.50 0.87 0.27
635 0.9740.07

1.14
1.03

542 —0.31+0.09 -0.11

a B. Hahn, D. G. Ravenhall, and R. Hofstadter, Phys. Rev. 101, 1131 (1956).

b Reference 4.
¢ Reference 20.

In these expressions, p is the charge density nor-

malized to unity:
4r / pridr=1.
0

The reduction in (2.33) was accomplished with the
help of

(2.35)

1 A »00
V(N)=—4mry k/ pr"’dr—i—/ prdrl . (2.36)
0 Y

It is clear on grounds of symmetry that the higher
order contributions to .S in the transverse plane will
have the same form as (2.33). We may then include
some of these higher order effects by modifying 4; and
¢1 to new values b and ¢. The eikonal function near the
origin is then given by

S(r)=S0)+k -r—}ak’-x[ 3" — 2(k'—1)2]
—b(r xK) e[ (r x k)2 4. (2.37)

It will be shown later that the coefficient & introduced
here is to be identified with the 8" in (2.1). It will also be
shown that the contribution to & of order 42 indicates
that & is bounded as follows:

vy /1 vy s1
<—>>b> <_“>:bmin- (238)
4k'E \ 12 4R \ 2

For the simpler charge distributions, & may be calcu-
lated quite accurately (correct to relative order v/kR).
Examples of & from phase shifts are compared with
these bounds in Table I.

The next step of the calculation is to determine #, to
the same order of approximation as S. To lowest order
in a, b, and ¢, we find

A=VS/[E~V(#)]

bmnx =

o1
_%k—;[a(r- k') +2b—4c(k’ X7)?]

X[k"—K(K-r)], (2.39)

and

V A= —[2ak'r- K -+4bk' — 16¢k' (K x1)?]. (2.40)

To the present order of approximation, Eq. (2.22)
becomes

V- (AN?)=0
or
A-VN?=—N?V -1, (2.41a)
which yields
Ne=Ng[14+a(k'-r)?
440k’ - r—16ck’-r(k’ x1)%], (2.41b)

where Ny is the normalization in the transverse plane
through the origin. The latter quantity is easily deter-
mined from (2.23) if we know the area change. This may
be determined from the conservation of classical angu-
lar momentum which may be written

kri0=Fk'ri(1—%ak'%?)

for an incident particle of impact parameter 7,° passing
through the nucleus at a distance 7; from the origin;
terms of higher order in v have been neglected. The rela-
tion between areas is

’dr"=(1/8)rdr1,
which yields
1 ’ kl
Noet—=—(1—ak"r®)=—]1—a(k’ x1)2]. (2.42)
VB k k
In preparation for writing our approximation, we
also need

o-v=[1+a(k’-r)>+2b(k’'-r)—4c(k’-r) (k' xr)2Jo

—k[a(k 1)+2b—4c(k’ x1)%]o-rv. (2.43)

Combining all these results, we find for our approximate
wave function

&M= (K /k){1—a(k’ x1)?
+a(k’-1)243b(k’-r) — 10ck’ - r(k’ x )2

— Lok’ 1+b—2c(K % 1) o1k JoeiS.  (2.44)
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The (—)-type eigenfunction is obtained from the
(4 )-type one by reversing the signs of 4 and ¢; but not
that of a.

For most of our purposes, Eq. (2.37) will be an ade-
quate representation of S(r). However, for completeness,
let us consider the next order corrections; as remarked
earlier, some of these corrections are included by prop-
erly defining & and ¢ so that they give S(r) correctly in
the transverse plane through the origin. This amounts
to replacing the boundary condition at infinity by one
on this plane. In order to determine this new boundary
condition, one must of course integrate (2.19) along the
correct trajectories up to this plane. The coefficients b
and ¢ will be considered in further detail below. Now we
write the remainder in (2.36) as 6S and find

k' (08S/02) = —La2r22%k'°— 2b%, %" — 8¢, °k"®
— 2abr22k " +4acr 2k +8bcr R

or
6S=—%a?(k’ xr)?(k’-r)3—20%(k’ xr)*(k’ 1)
—8c2[(k' xr)2P(k-r)
—ab(k’ x1)2(k’ )2+ 2ac[ (K’ x )2 ]%(k’-1)?
+8bc[[(k' xr)?J2(k’-r). (2.45)

In order to obtain & and ¢ to second order in y we
have to evaluate (2.29) for z=0. Using

8S1(r1,2) /w 1 9V((r2+22)12)

S
ary —z A N

AN

and interchanging orders of integration, we find

2

71 © d}\ 0
i) =~ / — V(O )= V)

12 [*d\
=—— [ —[V(N+r)")—=V(r)]*. (2.46)
2k )0 N
Expanding this in powers of 7,2, we find
1 [2adx
by= / —[VN)—=V(0)]2>0, (247a)
2%k Sy N2
[V(0)] r=dx
[ Sivo-vw)
2Kk Jo N2
V(0) K
= | | | 61 =<——1>b1; (2.47b)
k k
1 red\ 19V (N
o=z [ ro-v[ = e
2kk'4 g N2 N

4 1
=4<—— 1)61—
k 2Kk

X /0 ) %V(A)E a:i}\)—ak’{l . (248)
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Equation (2.47) leads immediately to the bounds given
in (2.38), which are correct to order 2.

As illustrations, here are two examples of & and ¢ for
simple charge distributions.

Uniformly charged sphere of radius R:

3 v 7 v
b=~ l:l—}“ :I )
4 (k'R)? 9F'R
(2.49)
3 ¥ 22 v
c=— [l—l—— ] .
32 (F'R)* S k'R
Charged shell of radius R:
1 2 v
SN I
4 (K'R)? 3%R
(2.50)

4 v
- { .
4F'R

Connection Between the Eikonal Approximation
and the Phase-Shift Analysis

1 v
c=—— l:l
32 (K'R)*

At the beginning of this chapter, we indicated how we
were led to the eikonal approximation by an empirical
study of the scattering eigenfunctions computed by the
phase-shift analysis. The main feature of the empirical
analysis was the recognition that the phase shifts could
be approximated rather well by an expansion of the
form!¢

w= 1=V GHDHCGHD . (251)

We wish now to connect these empirical constants &’
and ¢’ to the properties of the eikonal approximation.
The point of connection is provided by consideration of
the deflection of a classical particle by the nucleus. The
WKB approximation to the phase shifts, which inci-
dentally agrees with the exact phase shifts to within
1.0% in the example cited in footnote 16, are related to
the classical scattering angle by the well-known

18It must be emphasized that this expression represents the
general trend of the *‘data’ from the phase shift analysis. The
actual points fluctuate slightly about the smooth curve given
by (2.51). However, these fluctuations are very small compared
with the over-all change in the magnitude of ;. For example, for
the parameters y=0.5765, 2R=8 (uniformly charged sphere),
the over-all change in 5; for the first seven phase shifts is approxi-
mately 0.26 radians. Nevertheless, parameters can be found so
that (2.51) fits the data to within 0.0005 radians, and accuracy
of 0.2%. When viewed from the point of view of the WKB approxi-
mation for the partial waves, which should give a fairly smooth
dependence on (j+3), these fluctuations may be thought of as a
feature of the wave properties of the partial waves. The fluctua-
tions probably arise from the more or less random phase of the
radial wave function at the edge of the charge distribution; these
functions would clearly be continuous in any usual WKB
approximation.
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expression??

(2.52a)
9j

where o is the scattering angle, reckoned positive for a
purely attractive potential, for a classical particle whose
angular momentum is j+%. Taking the derivative of
(2.51), and using for j+3 the classical value at the
transverse plane,

JHi=kn(1—}ak"r?), (2.52b)

we get the phase-shift prediction for the deflection
angle:
—3a=—20"k'ri+(4c'+ab’)(k'r)*.  (2.53a)

On the other hand, the deflection angle may be cal-
culated classically to the same order of approximation.
Since the momentum is V.S, the angle is

3S(r,,0)/0r1
3S(r1,2)/ 92| .=0
= — (2BE Ak ) B (1— b k')
—2bk'r1+ (4c—ab)(k'r1)3.

—la=

(2.53b)

Comparing the two expressions for a, we conclude that
b'=b, (2.54)
¢'=c—1ab.

Numerical examples are given in Table I. The ex-
tent to which the relationships (2.54) are obeyed is
one measure of the applicability of the -eikonal
approximation.

The eikonal approximation may be compared with
the phase-shift analysis also by examining the phase
of the wave function at the origin. The eikonal ap-
proximation gives it as

S(0)=I}ir_1r:o { / CE—V(\)]ax
-L
—kL—~ ankL]» . (2.55a)

In the phase-shift analysis it is the phase of the /=0
partial wave, i.e., the value of (2.51) for j=%. From

(2.51), we thus obtain
111/2217_1/2—'5:5(0)—'5, (255b)

where 7_y¢ is identified as S(0) by using the WKB ap-
proximation for the phase shifts. Unfortunately, there
is a clear disagreement between (2.55a) and (2.55b) of
a term b. It can only be accounted for by going to the
next order in the eikonal approximation. We obtain the

17 N. F. Mott and H. S. Massey, Tke Theory of Atomic Collisions
(Oxford University Press, New York, 1949), 2nd ed., p. 124.
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next approximation from (2.10) and (2.14). Keeping at
each step only terms of lowest order in v, we get

M\ i 1
R ﬁoTO"V o Vil
as 2%01%0 E-V
+1 ) 3S5/9z
=3t V2p4y=—V2 [Nl:l—}- :” ,
2k 4k E-V

or
dNy/dz=(i/2k) V2N .

The formal integration of this equation gives

i ON
M(r,0)=——
2k 9z

(2.56)

z2=0
i 0,792 19
+— (———l—— ——)N(rl,z)dz. (2.57)
2k J o \Or2 71 01y
The differential equation for N, obtained from (2.15)

ahd (2.41a), is
19
+— —-)s.
71 67'1

aN ( vS ) 1 ( 9?2

—_— _lv o — ) —

2 =
dz E-V 2k\or 12

Integrating this and inserting the result in (2.57), one

finds, after some elaborate manipulations,

M(0,0)=—1b, (2.58)
which combines with S(0) to give the proper phase at
the origin.

One may also ask whether #; gives any important
spatial variations in the vicinity of the nucleus which
should be taken into account in calculations [an over-
all phase factor represented by \:(0,0) is actually im-
material]. The answer is that %, gives variations of
order v/(kR)?, which should be unimportant in the
region of application of the approximation. To see this,
we note that #; is given by (2.10), which with
(2.44) yields

wO=~+-i(F [k)(3ak' o r—3ak’1)v.  (2.59a)
Then (2.14) gives
ONy/ 022 —Ziak’ .
Putting this together with (2.58), we find
WPk k) (—b—3ak -1)v, (2.59b)
so that :
w2i(k' /k)[—b+3ak' o r—(9/4)ak’ - x Tv. (2.59¢)

Note that in this approximation

0"VM1=0,
or
(0:VS—V+E)o-Vu,=0

which is the solvability condition mentioned after
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(2.10). We also see that the last term in (2.59c) could
be absorbed in a further change in wave number inside
the nucleus.

III. APPROXIMATE CALCULATION OF
CROSS SECTIONS

Before proceeding, let us review briefly the nature of
our approximate wave functions. To the lowest order in
7, our wave function depends primarily on four param-
eters: ¢, which describes the radial dependence of ¥ and
is proportional to the charge density at the origin
(i.e., inversely proportional to R?); b, which gives the
curvature of the wave front and is proportional to
(r2); ¢, which gives a correction to this curvature; and
k', the local wave number which is proportional to
(r~1). Of these parameters only ¢ is relatively sensitive
to the details of the charge distribution; and in fact
the same approximate wave function could apply to
many different charges. Our approximation scheme is
also unable to supply any direct information about out-
going spherical scattered waves which we know age
sensitive to the charge. We therefore conclude that the
approximate wave function depends on only general
features of the charge distribution and in particular on
the lower Fourier components of p. The approximation
is also valid only in the vicinity of the nucleus but as
will become evident later, this is the most important
region for the purposes of calculation. The plan of this
section is as follows. We first develop an asymptotic
expansion for the amplitude of the cross section; the
derivation is sufficiently general to apply to elastic or
inelastic scattering of various multipole orders. The ex-
pression is then applied to various cases of interest.

Asymptotic Expansion of the Matrix Elements
Generally we shall be concerned with integrals of the
form

h=/ei(q"'+¢1+¢”)U(r)F(r)d3r. (3.1)

The origin of this type of integral is easy to see. The fac-
tor exp(iq’-r) comes from the plane-wave parts of the
incident and final wave functions, using the modified
wave number. The other parts of the phase, ¢; and ¢,
arise from the more complicated terms in .S, and they
are separated into two contributions depending on
whether they are odd (¢;) or even (¢,) in ¢'-r. The re-
maining complicated parts of the wave function, in-
cluding normalization, spinor dependence, etc., are
contained in F together with any angular dependence
coming from the interaction potential as, for example,
in quadrupole excitation.

We are interested particularly in the region of large
¢’ in which case the most rapid variation of the inte-
grand is associated with the exponential factor. This
suggests that we try to develop an asymptotic expan-
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sion based on this rapid variation. To do this we first
introduce polar coordinates
%lq, #1q in plane of k;, k;.
Then .
F(r)=F(rue),
where
u=cosf=q -7.

Now use the identity

1
——ei (@ rutdrt-¢2)

i(q'r+¢) +¢2") du

with ¢,/ = d¢;/du, and integrate (3.1) by parts with re-
spect to u:

i@’ it d1+¢2) =

(3.2)

1
/ F(,’M’¢)ei(q'r#+¢1+¢~z)d“

-1

+F(r, =1 @)eiteki(d r+eD) 1
22 ’ : -—/ et (a' rutorto2)
* O NES Y "
d F(r,u,)
—{T—‘M‘}d,u, (3.3)
Au Li(g'r+¢1 +¢2)

where
q)i,= ad’z’/al‘ |u==l .

The integral left over on the right-hand side is
of the same form as the original integral and it may
be integrated by parts in the same manner as the
original integral. In this way an asymptotic series in
(¢r+@,+®,')! is developed. The terms in this new
integrand arising from angular derivatives of the wave
function are easily seen to be of order v/(k'R)? relative
to the original integrand. We shall now argue that these
terms may safely be neglected to the accuracy we desire;
other terms associated with angular derivatives of the
potential may not be neglected. The integrated terms
in (3.3) may be rearranged to the form

e[ A, sin(g'r+®:)+id , cos(gr+1)],

D= ;| yt,

where A, and 4, are real and are respectively of order
(1/k'r) and (v/(k’R)%). The terms we wish to ignore
then give corrections to these which are imaginary and
of order v/(k’R)3. The imaginary correction to A, is
roughly equivalent to a change in phase of the argu-
ment of the cosine by (1/&'R), while the imaginary cor-
rection to A, corresponds to a change in phase of the
argument of the sine by v/(k'R)?2. The latter change is
completely negligible. It is easy to see that the effective
phase change of the cosine term may also be neglected.
Because the cosine term has a small coefficient, it is
important only near the zeros of the sine term, where
|sin(g’7+®1)| Sv/k'R. In this region, the error in
neglecting the imaginary part of 4, is of relative order
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v/(F’R)2. Since y<1, and we are interested in large
k'R(E’'R>5), the error is only a few percent.
Next, we note that in all cases we shall consider

F(——r) —1) <p)=F(1’,1,<p),
Py(—7)=—4(7),
q’z(—i’)=¢2(1’).

Hence, if we define the potential for negative values of
r by

(3.4)

U(=n=U(), (3.5)

for a spherically symmetric potential, we may neglect
the integral on the right side of (3.3), and (3.1) may be
written

2r [*
h=— [ rdr G(r)U(r)eix, (3.6a)
1q J
where !
1 F(rle)
G(r)=— / ——————dy;
2r Jo 1+(D/+®)/q'r (3.6b)

X=9/7+‘1)1+‘I’2-

This is the desired result: the three-dimensional integral
(3.1) has been reduced to a one-dimensional integral
with a relative error of order (y/(k’R)?). The generaliza-
tion of (3.6) for an asymmetric potential will be illus-
trated by quadrupole scattering later.

Elastic Scattering

Although we discuss elastic scattering first, it is not
the simplest process to formulate in terms of the eikonal
approximation. The exact expression for the elastic
scattering amplitude is

k
e / X V(W O (3.7)

™

where x is a plane wave and ¢ an exact scattering
wave function. We desire instead to evaluate f by using
our approximate wave functions. While it would appear
natural to replace ¢ by its eikonal approximation ¢
the result would hardly be better than the Born ap-
proximation. The trouble is that ™ contains an out-
going spherical wave and ¢ does not. Because of the
long-range nature of V, this outgoing spherical wave can
make a very large contribution to the integral. The dis-
tortions contained in ¢ correspond in the Born ex-
pansion to the succession of small momentum transfers
experienced by the incoming electron. The contribution
mentioned above is the origin, in (3.7) of the corre-
sponding momentum transfers of the ouigoing electron,
and these would be lost with the above replacement. The
eikonal wave function ¢ does not contain the high
Fourier component (i.e., large-angle scattered waves)
which produce it. As was seen in the last section, the
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classical momentum change of the incoming particle is of
order yR~!, whereas we wish to consider angles for
which the momentum change ¢= 2k sin@>R™1.

The intuitive picture we have of the process is the
following. The incoming wave function is gradually dis-
torted on its way into the nuclear region, but it does not
suffer large momentum transfers in this process. While
in the vicinity of the nucleus it suffers one large mo-
mentum transfer. On the way out further small mo-
mentum transfers take place. A similar qualitative pic-
ture was obtained by Schiff’ by summing up the leading
terms in the Born expansion. This picture suggests that
the proper way to alter (3.7) is to replace both x' and
¥ by eikonal wave functions

k
=fi=— /’¢kf(')TV(1’)¢k,~(+)d3r. (3.8)
2r

This is the approximation which will be used.

While it may not be possible to give a rigorous mathe-
matical derivation of this expression, we can give a
pseudoderivation which helps bring out the physical
basis for the approximation and gives an indication of
when it should be valid. To obtain our approximation,
we assume that there is a comparison potential Vir)
which has the following properties: (i) V(r) yields nearly
the same eikonal approximations as ¥ (r) near the origin.
(i) V() produces very little scattering at large angles
compared to that of V(r). The second condition means
77 is missing high Fourier components that ¥ contains.
It is a smoothed out potential corresponding to a charge
distribution of approximately the same radius as that
giving V. Now let & be the exact scattering solutions
with V. Then, the complete scattering amplitude is
given by!®

J=(k/2m) {/Xkﬂt Ve O dor
fiur-rnen).

For large angles, the first term is negligible. The second
term can be simplified by a series of approximations;
i) V— V is small outside the vicinity of the nucleus
(note that this argument may fail for non-Coulomb scat-
tering); hence we can approximate both J and ¢
by the corresponding eikonal wave functions qS(i?;
(ii) now the ¥ part of the integral is small because it
has only soft Fourier components. (With the exact
functions, ¥ is not negligible since " contains an out-
going spherical wave.) Equation (3.8) follows immedi-
ately and the ¥ dependence drops out. We note how-
ever that the result depends on the existence of such a
V. Clearly it is not always possible to find such a com-

( 18 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
1953).
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parison potential. For example, for a Gaussian charge
distribution the cross section drops very rapidly with
increasing angle. It would be effectively impossible to
find a charge distribution giving a more rapid drop yet
mamtalmng a, b, and £’. In this case, double scatterings
in the vicinity of the nucleus would presumably be
important.

Our discussion indicates that the eikonal appropriate
to ¥ rather than V is the one to be used. The significance
of this remark is that if .S has a higher order discon-
tinuity due to one in V, this discontinuity should be
smoothed out in (3.8). In practice this will be done by
using the first terms of the power series derived in Sec.
II, rather than the exact .S. Presumably one could im-
prove our calculational method concerning this point,
but probably at the expense of great additional labor.
As the present work is exploratory and aimed at ob-
taining qualitative understanding of elastic scattering
rather than accuracy, further refinements will not be
attempted. The uniform charge distribution seems to be
a case where the foregoing reasoning is most reliable,
and the specific results reported later consider only
this example.

The preceding remarks are less likely to apply to the
details of the wave function associated with the param-
eter ¢, which depends more sensitively on the details
of the charge distribution. Nevertheless, the ¢ de-
pendence may indicate the accuracy of the method. For
this reason, results will be presented both with and
without the ¢ terms.

Equation (3.8) is in the form of (3.1) with

Ur)=V(r)
and

(k’/k)%f"Fv,-Euo*(kf)uo(k,-) . (39)

Instead of proceeding directly it is more convenient to
reduce the integral to one involving the charge distribu-
tion. The connection between potential and charge
density is given in (2.36), which is valid even for nega-
tive 7 if we define

p(=r)=p(r).

After inserting (2.36) into (3.6a) and interchanging the
orders of integration, we find

Yk
fi= ———82‘3(0)( ) vy {4#/. r'dr'o(r’)
iq’
X[r’ / e MrlexG(r)dr+ / e—”"eixG(r)rdr:l

__/ e—)\lflgiXG(r)di’]v,-, (311)

(3.10)

where the Coulomb potential has been screened to make
the 1ntegral well defined. The contribution of the last
term in (3.11) is difficult to calculate and we want
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simply to ignore it. Some justification for doing this can
be made. Consider what happens if we expand it in an
asymptotic series in (¢’R)™! by repeated partial in-
tegrations. Except for discontinuities in the integrands,
each integrated term will vanish at the limits of integra-
tion. If ¥ has an nth order discontinuity, we see from
(2.6) that S and hence G will have an (z+1)th order dis-
continuity; it may also have an nth-order discontinuity,
but that will be associated with V and ¢-n and will have
an extra factor of (1/&'R). Previously we argued that S
correspondmg to the reference potential V' should be
used in (3.6). S and S are approximately the same for
small 7, but S should be smoother near discontinuities
in derivatives of V. In any case, it appears that the con-
tribution due to the discontinuity in derivatives of G
will be at least of order (y/%'R) relative to those arising
from discontinuities in V. As it will turn out, we shall
evaluate some easily calculated terms of the same order
and obtain some quite good results. The fact that they
are not better may perhaps be attributed to the neglect
of this term.

Having neglected the last term of (3.11), we now make
an asymptotic expansion of the r integration by re-
peated partial integrations. Terms of relative order
v/(kR)? are neglected by the same argument as that
given after Eq. (3.3). The result is

ik k'\2 o(r)G
1=+ L 62"5(0)(——) va411'/ (Gl )e’xrdrv,, (3.12)
(¢)? k o C(r)?
where
14d
Clr)=14+——(P,+&,). (3.13)
q dr

This is the desired result. In order to apply it, it will be
convenient to use the approximation (2.44) for ¢@&
given in the preceding section. With this approximation,
we find

(&' /)?; Fo;= (k' /)%
X {143bq" - v+ 2a[ (x-k )2+ (e k)2 —r2%'%]
—10¢[k/ - r(k/ xr)2—k/ - r(k/ x1)*]—[3aK’-r
—2c(k/ x1)2+2c(k;/ xt)*]o-tk }v;, (3.14a)
where

K'=k/+k/.

This is to be evaluated for u=1, which is the same as
taking r parallel to ¢'(r=4r); it then sxmphﬁes to

F(r,1,0)=[1+3bq'r
+a(g”—

which is independent of ¢.

Before evaluating the various other quantities occur-
ring in G and , it will be convenient to estimate orders
of magnitude so that we do not unnecessarily carry
along contributions smaller than others which have been
neglected. So far, we have neglected terms of relative

2622 — g K'%%] (3.14b)
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order v/(k’R)? in the amplitude. The meaning of this
should be made precise. At most angles, the leading
term of the amplitude will turn out to be real (with
ei9+2i50 factored out). Its correction is complex and of
relative order v/k’'R; terms of relative order v/(k'R)?
are neglected. At certain angles the leading term passes
through zero. In this region the imaginary terms origi-
nally of relative order v/k'R become dominant and fill
in the zeros in the cross section; but, according to the
discussion after Eq. (3.3), the error of the terms ne-
glected is still only v/(%'R)? compared to the terms
which actually contribute at these minima. Now we
want to make a further simplification which will lead
ultimately to errors of order v/k’'R at these minima.
The simplification will consist simply of neglecting all
the contributions which arise from 4S5, given in (2.45).
The point is that the odd powers of r in 8S, always go
along with q’-r and hence are of relative order y2/(k’R)?
for all scattering angles. On the other hand, the even
powers of r are to be compared with the b and ¢ terms
in (2.36). At the angles where the real part of the cross
section becomes small, it is just the & and ¢ contribu-
tions which give rise to the imaginary terms which fill
in the zeros in the cross section. To be consistent at
these points, the ab and ac terms of (2.45), which are of
relative order (y/%'R), should really be retained. It may
be noted that the error introduced by this simplifica-
tion is comparable to that arising from the uncertainty
in b indicated by (2.38) With these remarks, we may
simply state the results.

x(r)=q'r—al3¢'%"*—(1/12)¢"* I’

— 30K+ %K't
=q'r+&:+®,, (3.15)
C)=1-a@h*—1g)r"
—b(K"/q)+3c(K"*/¢), (3.16)
1+ (o' +¢2)/¢'r
1 a[} - 1R costeTp?
+blg"*— K" cos*olr/q
o3 Q=3¢ cost TR (3.17)

—1— a3k~ 3¢
7
B[ 2 -3¢ T [k~ (5/ g 1K/,
q
where the second form results from doing the angular
integration in (3.6b) and approximating as follows:
1 27 d‘p

; o 14u-+tvcos?e
1 1

T[A+Fu)(tutn]” 1tutdo’
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This is as much as may be conveniently worked out by
general analysis.

Now let us take as an example the simple one of a uni-
formly charged sphere where the charge density is
given by

3
p(r)=—, 7<R,
47 R3 (3.18)

=0, >R
With this, (3.12) reduces to

si,yk e2iS(0) R ) ( )
1= —————v,“v,-/ e'x rdr. (3.19)
¢ (R Jr [C(NDP
This may be expanded by partial integration:
vk 3 G G B
o E iso 1eix[__ ]} oo, (3.20)
g (¢?R%) L LC* dgCtd)_p

Let us check this result with the Born approximation,
i.e., by neglecting all except the leading terms in +.

In this case F=G=a constant and
f1=(2vk/¢)Fo(¢' R)v;'0i, (3.21)

where

3 [sinq’R
(@R ¢R
which is the correct result, with a modified wave-

number.
Going back to the general case, we see that the general
result may be expressed by the substitution

Fo——> fFl,

- cosq’R:l ,

(3.22a)
where

F1=—[3¢**/(¢'R)*]{ (u1+ips) cos(¢’R+®1)

—(1/¢'R)(v1+ivs) sin(¢’R+1)}, (3.22b)

and

m=1{ G(R) . G(—R) }’
2([CRF [C(=R)7F
u2=1—1—{ G(R) 3 G(—R) },
2¢RUCR)]* [C(=R)]
7/1:1{ G(R) | G(—R) }
2[[c®T (=R’
=—4’R{ G(R)  G(—R) }
2 R [C(=R)F
The orders of magnitude of these coefficients are

m=1+0(v/k'R), p=0(v/(¥'R)*),
1n=1+0(y/k'R), »n=0().
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For consistency with previous approximations, up is
replaced by zero in the calculations. The phases ®; and
®,, (3.15), are of course evaluated at r=R:

&, =—3ag (K —3¢*)R?,

(3.22¢)
$,= —30K"?R*+3cK'*R".

Let us observe some of the interesting features of this
result. In contrasting it to the Born approximation, we
note first the ¢’-dependent change in phase ®; of the
argument of the sine and cosine. This apparently arises
from the variation of V' with » and expresses the fact
that the average wave number is slightly smaller than
its magnitude at the origin. We also see that the real
coefficients of the sine and cosine are modified by a rela-
tive correction of order v/£’R. In electron-nucleus scat-
tering the coefficients are enhanced and in positron-
nucleus scattering they are reduced. In the Born
approximation, the cosine term dominates for large ¢'R
except near the zeros of the cosine, and the effect of the
sine term is merely to shift the positions of the zeros.
Now we see that the zeros are filled in somewhat be-
cause the sine term has a complex coefficient linear in
b and c¢. This filling in of the zeros may be very impor-
tant for heavy nuclei. Typical results will be presented
and discussed in Sec. IV.

Inelastic Scattering

The matrix element for electron scattering with nu-
clear excitation, calculated to lowest order in the nuclear
transition matrix element, is of the form

Myme / Uiy OOy ;4 (O PO, (3.23)

where A4 ;:# is the potential associated with the nuclear
transition from state 7 to state f. The initial electron
wave function ¥, is distorted in the Coulomb poten-
tial due to the initial nuclear state, while ¥y, is dis-
torted in the Coulomb potential from the final nuclear
state. Although the eikonal wave function should be
useful in the general situation, we shall restrict our atten-
tion here to electric multipole transitions in situations
where the excitation energy is small relative to the mo-
mentum transfer. Then only the transition Coulomb
potential is important, and (3.23) reduces to

M= / b OOV D@ dr.  (3.24)

Further, V;; may be expanded in a number of multipoles
depending on the nuclear states involved.

If the electron wave functions in (3.24) are approxi-
mated by eikonal wave functions, an integral of the
form (3.1) results immediately. Since the spherically
symmetric part of the final Coulomb potential is not
greatly different from the incident potential, the same

YENNIE, BOOS, AND RAVENHALL

parameters %', a, b, ¢, may be used for both wave func-
tions in (3.24).

The method of asymptotic expansion we have de-
veloped may then be applied immediately to this in-
tegral to reduce it to a one-dimensional one, as in the
elastic scattering case. If the transition potential is not
spherically symmetric, the integral in (3.3) may not be
neglected. This situation will be discussed in detail for
the case of quadrupole excitation, which may be taken
as typical of higher order multipole excitations.

Monopole Excitations

In this case
Vii(x) = Vinen(r)

and (3.6) is an adequate approximation to (3.24), with
F given by (3.14). Monopole excitation is a particularly
important example, because it permits a numerical
check of our approximation with results obtained by a
phase shift analysis. Consider two neighboring elastic
potentials differing by an amount proportional to the

monopole potential
Va=V+AVmon- (3.25)

Then the scattering amplitudes are related by
k
=+ — / Ui, O montbie; O (NP, (3.26)
2

Letting A tend toward zero, we find

k fr
fmonz—“ /E[/kJ'(_)TVan\Lk,-(_HdaT: —_—
27 . [N

h—=Ff=

. (3.27)

Thus the integral associated with the excitation may be
estimated by taking the differences between scattering
amplitudes associated with slightly different charge
distributions.

A particularly simple example to study is the one of
radial oscillations of a uniformly charged sphere. This is
given by

1% 3y 72
V mon=AR—=AR- ——(1——*> r<R
dR 2 R? R?
=0 r>R. (3.28)
In this case
fmon=ARIf/IR, (3.29)

where f is the elastic scattering amplitude calculated
for a sphere of radius R, and AR represents the ampli-
tude of radial oscillation.?

1 This method can be applied to any potential-scattering
problem, e.g., optical-model calculations of monopole excitations
caused by protons on nuclei. It can be made flexible enough to
accommodate any transition density by including the appropriate
functional dependence in the elastic-scattering density and by
varying its parameter.
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The monopole excitation amplitude may now be cal-
culated approximately by replacing ¢ & by ¢ in
(3.27). This gives

k 4 o/
fmong—AR/‘d)kf(_)T—¢ki(+)d3r:AR_ ,
2% oR IR 4 p,c.k7,8(0)

where the R dependence entering f; through the a, b,
¢, ¥/, and S(0) in ¢ is held fixed. This apparently
differs from (3.29); we shall return to this point later.
Approximating to the same order as before, we find

Omon=(EAR)2(2vk/q?)? cos?20| Froon|%, (3.30a)
where

195,

mon

k OR

a,b,e,k’,8(0)

3ei¢s 31/1
= {[_MCH‘
kRq¢'R (¢R)?

J sin(¢’R-+®,)

1
__'JEE(PIC 14 2u1)+i(reC1—mCag’'R) ]
q

Xcos(g’R+<I>1)} , (3.30b)
and

C 1 1 dq)l 3 12 179 2
1= +?;72=1_§a(k —50°)R?,

1 d®,
Co=——=—b(K"/q)R+3c(K"4/¢)R®.
q dR

Results are presented in Sec. IV, where they are com-
pared with those obtained from the phase-shift
calculation.

Now we return to the remark made in the preceding
paragraph which may be restated

df1 9f1
By N
OR 9R!ap,ckr.500)-

This indicates that our approximations for elastic scat-
tering and monopole excitation are not quite consistent
with each other since they do not satisfy (3.29). We
recall that (3.8) was obtained by intuitive arguments
rather than by any systematic procedure. On the other
hand (3.30) represents the first stage of the expression
of Y& in the eikonal series. Therefore we believe that
(3.30) is a more consistent approximation to monopole
excitation than (3.8) is to elastic scattering. We there-
fore seek a new approximation, fs, to elastic scattering.
This should satisfy

dfs df1
dR 9R a,b,c,k’,S(O).

This is easily solved for fs; the result amounts to re-
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placing §; by F» where

Fo=—[3e'"/(¢'R)*] {MC 1(%' /) cos(q’ R+®y)

1 14

- —“[V1C1+i(1'2c 1— ﬂ1czq,R— 27M1C1—‘>:|

¢R k
kl

X—k— sin(q’R-I—(I)l)} . (3.31)

In arriving at this result, we have made use of the
following:

0®;/0R=0,  dP;/0R==20 (to order ),
d¢R/dR=q, 98S(0)/0R=—v/R.

Consistent with the previous approximation, terms of
the following order have been neglected (but not
consistently):

(i) v/(kER)*in the real part of F;

(ii) v/(RR)* in the imaginary part of the coefficient
of cos(¢’R+®,). In particular, this permits us to neglect
derivatives of %', u1, »1, vs, C1, Cs with respect to R.

Quadrupole Excitation
In this case the potential in (3.24) takes the form]
Vﬁ= Yzm(f) Vz(?’) . (332&)

If nuclear alignment effects are not to be observed, the
cross section is to be calculated for each m separately,
and the final result is obtained by averaging over .
This leads to great simplifications because the result is
independent of the axis used to define 7, and it is clearly
a great convenience to take this axis along ¢. With this
choice, only the m=0 contribution is of the required
order of magnitude, because of the symmetries of the
¢ integration. Let us make the angular dependence
associated with Y4 explicit by using the replacement

F— F-(§u*—3)(5/4m)'* (3.32b)

in (3.3). Then in the partial integrations, the derivatives
of F may still be neglected, but those of ¥, may not.
One again finds a result of the form (3.6a), but with G
replaced by

G ( ) 1 /2# { 1
7)=— N —
¢ 27!' 0 1+(q)1,+(1)2’)/q/7’

3 1 3
[ ¢r [1+(2/+) /g7 (¢'r)*
1

X F(r,0)de (3.33a)
[14-(2/+®:) /g7
3G 3G

=Go(r)+ ! 1<r)~ 2@. (3.33b)
qgr  (¢'n)?
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The quadrupole excitation cross-section is now

o= (1/47)| fo|? cos?30, (3.34a)
where
k E\?
fQ=——e2iS(°)(—~> / Go(n)Va(r)eixrdr. (3.34D)
iq’ k/J_,

A factor £ has entered (3.34a) because of the averaging
over m; fq represents the one nonvanishing term in
this average.

Next we calculate fo asymptotically for the special
case of a &-function quadrupole-transition charge
density at radius 7,

Vo(r) = 30a(r){ (r*/16*)0(ro—1)+(ro*/r*)0(r—10)} , (3.35)
where 6 is the step function,
o) =1 A>0
=0 A<O0.
The general result could be recovered by integrating

this with respect to 7,. Neglecting small*contributions
in the same manner as previously, we find

fo=pa(r0)(2k/?)e¥ S5, (3.36a)

where
1 (e 3Gy 3G, o
w2
2¢'ro LiC? gr  (gr)d) sy
ei@z
:-I——{ﬁl sin(q'ro+®;)
q7o
1
+I—(171+i172) cos(q’rg+<1>1)} (3.36b)
and o
. {Gow—[sca(ro)/(q'rom
" [Cor) T
y G(—fo)—[3G2(—fo)/(Q'70)2]}
' [C(—r)7: ’

171=1{ 3Gy(ry) } 3G1(—r0) ]
20[Cr) P [C(=r) ]
_Q'ﬁ {Go(f 0)—[3Ga(r0)/(¢'r0)*]
2 [C(ro) J?
_ G(=r)—[3Ga(—70)/(g'r0)*]
[C(ro) 12

IV. NUMERICAL RESULTS AND DISCUSSION

Vo=

We now wish to compare the differential cross sections
obtained by our methods with the exact results fo
partial-wave analyses.20-21 As has been plain in the
development, however, a number of separate approxi-

2 B. C. Clark, R. Herman, and D. G. Ravenhall (unpublished

calculations).
2 J. T. Reynolds and D. S. Onley (unpublished calculations).
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mations have been employed, some inherent in the
method, and some for simplicity in the present case.
We first summarize this situation, so that in the sub-
sequent comparisons some estimates can be made about
possible improvements.

The basic feature of our method is the use of the
eikonal approximation to describe the electron wave
function in the vicinity of the nucleus. We have re-
stricted our considerations to the lowest-order eikonal,
or semiclassical approximation. In addition, we have
made analytic expansions about »=0 of the quantities
involved in the approximation [S(r), (1), etc.], to
match the assumed expansion (2.30) of the potential.
A partial confirmation of the validity of this expansion
is provided by the good agreement shown in Table I
between the values of b and ¢ from the eikonal approxi-
mation and those from the phase-shift analysis using
(2.51) and (2.54).22 In the perturbation theory for which
this is assumed to provide a good approximation to the
zero-order wave functions, we have calculated the
scattering amplitude to only lowest order (first order)
in the scattering potential. The resulting matrix element
for the amplitude has been then approximated by the
first terms in asymptotic expansions.

We are considering as a special case the uniform
charge distribution. This shape contains only one length
parameter R, the radius. The number of dimensionless
quantities on which the validity of the approximations
depend is thus limited to 2R (or 'R), ¢R (or ¢'R) and
vy=Ze*/hc. The eikonal expansion, valid for high
energies and smoothly varying potentials, is better for
small v and large kR. From the arguments at the end of
Sec. IT we expect that the next-order eikonal terms are
of order v/(kR)2. In the expansion of the semiclassical
wave functions to order v the a terms in .S and %, are
correct inside the nucleus while the & and ¢ terms are
only the first terms in an analytic fit to the phase in the
transverse plane through the origin. It is easy to check
that inside the nucleus b and ¢ give the phase and its
first derivative with respect to r; to 3 and 12.59

accuracy, respectively.?® These are the only quantities

2 The “errors” shown in the phase shift values of b and ¢ reflect
the fact that the actual phase shifts fluctuate about the smooth
curve given by (2.51) (Ref. 16). (Note that these fluctuations are
larger in the case of the uniform charge distribution). In all cases,
the phase-shift value of b agrees with the b,y to within 29, (for
the uniform charge distribution, the difference between b,, and
b1+b2 is negligible). The phase-shift values of ¢ are less well deter-
mined, but agree reasonably well with ¢; [Eq. (2.34b)] for the
uniform and smoothed uniform cases. The disagreement in the
three-parameter case may be attributed to the fact that ¢; is
anomalously small so that ¢;, which we have not evaluated, might
be relatively important.

2 The treatment of Sec. 3 shows that we need to know the
functions S and %, and their derivatives at ==R§; this gives
71=|kXR§| =R cos}0. The worst errors therefore occur at the
smallest angles. For 8>40°, the error in Cs, for example, is less
than 69%,. For the uniform charge distribution, Si’ can be calcu-
lated exactly and the evaluation of uo, Cs, etc., can be carried
through in the same manner as has been done here. This is being
done by L. McDonald, who is also investigating the contributions
of other neglected terms.
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which enter the present paper; the higher radial deriva-
tives, which would be required for corrections to the
asymptotic expansion, are given very poorly by the
b and ¢ terms. In general, the number of terms to be
kept depends on the rapidity of the variation of V(r),
and our somewhat vaguely defined substitution of the
smoothed potential V(r) for V(r) make this rather hard
to assess. The resulting uncertainties produced in the
scattering amplitude will presumably depend on the
process considered, and the emphasis the transition
potential puts on the various regions of r. One expects,
for example, that in quadrupole excitation, because of
the long range of the interaction potential, the neglected
" terms in the expansions about the origin would con-
tribute more than in monopole excitation, and hence in
elastic scattering. But in general we expect the wave-

function approximation to improve askincreases roughly

like (ER)~? and at a given kR to be better for small v.

The adequacy of first-order perturbation theory in
calculating the amplitude depends in some way on the
form factor associated with the scattering potential.
The relative magnitude in our approximation of the
second-order contribution depends physically on the
importance of two half-angle scatterings compared with
the one large-angle scatter. For a uniform charge dis-
tribution, whose sharp edge produces abundant high
Fourier components (i.e., single large-angle scatters),
the neglect of these higher terms will be best justified,
whereas for a Gaussian charge distribution, with very
few high Fourier components, it would probably be very
poor. The applicability of our method to actual nuclear
shapes, where the smooth edge of the distribution
attenuates the high Fourier components of the uniform
shape, needs further examination in this respect. The
asymptotic expansions used to evaluate the first-order
amplitude introduce errors which depend on the param-
eter (¢R)™1, and our final expressions thus omit contribu-
tions which are most important in the forward direction.
In an expression of the form (3.1) the contribution from
different regions of r depends on the size of g. Hence the
errors at large 7 in our expansion of the eikonal wave
function can also introduce ¢-dependent errors in the
amplitude. The exact dependence on v, R and ¢R of the
accuracy of our final result is thus somewhat compli-
cated and difficult to predict.

Of the two versions presented for elastic scattering,
the approximation derived via monopole excitation
(Approximation 2) is certainly more consistent in its
treatment of the small terms. The consideration of in-
coherent amplitudes such as the monopole excitation
does not require the somewhat tortuous reasoning in-
volving the separation from V(r) of V(r) contained at
the beginning of Sec. ITI. The elastic amplitude derived
from the monopole excitation, (3.31), is thus more
firmly based, at least to first order in the perturbation
expansion employed to obtain (3.1). The derivation is
somewhat indirect, however, and in our comparison
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with exact calculations we include the more direct but
less well-founded version (3.22). These are the curves
labelled “‘approximation 2” and “approximation 1,”
respectively, in our plots of elastic scattering.

We now examine empirically the accuracy of our
approximation and its dependence on the three dimen-
sionless parameters y= Ze?/#ic, kR, and qR by comparing
with results of partial-wave calculations. We recall
again that because our comparisons are confined to the
case of a uniform charge distribution with but one radial
parameter R, these are the only dimensionless numbers
involved in the comparison. By plotting the quantity
k%do/dQ, explicit dependence on the energy E=#ck is
removed, and particular examples are completely
specified by the values of v and 2R. Titanium, 2, Ti, with
v taken as 0.16054, represents light nuclei and gold,
79Au, with y=0.5675, heavy nuclei. Since, in the main,
terms neglected are of order v/(kR)?, agreement is ex-
pected to start at smaller 2R values for titanium than
for gold. The elastic scattering has thus been compared
at kR=4 and 8 for tatinium, in Figs. 2 and 3, and for
kR=38 and 16 for gold, in Figs. 4 and 5. To appreciate
the region of physical applicability of our method, we
can insert the actual sizes of these nuclei. For titanium,
those k2R values correspond to scattering at about 200
and 400 MeV, respectively; for gold, kR=8 and 16
would be about 250 and 500 MeV, respectively.

We note first, very briefly, the well-known character-
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Fi1c. 3. Electron and positron scattering on titanium,
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istics of the exact results which have stimulated approxi-
mations such as ours. The pronounced diffraction struc-
ture of the Born approximation is reproduced, but is
shifted to smaller or larger angles, for electrons or
positrons, respectively, by amounts which increase with
v. The zeros are filled in by amounts which increase
with v. Both of these effects are in magnitude the same
for electrons and positrons. Looking at the same diffrac-
tion dip (as regards its ¢R value) at different values of
kR, which is practically the useful comparison, we see
that the filling-in of the zeros decreases as ZR increases.
(We compare for example, the dip at 6~~134° in the
electron curve of Fig. 2 with the dip at 6~56° in Fig. 3.)
For a given v and kR, it decreases as ¢R increases (i.e.,
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F16. 5. Electron and positron scattering on gold,
uniform charge density, 2R =16.

as 0 increases) as is especially clear from Fig. 5. The
effect of the ¢ term in .S is illustrated in Fig. 6; we note
that it is particularly important at smaller angles.

In over-all behavior our approximate calculations
reproduce these features.very clearly. The disagree-
ments, however, are also interesting, since they may
point the way to possible improvements. The position
of the diffraction dips is reproduced very well for elec-
trons in all cases, but for positrons there is a tendency,
at the lower kR values for each v, for the minima to be
shifted to slightly smaller angles, as seen in Figs. 2 and 4.
This is true for both elastic scattering approximations,
which become the same at small ¢R. This effect is
believed to be due to the contribution of 65 to ®, and



ANALYTIC DISTORTED-WAVE APPROXIMATION

corrections to »;, both of which could alter the position
of the zeros of Re fi. Since 85 affects electrons and
positrons similarly, and order y corrections to »; affect
them oppositely, one expects an asymmetry in the
positioning of the minima relative to the gross shift
produced by the change in wave number. The tendency
decreases as kR is doubled in each case, however, and is
barely perceptible in Fig. 3. Of the filling-in of the Born
approximation zeros, the only general feature seems to
be that the monopole-derived approximation 2 is better
than the earlier approximation 1. The maxima of the
diffraction structure, where small correction terms will
have less effect, are reproduced most closely, including
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F16. 6. Electron and positron scattering on gold, uniform charge
density 2R=38. This graph illustrates the effect of the ¢ term in
S (2.37).

the middle-angle region in Figs. 2 and 4. There is a
tendency for even this feature to be less well reproduced
at the very largest angles, however. This feature is not
well understood at present, since the asymptotic expan-
sion should be better there; possibly, it is because the
cross section has become so small that double scatterings
at small distances have become important. Inaccuracies
at small angles, or more precisely at small ¢R, are ex-
pected from the asymptotic expansion of the amplitude,
of course.

To display more clearly the agreements and differ-
ences between the approximate and exact results
Figs. 7 and 8 plot on an expanded scale the ratio of the
approximate calculation oy to the exact one. We note
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that the greatest relative errors occur at the minima,
where the approximate cross section has not been com-
puted with the same relative accuracy as at the maxima.
In the positron cases, especially, the small error in
positioning the minima has given rise to a rapid change
in the ratio. It is also clear from these figures that there
is a general improvement in accuracy with increasing £R.
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TasLE II. Values of the coefficients in (3.22b) for electron scatter-
ing from a uniformly charged gold nucleus with ZR=38.

0 o1 23 v1 123
40° 1.98 0.35 2.67 —8.43
50° 1.69 0.20 2.10 —7.51
60° 1.53 0.12 1.82 —6.94
70° 1.44 0.09 1.66 —6.50
80° 1.38 0.06 1.55 —6.10
90° 1.34 0.05 1.47 —5.74

100° 1.30 0.04 1.41 —5.39
110° 1.27 0.03 1.36 —5.05
120° 1.25 0.02 1.32 —4.74
130° 1.23 0.02 1.29 —4.46
140° 1.21 0.02 1.27 —4.21
150° 1.20 0.01 1.25 —4.01
160° 1.19 0.01 1.24 —3.86

Another way to get some insight into the calculation
is to look at the sizes of the coefficients uy, p2, v1, and vy,
whose leading orders of magnitude are, respectively, 1,
v/(kR)?, 1, and . These are shown in Tables II and ITI
for the typical cases of electron and positron scattering
on gold, kR=8. In this case y~1, and we see that the
deviation of the coefficients from their Born approxima-
tion values (1,0,1,0) is considerable and is greatest at
the smallest angles. Because these deviations are
already so large, it may seem surprising that further
corrections are not equally important. This is probably
because our calculation is not a systematic one in powers
of «; since it has denominators linear in v, it really
contains many higher powers of v already. The best
‘determined coefficient is uy, and it is the most important
one since it determines the magnitude of the cross sec-
tion at the maxima. Possible large errors in »; would
lead to only a small error in the position of the minima.
The coefficient v, is important in determining the filling
in of the minima and it has not yet been determined to
the same relative accuracy as u;. The coefficient u, is
completely unimportant, and it and similar terms have
always been dropped because they are not given con-
sistently in the leading order of the asymptotic expan-
sion. Clearly, to improve the results near the minima
better calculations of »; and v,, as well as ®;, are neces-

TasLE II1. Values of the coefficients in (3.22b) for positron scatter-
ing from a uniformly charged gold nucleus with ZR=8.

[} 1534 22 Vi v
40° 1.01 —-0.17 1.07 3.19
50° 0.92 —0.10 0.92 3.01
60° 0.86 —0.07 0.84 2.90
70° 0.83 —0.05 0.80 2.84
80° 0.81 —0.04 0.78 2.80
90° 0.80 —0.03 0.76 2.79

100° 0.79 —0.03 0.75 2.80
110° 0.78 —0.02 0.75 2.83
120° 0.78 —0.02 0.74 2.89
130° 0.77 —0.02 0.73 2.95
140° 0.76 —0.02 0.73 3.03
150° 0.76 —0.02 0.73 3.11
160° 0.75 —0.02 0.72 3.17

AND RAVENHALL

sary.2® The differences between electron and positron
scattering also appear in these tables, where we see that
the coefficients for electron scattering differ more signifi-
cantly from the Born approximation than do those for
positron scattering. This can be traced to the ¢ term in
C, which is negative for electrons, thus enhancing all
coefficients and is the reverse for positrons.

For brevity, the monopole excitation comparison is
made for electrons and ZR=28 only; in Fig. 9 the dimen-
sionless quantity 2AR in (3.30a) which describes the
strength of the transition has been given the value unity.
Comparison of Figs. 9 and 3, and Figs. 9 and 4, shows
how closely the regular structure of the monopole
excitation follows that of the elastic scattering. The
feature that the two amplitudes are just 7 out of phase
a result which the Born approximation predicts, is a
natural consequence of the exact relationship (3.29). We
use this relation both for our exact calculation of the
monopole excitation from the exact elastic scattering,
and for the approximation 2 to the elastic scattering
obtained from our approximation to monopole excita-
tion. The comparison of (3.30b) and (3.31) displays the
phase difference explicitly. The close connection be-
tween elastic and monopole excitation amplitudes which
we exploit in both the exact and the approximate calcu-
lations explains why the quality of the agreement is the
same in the corresponding cases.

The quadrupole-excitation results are shown in
Fig. 10, again for kR=8 and electrons on gold and
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titanium.2! The §-function excitation is also chosen to be
at a radius given by k7o=38. For quadrupole excitation,
it is not possible to give a simple exact method of calcu-
lation such as that outlined for monopole excitation in
Sec. III, using (3.27). Instead, one must expand the
scattering eigenfunctions in partial waves and calculate
integrals like (3.24) numerically. To the extent that our
approximation is sufficiently accurate, it can therefore
replace time-consuming calculations. The results shown
in Fig. 10 are promising. They indicate that our dis-
torted wave approximation will be valuable in explora-
tory calculations of excitation cross sections although
the exact methods may still be necessary for more
refined analyses.

For the special case of the uniform charge distribution
our approximations have produced expressions for the
scattering amplitudes which display analytically the
behavior expected. They turn out to be in close agree-
ment with the partial-wave calculations, without the
aid of any parameter adjustments or fudge factors, so
that the physical correctness of this approach is clearly
demonstrated. Obvious improvements in this case would
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be to carry further terms both in the Taylor expansion
of the eikonal function and the asymptoticexpansions
of the amplitude. For charge distributions of more
physical applicability, such as the Fermi shape, how-
ever, the asymptotic expansion (3.20) of the radial
integral, which used the discontinuity in p(r), must
presumably be replaced by an exact evaluation. This is
unavoidably less transparent and also lengthier com-
putationally. (For this reason we make no attempt to
compare computing times of our present approximation
and of the partial-wave calculation.) It would be in-
teresting to see the effect of this change alone. A numeri-
cal evaluation of the amplitude (3.1) avoiding com-
pletely the asymptotic expansions is also possible. If
present disagreement at large angles is due to inac-
curacies in the Taylor expansion, however, it would not
thereby be improved, unless those expansions were also
carried further. These seem to be matters for further
exploration. The numerical evaluation of the whole
approximation, including the semiclassical wave func-
tion, seems profitless. Even for inelastic scattering, the
labor involved is equal to that of the partial-wave
analysis, and there is still the uncertainty of higher order
eikonal corrections.
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