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Wave Functions of Nonlocal Potentials: The Percy Effect*
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An eigenfunction of an attractive nonlocal single-particle potential is always smaller inside the region of
the potential than outside; the converse occurs for repulsive potentials. This is the Percy eRect. In the present
article explicit formulas for the eRect are derived for the case of motion in one dimension, and interpretive
discussions of the eRect are given. The derivation does not employ series expansions. It is argued that the
eRect can be understood in terms of the fundamental many-body theory from which the single-particle
potential has (in principle) been derived Som. e of the wave function lies in the channels which have been
eliminated in the course of that derivation.

1. INTRODUCTION

HE single-particle wave functions which are used
in the analysis of many-body systems are eigen-

functions computed for the problem of a particle moving
in a potential well. In most practical calculations this
potential is assumed to be "local,"i.e., to be diagonal in
configuration space. This assumption is in part moti-
vated by mathematical convenience, in part by theo-
retical demonstrations of its reasonableness in a number
of circumstances, and in part by analogy with the
classical potentials of electrostatics and gravitation.

Nevertheless the present widespread use of local
single-particle potentials should probably be regarded as
an interim procedure. The single-particle potentials
which actually arise as parts of more complete many-
body theories are chosen to meet conditions of self-
consistency, as in the Hartree theory, and generally are
found to be to some extent nonlocal. This nonlocality
may be caused by antisymmetrization, as in the
Hartree-Fock theory, or it may be caused by virtual
excitations of the medium in which the particle propa-
gates. Thus nonlocality of the self-consistent potentials
is expected, and it is interesting to explore what its
physical consequences might be.

Phenomenologically chosen single-particle potentials,
such as the nuclear optical potential, or the shell model
potential, probably should resemble the self-consistent
potentials of many-body theory, and should be nonlocal.

Percy and Suck' recently investigated by numerical
means the effects caused by introducing into the
nuclear-optical potential a particular sort of nonlocality
which is physically not unreasonable; it resembles the
nonlocalities of the self-consistent potentials. The inter-
action which they considered has the separable form

V(r, r') = U(-',
~
r+r'[)H(~ r—r'~).

The Schrodinger equation for single-particle motion
then becomes

—(t't'/2M) V'4(r)+ V (r, r')4(r')d'r'= E% (r) . (2)

It was found that in many respects the eigenfunctions
of Eq. (2) could be duplicated with the eigenfunctions
of a suitably chosen "equivalent local'potential. "How-
ever, Percy later pointed out' that it is an interesting
special feature of the eigenfunctions of the nonlocal po-
tential that they are systematically smaller in the
nuclear interior than are the eigenfunctions of the
equivalent local potential.

The Percy e6ect is found to be remarkably system-
atic. In all cases studied, the wave function in the nuclear
interior, for nucleons, is reduced by about 20% from the
amplitude which is computed using the equivalent local
potential. This reduction is found both for continuum
wave functions and for bound state wave functions. It is
an important effect. Matrix elements of many-body
systems typically involve products of three or four
single-particle functions, and a reduction of 20% in each
of four factors implies a reduction of 60% in their
product.

The present article presents an interpretative dis-
cussion of the Percy eGect. Explicit mathematical ex-
pressions for the effect are derived in Sec. 2. The
derivation is designed so as to emphasize at every step
the physical motivations for the procedures which are
followed. Questions of flux conservation are discussed in
Sec. 3. In Sec. 4 there is raised the question of why the
results of Secs. 2 and 3 are reasonable, on the basis of a
qualitative comparison with effects known from many-
body theory. A brief Appendix pursues further a "lattice
Inodel" which is introduced in Sec. 3.

2. DEMONSTRATION OF THE PERKY EFFECT

%hat is mainly considered in this section is the
meaning of introducing a local potential which is
"equivalent" to a given nonlocal potential.

Qualitative discussions are most easily constructed
for the case of one-dimensional motion. This is both
interesting in itself, and it provides understanding of the
behavior of individual partial waves of a three-dimen-
sional problem. Ke therefore consider the Schrodinger

* Supported in part by the National Science Foundation.
F. G. Percy and B.Buck, Nucl. Phys, 32, 353 (1962).

'F. G. Percy, in Direct Interactions and Xuclear Reaction
Mechanisms, edited by E. Clementel and C. Villi (Gordon and
Breach, Science Publishers, Inc. , New York, 1963), p. 125.
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equation
—P"(x)+I (x) =O'P (x), (3)

governe(l by the potential Uz, (x). Therefore

0z—"(*)+Uz(x)kz(x) =&Vz(x)

I(x)= U(..'(x+-x'))H(x x')P—(x')dx'. (4)
and

Uz(x) = (J(x)—0 z(x)F"(x)—4z'(x)F'(x) }/0 (x) (11)

Here we assume H(x —x') =H(x' —x), and also that

H(x x')dx'—= 1.

—P"(x)+UTg(x)f(x) = O'P(x),

UTF(x) =I(x)/P(x).

(6)

(7)

This Ur&(x) is the only local potential of which P(x) is
an exact eigenfunction. Clearly each different state P(x)
leads to a diGerent UTE(x) function. This is not ob-
jectionable. However, it is very objectionable that
Um(x) has a pole wherever P(x) has a zero. ' The
function UTE(x) is not a satisfactory equivalent local
potential.

On the other hand, it is possible to seek an equivalent
local potential Uz(x) which reproduces only certain
selected properties of P(x), and which can therefore be
chosen to be of a congenial mathematical form. It is this
point of view that is followed whenever local optical
potentials of usual types (Saxon shape, etc.) are fitted
by numerical means to match the scattering predicted
by a nonlocal potential. ' ' The potential U&(x) which is
found in those calculations predicts an eigenfunction

fz(x) which exactly matches P(x) everywhere outside
the nucleus, but which differs from 1t (x) in the nuclear
interior.

I et us therefore introduce a function F (x) in terms of
which to formalize the study of the modifications of P(x)
which are considered to be permissible. Ke define

P(x) —=F(x)gz(x) .

In. order that P(x) and gz, (x) describe the same scat-
tering it is necessary that

The potential function U has the dimensions (length) '.
In order to avoid considerations of boundary conditions
for a half space, we choose Eq. (3) to apply over the full
one-dimensional space, — (x(~.

Now, one kind of local potential which can be asso-
ciated with the above P(x) is the one which Percy' calls
the "trivially-equivalent (TE) local potential. " It is
generated merely by demanding that P(x) satisfy a
Schrodinger equation in which there is a local potential,
and then solving for that potential. Thus,

Comparison of Eq. (11) with Eq. (7) shows that intro-
duction of the function F(x), which modifies the wave
function, has added two additional terms in the numer-
ator. Clearly we must choose these terms so that the
zeros of the numerator lie over the zeros of the denomi-
nator, so that Uz(x) will have no poles. Perhaps the
easiest mathematical procedure for ensuring that the
numerator and denominator of Eq. (11) oscillate in
phase, so that there are no poles, is found by considering
a "local exponential approximation" for fz(x), namely

(x) Zl ei sk(x)+Ice—irk(x) (12)

Here the momentum at point x is k(x), and is assumed
to be constant over a sufhcient interval in x so that the
integral I(x) in Eq. (11) can be computed easily. Upon
substitution of Eq. (12) into Eq. (11) we find a result of
the form

Uz, (x)F(x)= U(x+ ', s)H(s)F (x ,'—s)e+'"(*)ds——

—F"(x)W2ik(x)F'(x), (15)

where s= x' —x. The two signs in Eq. (15) correspond to
the two directions of the momentum that was intro-
duced in Eq. (12). Equation (15) must hold for both
signs. Equation (15) is simplified if it is considered that
&(x) should vary slowly over the interval of non-
locality, i.e., if F(x) should vary much more slowly than
H(s). In this case F(x) may be factored out from the
integral, and F"(x) may be dropped, giving

U (x) {Ceixk(x)+De—izk(x)}/

(hei xk(z)+pe irk(x) } (13)—

where the coefficients C and D are computed from Kq.
(11).It is in Eq. (13) that we introduce the requirement
that Uz(x) be of simple mathematical form. In order
that Uz(x) have no poles, or any other mathematical
awkwardnesses which are caused by the oscillations of
the wave function, it is clearly necessary that

((-"/~) = (D/&) .
We therefore find

F(x) —+1 as ~x~~ ~. Uz, (x)F(x)=F(x) U(x+-,'s)H(s)e+""( 'ds

This is a boundary conchtion for F (x), and will be used
in conjunction with a differential equation that will be
derived below.

The function Pz(x) is a Schrodinger eigenfunction,

W2ik(x)F'(x) . (15')

Of course, because Eq. (15') must hold for both signs,
it really is two equations. In their most convenient form
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these two equations are

P"(x)/F(x)]= t2k(x) j-

U(x+-', s)H(s) sinLsk(x)fds, (16)

U (x+-,'s)H (s) cosLsk (x)]ds. (17)

The equivalent local potential is easily generated by
using Eq. (17). It is seen to be somewhat weaker than
the original U(x), as expected.

Equation (16) is the equation of the double-signed
imaginary terms of Eq. (15). This equation is actually
an immediate restatement of Eq. (14). Integration of
this equation gives

wave function 1s independent of the quantum me-
chani. cal state that is being considered.

It may be remarked that the work thus far, up to the
results of Eqs. (17) and (18) does not make use of the
separable property of the nonlocal potential of Eq. (1),
or of Eq. (4).

It may also be remarked that a detailed correspond-
ence with the work of Percy and Saxon' is obtained by
expanding U of Eq. (18') in a power series in the vari-
able s, in the form

U(*'+l ) = U(*')+(l )U'(- ')+l(-'. )'U" (. ')+
Because H(s) in Eq. (18') is even in s, only the odd
powers of the series contribute in the integral. The
result of Percy and. Saxon is obtained by carrying only
the first nonvanishing term, giving

lnF(x) = [2k(x') j—'
InF (x)= 4' U(x) s'H (s)ds. (18")

X U(x'+ 2s)IX(s) sinLsk(x')]dsdx'. (18)

Equation (9) was used to determine the integration
constant in Eq. (18). Equation (18) is closely related to
an equation derived by Percy and Saxon. ' XVe see that
nonvanishing contributions appear in Eq. (18) only if
U(x'+~~s) should be rapidly varying, therefore only in
the region of the nuclear surface. If U(x) should be an
attractive potential, then for x' near the left-hand edge
of the nucleus we have that dU(x'+-,'s)/ds is negative.
Then lnF(x) picks up a negative increment as we enter
the nucleus at the left-hand side. It picks up an equal
and opposite positive increment as we depart at the
right-hand side. Because F(x) = 1 if x is a point outside
the nucleus, we see that F (x)(1 everywhere inside the
nucleus. This result is the Percy effect.

If U(x) should be a repulsive potential it is clear that
the Percy e6ect would be reversed; we would then have
F (x))1 in the nuclear interior.

No numerical evaluations of Eqs. (17) and (18) will

be attempted in the present article. Sufficiently good
approximate evaluations of Eq. (18) are available from
the work of Percy and Saxon, ' and we may refer to their
article for details. However, it is interesting to note that
if the range of nonlocality of H(s) is suKciently small,
then the sine function in Eq. (18) may be replaced
with the linear approximation, so that

1
lnF(x) =— U(x'+-', s)H(s)sdsdx'. (18')

—00 —00

Equation (18') does not depend on the local momentum,
so that in this approximation the Percy effect in the

This formula is very convenient, and may well provide
sufhcient accuracy for most applications. The derivation
of this very simple formula now does make use of the
separable property of the nonlocal potential.

P*(x)P"(x)—P (x)P"*(x)—=J'(x), (19)

J'(x)= H(x —x')(P'(x)P(x')U(-', (x+x'))
—P(x)P*(x') U*(-', (x+x') ))dx'. (20)

It is seen in Eq. (20) that J'(x) can be nonvanishing for
two reasons, either because of the nonlocality, or be-
cause U is complex. If U should be real, then the rate of
change of flux caused by nonlocality alone is

J'(x) = H (x—x') U(-', (x+x') )

X (P*(x)f(x')—P(x)P*(x')}dx'. (21)

It is clear that integration of this J'(x) over the entire
space, —ao&x& ~ yields a zero result, so that in a
problem governed by a real nonlocal potential there is
over-all conservation of flux.

Flux also is conserved locally, oe the a~erage. This is
seen by averaging J'(x) about the point x, using a

3. CONSERVATION OF FI.UX

Further insight can be gained by examining the equa-
ti.on of conservation of quantum-mechanical Aux. This
equation is obtained from Eq. (3) by multiplying each
term of that equation by if*(x), and then extracting the
equation of the imaginary parts. The rate of change of
flux is found to be

' F. G. Percy and D, S. Saxon, Phys. Letters 10, 107 (1964), and
to be published.

Professor D. S. Saxon suggested to the author that it would be
useful to study this topic.
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symmetrical weight function W(x —x) = W(x—x). Then

J'(x)W(x—x)dx -X -$/2 -X +$/P0 0 X -$/2 X +$/P

dx dx'H(x —x')U(-', (x+x'))

xL&*( )p( ')—f( )f*( ')7

FIG. 1. Regions of x space in which the Schrodinger equation for
the lattice model takes on simple forms.

first becomes nonzero, to any other interior point x. It
is found that

X&W(x—x)—W(x' —x)j. (22) Z(x) —Z(—x,——,'~)

If the rate of change of W is much slower than that of H,
then the integrand of the right-hand side of Eq. (22) is
seen to be vanishingly small.

It is interesting to introduce a square well "lattice
model" for the one-dimensional nonlocal potential

2 K

K2

—xp+1/2$

—~p—1/2(

—xp+3/2$

~0+1/28

L4 i*(x)A(x+5)—A(x)A*(x+5)3dx

2' S 1 X— 2* X 3 g

U(x) = —~',
i
x

i &xo,
=0, (23) —02(x)4 i*(*—5)—4"~(x)A*(x+5)]dx

0=pi" (x)+k'Pi (x)+—,'~'P2 (x+$), (26.1)

0=0 "( )+kV ( )+l 'L4 (*—5)+0 (*+&)3 (262)

0=/„"(x)+k'P„(x)+-',~'|t i(x—$) . (26.n)

No general solution of Eqs. (25) has been found. Some
further analysis which yields partial solutions of these
equations is given in the Appendix.

Flux conservation in the lattice model is best studied
by integrating J'(x) from the point (—xo—

~ $), where it

H(x —x') =-,'fb(x' —x—&)+5(x'—x+$)) . (24)

The Schrodinger equation of Eq. (3) takes on different
simple forms in each of the five regions which are shown
in Fig. 1, when Eqs. (23), (24) are inserted into Eq. (3).
These forms are

P"(*)+k'P(x) =0, (25a)

P"(x)+&/ (x)+-'z'P(x+ &)
=0, (25b)

0 "(x)+km (x)+2"L4 (x+5)+0(x—$)j=o, (25c)

P"(x)+k'f(x)+-,'~'P(x —$) =0, (25d)

f"(x)+k'P(x) =0. (25e)

Evidently the difFerential equation in region (b) depends
on the solution function in region (c), and conversely;
likewise the difFerential equations in regions (c) and (d)
depend on each other. There is no coupling to regions

(a) and (e).
Provided xo/$ is an integer we may divide region (c)

into subintervals of the same length as that of regions

(b) and (d). Each subinterval is coupled only to the two
neighboring subintervals. An orderly set of equations to
replace (25b)—(25d) is obtained by labeling P with the
label of the subinterval in which it is being considered, so
that f(x)—=Pi(x) in subinterval t Then regio. n (b) is
labeled 1, region (d) is labeled e, and

1,2~ ~ ~ IJ'
QK t "]dx. (27)

4. CONCLUSIONS

The derivation given in Sec. 2 yields in Eq. (17) a
local potential which is equivalent to a given nonlocal
potential, and yields in Eq. (18) the reduction of the
amplitude in the nuclear interior which occurs for the
wave function of the nonlocal problem. Of course the
fact that F(x) &1 inside the nucleus really only shows
that ~f(x)

~
& ~fr, (x)

~

inside the nucleus. However, ex-
cept at very low energies, functions of the sort of fr, (x)
have about the same amplitude inside the nucleus as
they have outside it. Therefore the Percy eGect is an
actual reduction of the amplitude of the nonlocal
eigenfunction in the nuclear interior. To good approxi-
mation )see Eq. (18')j this reduction is the same for all
energy states of the nonlocal problem, and therefore
aGects both the wave functions used in reaction studies,
and also the wave functions used in nuclear structure
studies.

It should be emphasized again that some elements of

In Eq. (27) the integration has been broken up into a
sum of integrals over the subintervals which lie between—xo—-', $ and x. It is clear that the two terms of the first
integral are cancelled by two terms of the second
integral, that the other two terms of the second integral
cancel two terms of the third integral, and so forth.
Thus as a wave penetrates into the nucleus, nonlocal
effects remove Aux from the first subinterval and replace
it in the second; they remove Aux from the second
subinterval and replace it in the first and third, and so
forth. We see why there is conservation on the average.
Presumably in each subinterval except the first and the
last there is also a fairly good balance between the Qux
gained and the Aux lost.
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arbitrary taste go into the calculation of the local po-
tential which is equivalent to the original nonlocal
potential. The only physical condition we imposed on
UI. (x) was that if'(x) be identical with 1t (x) outside the
nucleus. However, this condition is already fulfilled if

P (x) and Pl, (x) have the same scattering phase shift, and
there is an infinite variety of different potentials Ur, (x)
which match a given phase shift at a single energy. To
make the calculation definite we need to select a class of
potentials among which to search for the "equivalent"
potential. In the analysis of Sec. 2 this selection was

introduced by imposing two mathematical conditions.
The first condition was that F(x) be smoothly varying,
so that Pl, (x) and f(x) should be as alike as possible.
The second condition was that Ul, (x) must vary
smoothly at the zeros of P(x), wherever those zeros might

be. This condition then took the form that the relative
phase of the numerator and denominator of Eq. (11)not
depend on the properties of f(x). In fact this phase con-
dition introduces very strong limitations upon the
selection of F(x), and makes our answer unique. This
condition has a further useful consequence in the case
that the one-dimensional Schrodinger equation we are
analyzing happens to be a radial equation for a single
partial wave of a three-dimensional problem. The con-
dition that Ur, (x) not depend on the positions of the
zeros of a given partial wave then signifies that the
same Ul, (x) will be found for all the partial waves. It is
then clear that the Ul, (x) which is found under our
equivalence conditions is the same unique Ul. (x) which
is found by numerical fits of the scattering cross section
predicted by the nonlocal potential. "

Even if Eq. (11) is studied under much looser mathe-
matical conditions, we see the qualitative fact that any
F(x) which displaces the zeros of the numerator to lie
over those of the denominator must have the property
F(x)&1 in the nuclear interior (if the potential is

attractive). Thus the basic Percy eRect is quite a stable
one.

Now why does the Percy effect occurs To answer this
question it is helpful to ask the further question, why
should the potential which describes the motion of one
particle in a many-particle system be nonlocal? We may
assume that the basic two-particle interaction, the
nucleon-nucleon interaction, is local. Then the non-
locality of the optical potential, say, is found when we

project out from the over-all wave function of the sys-
tem that part which describes the motion in the elastic
channel. Nonlocality appears because the particle in the
elastic channel moves under the inQuenee of coupling to
the other channels. Of course these other channels are
not carried as such in an optical potential calculation.
We may call them the "invisible channels. "Elimination
of the invisible channels is the basic step of the deriva-
tion of the optical potential. Nevertheless part of the
physical wave function does lie in the invisible channels,
and part of the Aux which moves through the nucleus

moves in the invisible channels. It is these aspects of the
physical situation which are accounted for by the non-
locality of the single-particle potential, and by the
Percy effect.

The role of the invisible channels is seen very clearly
in Eq. (27), the flux equation of the lattice model.
There Aux seems to disappear mysteriously in interval
1, and to reappear in interval Z; it disappears in interval
Z and reappears in intervals 1 and 3, etc. Consideration
of the wave function of the full many-body problem
shows that what in fact must be happening is that in
interval 1 Aux leaves the elastic channel and enters the
invisible channels; it propagates for a while in the
invisible channels and then reenters the elastic channel
in the next interval, and so forth. Then the reason why
Aux in the elastic channel is conserved on the average is
that we have implicitly assumed the invisible channels
to be closed channels; therefore as much Aux departs for
the invisible channels as returns from them. They
inhuence the motion in the elastic channel, but do not
permanently remove any Aux from it.

The reason for the Percy effect, that f(x) is smaller
inside the nucleus than it is outside the nucleus, then is
that outside the nucleus f(x) is the full physical wave
function of the many-body system, whereas inside the
nucleus part of the physical wave function lies in the
invisible channels. It may be that all we want of
the physical wave function is the piece 1t (x) which lies in
the elastic channel. Then the Pereyeffect is seen to cause
an important reduction of the matrix elements which
are computed with that piece of the wave function.

The physical interpretation of the Percy efIect is more
difficult in the case that the nonlocal potential is re-
pulsive, inasmuch as in this case 1t (x) is larger inside the
nucleus than it is outside the nucleus. Of course a re-
pulsive nonlocal potential is unusual; however, it is not
necessarily unphysical. We therefore note that in the
case of the attractive potential the virtual excitation of
the invisible channels establishes a cloud of particles
from the medium, which move with the incident particle
and share the Qux. Thereby the part carried in the
elastic channel itself is reduced. In the repulsive case, the
particles of the medium are driven away from the inci-
dent particle; nevertheless Aux must be conserved, and
therefore the incident particle carries more Aux, in order
to compensate for the part of the medium which has
been suppressed. This eGect resembles an effect which is
known from the random phase approximation for bound
states. In that theory the treatment of ground-state
excitations forces certain amplitudes to be normalized
to values greater than unity.
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APPENDIX

Equations (26) for the square well lattice model are
a set of differential-difference equations. Despite the
complications of these equations they possess solutions
in normal modes. For normal mode number ns the wave
function in region / is

it g (x) =Bg, expLi) „(x—lg)],
where a convenient phase factor has been inserted into

the definition. The secular equations are found to be

0= (O' —) ')Bg, +-,'gg'Bs,

0=(k' —) ')8, +-,'a'8
0= (k' —) „')Bg,„+-,'gg'(Bg g, +&g+g, ),

for /=- 1,
for /=e,
for /& 1,e.

Although these equations are solved very easily in any
explicit case, no solution for general m has yet been
found.

The actual solution function P(x) for the lattice model
is a linear combination of the normal modes. The
combination coefficients must be chosen so that P(x)
and f'(x) are continuous across the boundaries between
subintervals.
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Possible Source Mechanism for Low-Energy Galactic Electrons
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A calculation is made of the expected secondary electron Qux resulting from the knock-on collisions of the
primary riuclear beam with the interstellar gas. The model includes ionization losses and a statistical Fermi-
mechanism energy gain. Comparison is made with recent satellite experimental data.

INTRODUCTION

ECENT interest in cosmic-ray electrons has been
confined largely to higher energies. Specifically,

experimental results' ' in the energy region of the order
of i00 MeV to several BeV have been of interest because
of their bearing on the problem of galactic radio emis-
sion. The study of lower energy electrons, although
probably not of direct importance to the radio emission
question, is of importance because of its relationship
to the higher energy electron spectrum, and because of
its bearing upon the questions of solar modulation and
energetic electron production.

Several workers in the held have arrived at the con-
clusion that the primary cosmic-ray beam must traverse
several g/cms of interstellar material prior to being
sampled at or near the earth. ' ' This necessarily implies
a Aux of low-energy electrons in equilibrium with the

*National Aeronautics and Space Agency —National Academy
of Sciences —National Research Council Regular Post-Doctoral
Resident Research Associate.' J. A. Earl, Phys. Rev. Letters 6, 125 (1961).' P. Meyer and R. Vogt, Phys. Rev. Letters 6, 193 (1961).' J. A. DeShong, R. H. Hildebrand, and P. Meyer, Phys. Rev.
Letters 12, 3 (1964).

4F. W. O'Dell, M. M. Shapiro, and B. Stiller, International
Conference on Cosmic Rays and the Earth Storm, Kyoto, 1961
(unpublished) .

'S. Hayakawa, K. Ito, and V. Terashima, Progr. Theoret.
Phys. (Kyoto) Suppl. 6, (1958).

6H. Aizu, Y. Fujimoto, S. Hasegawa, M. Koshiba, I. Ito,
J. Nishimura, and K. Yokoi, Progr. Theoret. Phys. Suppl. (Kyoto)
16, 54 (1960).

primary beam due to the knock-on process in the inter-
stellar gas. This problem has been extensively studied
for knock-on electrons due to muons in various sub-
stances. ' The equilibrium problem in the interstellar
gas is somewhat different from the laboratory experi-
ments 'described in Refs. 7 and 8 because of the absence
of the cascading process in the interstellar gas and the
enhanced ionization loss rate in the partially ionized
hydrogen. "In addition, there is the possibility of further
acceleration of the secondary electrons in the inter-
stellar material "

It is not clear that these galactic electrons of low
rigidity couM penetrate into the solar cavity; however,
recent work by Palmeira and Balasubrahmanyan"
suggests that, at least during solar minimum, they can.
This question is not considered here. The question of
solar modulation is a separate one. By considering the
knock-on Aux as expected in the absence of solar
inQuence and comparing with experimental data ob-
tained outside the magnetosphere, new information con-
cerning solar inhuence may be inferred.

~ W. W. Brown, A. S. McKay, and E. D. Palmatier, Phys. Rev.
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