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Short-Range Correlations and the Three-Body Binding Energy*
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The separable-potential approach of Mitra is extended by introducing an additional interaction which
yields two-nucleon S-wave phase shifts to 340 MeV. A calculation of the exact binding energy and wave
function of a simplified three-body system is used to determine the role of short-range correlations and the
associated off-energy-shell matrix elements of the interaction. We Gnd that the three-body binding energy
ranges from 9.33 to 8.40 MeV; the larger value is calculated using a two-body interaction fitting low-energy
data only, while the smaller value results from including a hard-shell repulsion. A smooth repulsion, which
is equivalent to the hard shell in the two-body problem, yields a three-body binding energy of 8.79 MeV.

I. INTRODUCTION

ECENTLY, Mitra et a/. have elegantly demon-
strated that for separable two-body forces, it is

possible to reduce the three-body problem to a finite
number of coupled one-dimensional equations. ' Assum-

ing a potential which fits only low-energy two-nucleon
scattering data, one 6nds that a numerical solution of
these coupled integral equations yields a reasonable
triton binding energy and provides some hope of resolv-

ing the neutron-deuteron scattering-length ambiguity. ' '
More fundamentally, Lovelace has recently shown that
the existence of the low-energy 'So resonance and the
'5& bound state for the two-nucleon system justify
the separable potential approach. ' Therefore, one is
encouraged to believe that a separable nucleon-nucleon
interaction is a meaningful model which can provide
notable improvements over the usual variational
methods necessary for treating local potentials.

However, it is well known that high-energy nucleon-
nucleon scattering requires a repulsion, usually repre-
sented by a hard core, which can significantly alter the
off-energy-shell matrix elements of the interaction. 4

Nuclear matter calculations with local, nonlocal, and
velocity-dependent pair interactions have not yet
uniquely determined these off-energy-shell elements
and the associated short-range correlations. ' ' Whereas,
the two-body and perhaps even the many-body systems
determine only on-energy-shell elements, one suspects
that the evaluation of three-body properties, sufFiciently
sensitive to short-range correlations, can be used to
uniquely specify the off-energy shell behavior. Unfor-

tunately, three-nucleon variational calculations using
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hard core interactions have not yet determined a
sufFiciently accurate upper and lower bound for the
binding energy to specify a unique two-body force. 7 For
example, Ohmura and Ohmura have used variational
methods to investigate the effect of finite nucleon size
on the Coulomb energy of He' and conclude that it is
possible to have correct Coulomb and binding energies
with or even mitholt u hurd core. It is therefore of
interest to study the role of short-range correlations in
the three-body problem, independent of variational
methods.

In this paper we extend the separable potential
approach of Mitra to higher collision energies by intro-
ducing an additional separable potential which is
adjusted to fit nucleon-nucleon S-state phase shifts to
340 MeV. ' We restrict our study to the pair correlation
dependence of the three-body binding energy without
recourse to variational methods in the hope of gaining
insight into the possibility of simulating or perhaps
replacing the hard core by a separable potential. To
isolate this pair correlation aspect of the three-particle
system, we consider a simplified, smooth, two-body
interaction which is taken to be a central, spin-, and
isospin-independent 5-state force (Sec. II). This model
interaction matches an average of the singlet and
triplet data. We then construct an equivalent hard-shell
potential which is experimentally indistinguishable
from the model potential on the energy shell (i.e., it has
the same phase shifts up to 340 MeV) but differs in
having strong short-range correlations. A third poten-
tial, constructed to match the model potential phase
shifts only at low and medium energies, does not have
the required repulsion; this case is used to test Mitra's
assumption' that "one needs only a potential which
fits scattering data at low and medium energies alone. "

The exact binding energies of this simplified three-
body system are found by solving two coupled integral
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Fn. 2. The phase shifts for potentials 1, 2, and 3 defined by
Eqs. (1) to (11), with parameters given in Table I. Potential 1
is an average of potentials 1A and 1B and is taken as our standard
or model potential. Potential 2 has no repulsion and accurately
Qts the scattering length and effective range of the model potential.
Potential 3 is the hard-shell

I Eq. (11)g interaction adjusted to
Qt the model potential phase shifts to within 0.01 rad.

whereas g(k) peaks at zero energy. Consequently, the
oR-diagonal elements of E are. reduced, and a smooth
two-body wave function is generated. ' In this way, one
can approach the situation assumed by Mitra, for which
off-diagonal elements in the low-energy region are
isolated from the behavior of (k ~

R
~

k') at higher
energies.

The set of parameters V, a ', Ve=—XP'/b, b ', and
d ' are first adjusted to fit the 'So Yl AM phase shifts'
to 340 MeV (Table I and Fig. 1, potential 1A). Assum-
ing the same 'Si repulsion and keeping the same range
a ', we find that increasing V yields an approximate
fit to 'Si low-energy data (potential 1B). Following an
argument given in Ref. 11, we take potential 1 to be an
average of the singlet and triplet forces (Fig. 2). In
reality, the 'S& interaction includes a tensor force; our
procedure merely serves as a guide for defining a model
interaction which only approximates the real pair
interaction in H'. However, having defined the model
potential by parameter set 1 and Eqs. (1)—(10), we now
consider it as our standard, fixed interaction. One should
therefore not expect precise agreement with the triton
binding energy (—8.482 MeV) but rather view the
model as a means of evaluating the charge in binding
energy generated by modified off-energy-shell behavior
for fixed diagonal elements.

As a second potential we assume no repulsion (P—+0)
and adjust V and a ' (potential 2) to fit only the
scattering length a, and effective range r of the model
potential. A 'third potenti. al which corresponds to a
hard-shell interaction" is defined by

h(k) = (8/bk)sin(k/b) .
"J.M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(John Wiley 8z Sons, Inc. , New York, 1952), 1st ed. , Chap. 4,
pp. 192 and 195."R.D. Puff, Ann. Phys. (N. Y.) 13, 31/ (1961).

The relative momenta kis, K, and the total momentum
x are expressed in terms of the particle mornenta
ki, ks, ks, by

2k12 kl k2 p

K,= sk, ——;(k,+k,),
x=kt+ks+ks,

(14)

with similar expressions for kis, Ks and k, s, Ki. Ex-

3
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Fn. 3. The two-particle wave function of relative motion in
the S state for the model, no repulsion, and hard-shell potentials;
this case is for E'I,Ag =0 MeV and 6=x rad. All three wave func-
tions approach the same asymptote r —a, with a, =11.2 F but
differ signi6cantly at short distances.

"M. Verde, in Ilandbz~ch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1957), Vol. 34, p. 144.

L. Eyges, Phys. Rev. 121, 1744 (1961);115, 1643 (1959).

Fortunately, it is possible to match the model potential
phase shifts to 340 MeV wi. th this hard-shell repulsion
(potential 3). At short distances, the hard-shell wave
function is strongly correlated (Fig. 3) and, correspond-
ingly, it has large off-diagonal elements. The repulsion
strength of 44 BeV is balanced by an increase of V to
267.8 MeV. The potential parameters, phase shifts, and
wave functions are given in Table I and Figs. 2—3 for
the model potential, the no-repulsion low-energy inter-
action, and the hard-shell repulsion. These three S-state
central interactions, which have different off-diagonal
characteristics, are now used to test the pair correlation
dependence of the three-body binding energy.

III. THREE-BODY SYSTEM

The spatial part of the triton's ground-state wave
function is known to be predominantly symmetric with
the spin state 2 'tsr a(1)p(2) —cr(2)p(1)jet(3) having the
required antisymmetry. "By averaging the singtet and
triplet interactions, and ignoring the tensor force and
isotopic spin of the nucleons, one reduces the triton
problem to that of three identical, spin-zero particles. 2

For such a system, one can write the totally symmetric
ground state in a form originally suggested by Kyges":

+=II(k„)K3)+f(ki3,Ks)+lb(kss)Ki), (12)
where
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in the presence of the third particle. ) Our extension to
higher energies preserves this convenient structure and
merely introduces the additional spectator function
p(K) for the repulsion. For 5-state interactions, the
spectator functions y(K) and 22(K) depend only on the
magnitude of K and we find that they are determined
by two coupled, homogeneous, linear, integral equations
which are

Li —G(E)]x(E)+cV(E)q (E)

dE'E"Lg(E
i
E')y (E')

—Ott (E
~

E') q (E')), (18)
I I i I 1 t I I

I20 I 40 I60 I80 200 220 240 260 280
POTENTIAL STRENGTH (IltleV)

F|G. 4. The three-body binding energy Ep as a function of the
strength V of the two-body attraction for potentials 1A, 1B,
and the model, no repulsion, and hard-shell pair interactions.
The dashed curve gives the binding energy for an attraction of
range a '=0.834 F with no repulsion; the difterence between the
solid and dashed curves gives the contribution of the model
repulsion to the binding energy. Binding energies were calculated
to an accuracy of 0.01 MeV.

pressed in these momenta, the kinetic energy operator
1s

$1+8(E)jq (E)—cV(E)x(E)

dK'E"I 5R(K' I E)x(E')
—~(EIK') v (E')3 (19)

The kernals g, X, and BR are related to the potential
and the binding energy by evaluating

2 ' dx g(s) g(t)
g(KiK') =-

1 K"+K'+ k s2 KK'x—

with

T=X/k2+ ~E2+ 6~2j,

k12'+ ~K2' ——k12'+ 4 E2' ——k22'+-,'E1' ~

2 ' dx h(s)h(t)
Se(E|E')=— (20)

1 E"+K2+ks2 KK'x—

g(k)x(K) —h(k) 22(K)
it (k,K) =

k'+ —,'K'+k212
(17)

for three identical particles with binding energy
—Ez (Ez ——Xk&2). The extremely convenient structure of
this three-body wave function' is simply a "two-body
wave function" g (k) Lk2+ 62j ' multiplied by a spectator
function y(K) which is a single-particle function for the
third or spectator particle in the presence of the other

(Lg= 'E2+k&2 plays the role of a bi—nding energy

The potential energy operator for separable pair
interactions, neglecting possible three-body forces, is
written as

(1„1,k,
~
V

~
k, 'k2'k2')

=g(~—~') L8(K,—K2')(k12
~

V12
~

k12')

&&((K2—K2')(k12 I V12
~
k12 )

+ g(K,—K,')(I „~V„~1„)j, (16)

where (k
~
V

~

k') is given by Eq. (1) and the delta func-
tion 5(x—x') ensures conservation of the total center-of-
mass momentum for the three-body system. The
assumption of three identical particles, which interact
via potentials 1, 2, or 3 (Table I), requires equal pair
interactions V~~= V~~= V23= V.

Introducing this potential operator into the Schro-
dinger equation, we 6nd an exact relative-wave function
given by

dx g(s)h(t)1

m(K~K') =-
1 K"+K'+ks2 KK'x—

1 " dk k'g'(k)
G(E)=-

k'+52

" dk k'h'(k)
II(E)=-

k2+62

1 " dk k'g(k)h(k)
3I(E)=

2r k'+LB

(21)

with a2=-2K'+ks2
These coupled equations yield the three-body binding

energy kk&' and the spectator functions x(E), p(E) for
given potential functions h(k) and g(k). In the special
case of small g(k)h(k') overlap, corresponding to the
model interaction (potential 1), Eqs. (18) and (19)
tend to decouple and one should then expect a binding
energy close to the no-repulsion (potential 2) result. For
large g(k)h(k') overlap (potential 3) corresponding to
large off-diagonal R-matrix elements and strong short-
range correlations, Eqs. (18) and (19) become more
tightly coupled, and we might expect considerable

with s'=K"+ ', K' EK'x and t =—E2—+41K" KK'x. —
Finally, the functions 6, II, and M are given by
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modification of the binding energy. However, there are
two competing effects: The kinetic energy increases
with short-range curvature, while the attraction
strength V also increases to give the 6xed phase shifts.
It is dificult to predict intuitively the binding energy
which will result from the balance of these effects.

IV. DISCUSSION OF RESULTS

The three-body binding energies E&——Xk&' and the
spectator functions y(E), q (E) for the model, the no
repulsion, and the hard shell pair interactions were
found by numerically solving the coupled-integral
equations $Eqs. (18), (19)). The results are given in
Figs. 4, 5 and Table I. Figure 5 shows how the repulsion
and the associated short-range correlations reduce the
spectator functions at higher momenta; above E=3

the hard-shell spectator functions oscillate as
E ' sin(E/b), indicating correlations similar to those
of the corresponding two-body wave functions (Fig. 3).

Fixing on-energy-shell elements, we find that the
kinetic and potential energies stay in approximate
balance even for radically different oG-diagonal behav-
ior; hence, the three-particle binding energy is deter-
mined predominantly by the on- and near-energy-shell
E-matrix elements. Nevertheless, the binding energy
differences are suKciently accurate to differentiate
between the various pair interactions. For example, the
low-energy potential of the form assumed by Mitra'
(potential 2) yields a binding energy of 9.33 MeV,
whereas the introduction of a model repulsion (potential
1), matching the same low-energy data, reduces the
binding to 8.79 MeV. The hard-shell strongly-correlated
repulsion (potential 3) precisely fits the model potential
phase shifts to 340 MeV and further reduces the
binding energy to 8.40 MeV.

Taking the hard shell as the most realistic potential
considered, we conclude that it is not valid to use a
low-energy potential alone if a binding energy accuracy
of better than 0.93 MeV is required. It is not surprising
that this is of the order of relativistic corrections"
since the nonlocality or velocity dependence of the
separable interaction originates in part from relativistic
e8ects. The three-body binding energies for the model
and hard-shell pair interactions diGer by 0.39 MeV. This
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Fzo. 5. The spectator functions as determined by solving
Eqs. (18) and (19) for the model, no repulsion, and hard shell
pair interactions. Solid curves indicate y(E), dashed curves
indicate cp(IC).

sensitivity to short-range correlations leads us to
conclude that a unique determination of the two-body
force requires an accuracy of better than 5% in a
complete triton calculation. Correspondingly, correction
terms generated by transforming a "realistic" hard core
into a smooth effective potential should contribute
about 5% to the triton's binding energy. ' 's

These preliminary considerations indicate that
Mitra's separable potential approach to the three-body
eigenvalue problem can and should be extended to
include higher energy two-nucleon scattering data.
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