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Problems associated with the use of the process e*+¢~ — 2y as a source for high-energy v rays are in-
vestigated. The polarization of the v's is shown to be negligible at high energies. The spread of vy spectra ata
fixed angle due to radiative corrections is investigated. Terms like (a/7)In?(4E?/m?) are associated with
infrared divergence and disappear with a reasonable energy resolution. The result is very similar to Schwin-
ger’s corrections without vacuum polarization. Our result was found to be also usable in the colliding-beam
experiment without any modification, under certain conditions.

1. INTRODUCTION

N the usual experiments involving photons as inci-
dent particles, the photon source is from the
ordinary bremsstrahlungs which are not only nonmono-
chromatic but also strongly dominated by low-energy
v’s due to the 1/k dependence in the bremsstrahlung
cross sections. This fact not only imposes some com-
plications on the kinematical analysis of the subsequent
photoproduction processes but also sometimes renders
the experiments impossible because of the enormous
background produced by the low-energy +’s; for
example in the bubble-chamber experiments there will
be too many Compton electrons and electron pairs
produced. Ballam and Guiragossidn! made a proposal
to use the fact that when positrons are injected into
the hydrogen target one obtains monochromatic ¥’s
from the e*4-¢~ — 2y process in addition to the ordinary
bremsstrahlung from et+e¢~— et+e 4y and e4-p—
et+p+v. One hopes that the 4’s thus produced will
have components of sufficiently high energy to over-
come part of the difficulties mentioned above. In order
to obtain resultant gamma spectra from et hydrogen
atom collisions one has to calculate the following four
processes in detail :

(1) et+e— 2y and its radiative corrections,
(i) et4e— 3y,
(i) et+e — et+e+,
@iv) et+p—et+ptv.

In this paper we treat only the first process and part
of the second process where the third photon emitted
is limited to a low energy. The exact treatments of
processes (ii), (iii), and (iv) can be done by an electronic
computer and will be published separately.? Figure 1
shows the anticipated vy spectrum at a fixed angle. The
spike in the figure is due to processes (i) and (ii). The
processes (ii), (iii), and (iv) contribute to the smooth
curve in the background. The troublesome low-energy
end of the spectrum can usually be greatly reduced by
passing the v rays through some material using the
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(unpublished).
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fact that the absorption coefficient for the low-energy
v rays is larger than that for the high-energy v rays.

In Sec. 2, we treat the lowest order process, define
the notation, give many useful kinematical relations
and formulas, and show that the polarization of the v
rays produced in the process et+e~— 2y is negligibly
small at high energies. In Sec. 3 the spreading of the
spectra due to radiative corrections is calculated. It is
found that terms like (a/7) In?(4E%/m?) do not occur
in our final expression for the radiative corrections é.
It is concluded that terms like (o/7) In2(4E2/m?) are
closely related to the infrared phenomena and disappear
when the phase space for the third photon k; is taken
to be such that ws™#*>>m in the center-of-mass system.
(See Sec. 5.) In Sec. 4 some numerical examples are
given. In Sec. 5, the physical significance of the existence
or absence of terms like (a/7) In2(4E2?/m?) is discussed.
The resemblance between our results and Schwinger’s
formula is pointed out, and finally the adaptation of
our result to the colliding-beam experiment is con-
sidered. In the Appendix we discuss some precautions
needed in the calculation of cross sections involving
many identical particles in the final states.

2. ette > 2y

In this section we treat the lowest order cross section.
Since we are interested only in the very high energy e*
beam we may treat the electron in the hydrogen atom

|_—ete=2y
Ere—=iery =3y

ip—-eipty
“«
dre=3y

Fi1c. 1. A typical gamma spectrum of positron hydrogen
atom collision at a fixed angle.
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as free. Py and P, represent the four-momenta of the
target electron and the incident positron, respectively.
k1 and e; represent the four-momenta and polarization
vector of the detected photon and %, and e, represent
those of the undetected photon. Quantities with a bar
on top represent the center-of-mass quantities. Our
metric is defined such that if k;=(w,ki) and
Py=(E.,Py), then k1 Pi=wiE1—k;-P;. The units
used are e¢*/4r=qa, and A=c¢=1. We choose a gauge
such that in the laboratory system [Pi=(m,0)],
e1- P1=es- P1=0 and e1-ki=es-k2=0. By calculating
the lowest order Feynman diagrams, one obtains the
differential cross section

d(fo 702

m2(m+E2)
— (er,e2)=—
ko 8 Pz(m+E2—Pg COSG)2

x[‘f+‘3+2—4<e1-e2>2], (2.1)

we Wi

where 7o?="7.95X 10726 cm? and 6 is the angle between
P; and k;.

For convenience in discussing the polarization, let us
choose a coordinate in which the direction of k; is the
z axis and that of ki Xk, is the y axis. Then the sum-
mation over e; can be carried out with respect to two
transverse directions

e2;,= (0, +cosfyz, 0, —sinfys)
€2,= (0’071)0)

and the result is

d(f() A w1 W2
(er)=—{—+—+2—2(e1s cos?brztes,?) |, (2.2)
dﬂkl w2 W1
where

1’02 ‘WL2 (’WI/"‘Ez)

2 Po(m+Es— Py cosh)?

From Eq. (2.2) we can construct the density matrix for
the photon beam £;,

A w; w2
X,J=—;‘<—+—*+2>5”—2 (51‘13]'1 COS2012+6iy6jy)} y (23)

w2 w1

where i=x, y and j=x, y.

The density matrix X completely specifies the
quantum-mechanical description of a monochromatic
photon beam %; because any subsequent interaction of
k1 can be written as Tr(MXM1), where M is the matrix
element of the subsequent interaction (provided one
uses the same gauge as used here). However, it is more
convenient to give an equivalent description in terms
of intensity of the beam and the three Stokes parameters
Sz Sy, and S..

The trace of X gives the differential cross section

vy-RAY SOURCE B 731
summed over the polarization e; and is given by
doy w1 w2
—=TrX=4 {-——{———-{-sin%lz} . (2.4)
dQy. w2 w1

The definitions of the Stokes parameters, their func-
tional form in our particular problem, and their physical
meanings can be given by the following equations®:

S;=Tre, X/TrX= (X .+ X.,)/TrX=0
o= (0.8 VD —do (b= (2.~ 8,)/V2)

= ,  (2.8)
do(61= (8,+8,)/V2)+do (6= (¢.—8,)/V2)
S,=Tro,X/TrX =i(X,y— X )/ TrX =0
do(61= (6,—18,)/N2)—do (¢1= (¢.+18,)/VZ) 26
do(ti= (2,—i8,)NZ)+do (1= (2+it,)NZ)
Tro.X Xpo—X,y
S.= = =sin%6;, /
TrX TrX
w1 W2
<—+—+sin20m>
wo Wy
_do’(é1=éz)—d0'(é1=éy) (27)

do(b1=8,)+do(6=8,)

It is seen that the only nonvanishing Stokes parame-
ter is S,, and Eq. (2.7) shows that there are more
photons plane-polarized in the production plane (x-z
plane) than there are perpendicular to the production
plane.’* The magnitude of S, is roughly proportional
to 61s% the square of the angle between two photons
produced. The differential cross section and the only
nonvanishing Stokes parameter S, of Egs. (2.4) and
(2.7) can be written in terms of 6 and E, alone by the
following kinematic relations:

(Eg—i—m)m Ez
w1= = 5 (2.8)
m+E2—P2 osf 1+%702
(E2+'m) (Ez—Pz COSH) %702E2
we= = ) (29)
m~+Es— Ps cosf 1+3v62
2(E;—m) sin?0 (E2—m)? sin%d
Sin2012=
Ez—Pg cosf (Ez—Pz COSG)2
4
~—(143y8)2=0. (2.10)

,YZ 02

304, 0y, and o, are usual 2)X2 Pauli matrices.

38 Note added in proof. This is just opposite to the case of
Compton scatterings where the photon is partially plane-polarized
perpendicular to the (%1%2) plane. It should be noted that if the
incident positrons are longitudinally polarized (such as obtained
from B decays) the resultant photons will be almost completely
circularly polarized, i.e., |Sy|~1. See L. A. Page, Phys. Rev. 106,
394 (1957).
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K K o M Fic. 2. Feynman
diagrams for virtual

radiative corrections.

e
O
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The approximate relations = hold only when

U>0m/Ey=1/7. (2.11)

Hereafter we use the symbol = to represent approxi-
mate relations true only if inequalities Eq. (2.11) are
satisfied.

When 1>>6 and v>>1 we may write?

R s = i L

= I |

a2 [14+3vePlitye . 2y 1yl
4404

_ 2.12
(1__7202)2] ( )

1

700 1 2
(2 )
2 [1+370T\ye

The second relation holds only when inequalities Eq.
(2.11) are satisfied. Similarly for .S, we have

S.=86%y/ (4+~20*) (1-+~%62)
~0.

(2.13)

(2.14)

For convenience of order of magnitude estimate we
give some of the values of do/dQ. and S, in Table 1.

v i
>
\ 4
>
v
Fammanmnd.
Y
P
>
A4
y
>

F1c. 3. Feynman dia-
grams for real radiative
s K corrections.

,
y
y
>
N
v ¢
y
>

4There is an error in Eqgs. (12)—(48) of Jauch and Rohlich’s
T heory of Photons and Electrons, first edition. In the second edition
the correct formula was given.
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3. RADIATIVE CORRECTIONS

From the experience in the electron scattering from
nuclei, we know that the radiative corrections are quite
important whenever one deals with interactions in-
volving extremely relativistic charged particles. In our
case the radiative corrections will induce a tail to the
spike in Fig. 1, a phenomenon very similar to the radi-
ative tails in the electron scatterings. Harris and Brown®
(HB) have previously calculated the radiative correc-
tions to the pair annihilation, assuming the maximum
energy of the third photon emitted, w;™#*, to be isotropic
in angle and w;™**<<m in the laboratory frame. Their
results were obtained by using the substitution rule on
the earlier paper by Brown and Feynman® (BF) on
Compton scattering. The calculation can be divided
into two parts: virtual radiative corrections represented
by Fig. 2 and real radiative corrections represented by
Fig. 3. The expressions for the virtual radiative correc-
tions are independent of experimental conditions. Thus
we use the results of (HB) for this part. The real
radiative corrections have to be recalculated because
the results depend upon the experimental setup. For
convenience of calculation we shall use the center-of-
mass system. We define B=E,=E,, P= (E*—m??,
and § to be the angle between Py and k. :

TaBLE 1. 0, do/dQy,, and S..

0 ?’02"/ 0
1/y 3roy 1/v
/) (5/9re? 8/5vy

According to Harris and Brown, the elastic cross
section for the et4¢~— 2v up to order ¢ averaged
over spins and summed over polarizations, can be
written as’

doay

dQyy

doy o A
= l 1 ——[2 (1—2x coth2x) In—
kol ™ m

2
—4x cochx(Zg (x)— h(2x)+1)
4x

+F(K,7-)+F(r,x)]} , (3.1)

51. Harris and L. M. Brown, Phys. Rev. 105, 1656 (1957).
Hereafter referred to as (HB).

6 L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1951).
Hereafter referred to as (BF).

” We give this expression in detail because there are two mis-
prints in Eq. (8), and wrong sign for Eq. (8a) of (HB). The present
author did not check their calculation in complete detail. The
errors were found by comparing (HB) with the results of (BF).
According to Professor Brown, the results in (BF) are more
correct.
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where \ is the usual fictitious photon mass and

4 1 7
F(k,r)u=[4x(kr)~" sinh2x(1+2 cosh?x)+2x tanhx Jg(x)+Ink {495 cochxl:—2 ————— 1—4(kr)™! sinh2x:]

22 (k—6\ 37 3 7
(o

sinh2x\ 7 K T KT

372

Imi—a? {2 Tk

cosh’x l« 4 4«

The symbols used in the above equations have the
following meaning:

k=2P1-ki/m*=2Py-ky/m?,
Tzzpl‘kz/m2=2])2'k1/m2,
k+r=4E2/m=45%,

coshx=5=(y/2)!2,

1 1y?2 11 K T
() )
K T K T T K
1 x
g2(x)=- / u tanhudu ,
xJo

1 T

h(x)=- / % cothudu,,
XJo

and

2 [« du
Go(x)z—/ In(1—u)—.
KJ1 u

We shall be interested in the energy,and angular
range such that .
>>7>1 (3.3a)

and

ST, (3.3b)

Since the definitions given above by (HB) are un-
wieldy, we give simplified (but exact) expressions as
well as approximate expressions which hold only when
(3.3) is satisfied.

K T
().
T K
E+P
x=1 ln( —
E—P

sinha= (P/m)=%,
cosh2x=2y2—1=242,
sinh2x=2EP/m?=242,

)zm@w,

1
———~———} —4x cothx {———
2
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K k2
8 8 P—2k+iir 2'(2-{—1'}
k & 287r(k—1) 27(xk—1)2
11 1 1\% 12 3 2« 1 /¢ 1
-+4(~+—) —————— + (-+—>
«) K T k 2t 2 k—1\7 2
e T K r 2 3
+®@W—+—+~H+~%-—q- (32
T K& T 2 k7T
m? x
g@)=In2y—————— (—e )=~
126 2x

)

X 1
h(x)=In(2 sinhx) ——————P(e2%) =
2 12¢ 2«

2

N~— bR

—2 1 2
GO(K)=———[<I>(1——K)—CI>(1):|:—(1112K—|- — >

where ®(x) is the Spence function defined as

“In[1—u|
(I>(x)=——/ - du.
0

u

Substituting the approximate expressions given above
into Eq. (3.1) and neglecting terms small compared with
1 inside the bracket [ 7], we obtain®

aQ

do‘Q‘»y d(ro{ a[(l |F2+ P2 ]E—{-—P)

— In—-
A, 2BP  E-P

™

3 A i
X <—+2 ln~>+2 In®(2y)——+ f:” , (3.4)
2 m 6

where

D)
(D)

T K\ kK 1 1/mx 7
WA PN LIED CHa B

k 7/ T 3 12\r «
We next calculate the cross section for et4-¢— — 3.
In principle, one could calculate this cross section

exactly by going into the center-of-mass system of two
undetected particles as was done in other three-particle

& This expression is very similar to Eq. (43) of (BF) except for
the terms proportional to #2in f.
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a0, de,

. Wy
wmin wlel C

(Gove)
I'16. 4. A typical energy spectrum of the photon at a fixed angle.
The point w;°!(fay) is chosen to be the value of w; determined by

two-body final-state kinematics at the average angle of the
detector. Aw; should be chosen such that &< Aw;<Kw; 0.1,

final-state problems.® We shall not calculate this cross
section exactly here but merely try to find the dominant
terms [such as Iny, Iny In(wi/Aw), etc.], because these
terms can be obtained without much effort and one
expects that the resultant formula should be accurate
to within one or two percent which is hopefully quite
sufficient for the experimenter’s needs. We shall calcu-
late everything in the center-of-mass system.”® To do
this we have to specify what we are looking for in the
laboratory system and then transform the lab experi-
mental conditions into those of the c.m. system. We
are interested in the photon spectrum at a certain angle
in the lab system. We anticipate the spectrum will look
like what is shown in Fig. 4. (The photons due to
ordinary bremsstrahlung have been subtracted al-
ready.) Usually the incident positron energy E, and
the angle 6 have certain widths AE; and A8 and they
cause the width W to the right of the peak in the
spectrum. In the vicinity of the peak the shape of the
spectrum is dominated by AFE, and Af and has very
little to do with the radiative corrections. What one
can calculate by using the standard method is the area
under the curve between w;™™ and ¢ as a function of
Aw; as shown in Fig. 4 provided Aw; is large compared
with . Even in the ideal case where W is infinitely
small, Aw; should not be taken too small'! because of
the infrared divergence difficulties inherent in the
perturbation method. Since the area as a function of

9Y. S. Tsai, Phys. Rev. 122, 1898 (1961).

10 The advantage of using the center-of-mass system is that it
is easier to see under what conditions the %3 in the numerator of
the matrix element can be neglected, and thus obtain an extremely
simple expression such as Eq. (3.16). From our considerations it
can be concluded that in order to neglect k; in the numerator, it
is not necessary to assume ws to be much smaller than m in the
laboratory system as was done in (BF) and (HB). As will be
argued in Sec. 5, in the regions where ws<Xm in the lab system, the
perturbation expansion is not valid owing to the existence of terms
like (a/7) In2(2y) in the radiative corrections §. A similar con-
sideration was taken into account by the author for the radiative
correction to the e-e scattering in the laboratory system. See
Sec. 5 of the paper Y. S. Tsai, Phys. Rev. 120, 269 (1960).

11 See Ref. 17.
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Aw; can be calculated, we can obtain the spectrum
itself in the region where Awi>>W by simply differ-
entiating the expression for the area with respect to Aw;.
Thus our experimental condition in the lab frame can
be stated as “How many photons can be detected in a
small angular range Af with energy wi>wi™* if the
incident positrons have energy E,?”’ In the center-of-
mass system we have incident positron energy

_ E
B=Gmy, (y===(/2m), GO
m
the scattering angle §  »
_ ¥
1—cosf=———, (3.7)
143y
and the energy of the detected photon
ki (Pi+Ps)  oi(143v6%)
~ . (3.8)

wi1= =
L(Pr+Po)* ]2 2y

From the above equations we can construct the phase
space for the photon %; in the center-of-mass system
represented by an area A BCD in Fig. 5. The horizontal
line AB is obtained by setting &;=E where E is given
by Eq. (3.6). Omin,max is obtained from Eq. (3.7),

V6 min, max
1+ 37 Prmin
The line CD is obtained from Egs. (3.8) and (3.7)
(14376

2y B 29 cos?(6/2)

(3.9)

1 - COSém in,max =™

wlmin

&lzwlmm

(3.10)

Now we know the infrared divergence occurs near the
straight line 4 B and the main contribution to the cross
section comes from the region of the phase space near
the line A B. We are thus justified in replacing the line
CD by C'D’ which is obtained by replacing 8 by .y in

& min
Wy

Fic. 5. The phase space for %, in the center-of-mass system is
fqepresented by the area ABCD. We approximate ABCD by
BC'D’.
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Eq. (3.10). For convenience we define

AG=0pm0x— Ornin= 27000/ (141v62)2 sind (3.11)
and _ _
A(IuEE—G)lmi“:EAwl/[wf]((?av)] , (312)

where w1°!(av) is the peak energy of ;1 in the laboratory
system as shown in Fig. 4, and corresponds approxi-
mately to the value of w; obtained from Eq. (2.8) with
average values of 6 and . Hereafter we assume Af to
be very small and simply write w:! for w®!(6av). Thus
we have specified the phase space of %, in the center-of-
mass system.
We next determine the phase space of %k, and Z;.
From energy and momentum conservation
Ortaatas=2E, (3.13)
and

kit+k+k;=0, (3.14)

we can show that for each value of k; the allowed
values of ks and k; must be on the surface of an ellipsoid
with the Ky vector connecting the two foci as shown in
Fig. 6. The ellipsoid shrinks to a line when @;=£ and
has a maximum extension when ®;=a;™ Thus the
phase space of k; and k3 can be represented by all the
points inside the ellipsoid obtained by setting &= @™,
In principle, one has to treat ks and k3 symmetrically
since they are identical particles and both are unde-
tected. However, as is shown in the Appendix we need
to consider only half of the phase space, Fig. 7, due to
the symmetry between %, and ks. In this phase space
only k3 but not £, can become infrared. The distance
from the point O to any point on the surface of this
semiellipsoid gives the maximum value of w;, and is a
function of angle (813) between &y and %; in the center-
of-mass system. Explicitly one obtains

2E Ao
QygMmax = — — —,  (3.15a)
; E+AL_01+ (E—‘A(:)l) C05013
or _
_ E—Aw, 1— (Awl/wlel)
cosby3> —— =—cosf=——"—""—;
E+ACT)1 1+ (Awl/wlel)
and

@gmax= — (F— A&1)/2 cosbis, (3.15b)

@

F16. 6. An ellipsoid representing the phase space for k2 and k;
in the center-of-mass system. k; connects the two foci of the
ellipsoid. The ellipsoid has a maximum extension when w; =w,™ir,

y-RAY SOURCE B 735

N )

T16. 7. The semiellipsoid to be used to determine wsmsx
as a function of 83 (angle between k,; and ks).

for
c08813< — (B—A&y)/ (B+Ay).

Equation (3.15a) represents the equation for the
ellipsoid and Eq. (3.15b) represents the bottom flat
surface in Fig. 7. Some simplification of the phase space
of k3 can be obtained by explicitly considering the
nature of the matrix elements.

There are 6 diagrams which contribute to the 3y
annihilation process as shown in Fig. 3. ks is not con-
nected to the external charged lines in M5 and M and
thus M and Mg are not infrared divergent as can be
verified by explicit calculations. For simplicity of the
calculation we shall ignore M5 and M and also the
terms proportional to k; in the numerator.”? Then the
cross section for 3y annihilation can be written as

fes2dlosdSs
m? 2PP, m?
X((P2-k3)2 (Pl-ks)(Pz-kg)i (Pl-km)' (316)

do’o o

dQ 4n?

d0'37

aQ

In the center-of-mass system both P; and P, are
extremely relativistic and the denominators in the

12 The approximations made here are certainly the most serious
ones and impose severe limitations on the range of applicability
of our result, represented by the first inequality in (3.30) and
inequalities (3.31). The problem one has to investigate is whether
the curve in Fig. 4 goes down monotonically to the low-energy
end or whether it goes up again and gives some additional (un-
welcome) low-energy photons. The author tends to believe the
latter because a positron can first emit a high-energy photon and
then annihilate at a very low energy at which the cross section
is very large. (A similar phenomenon is well known in the brems-
strahlung produced by Coulomb scattering.) Fortunately the
exact calculation of the low-energy end of the spectrum can be
done without much difficulty with the help of a computer. A
computer can take traces, sum the tensor indices, do necessary
cancellations, sort out terms in a convenient order, and obtain an
analytical expression in less than one hour for a job which takes
about six months for a physicist to do by paper and pencil. Two
working computer procedures are available at Stanford, one by
S. Swanson and another by A. Hearn, both of the Physics De-
partment, Stanford University.
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integrand of Eq. (3.16) tell us that practically all k;
are emitted either along P; or P,. Thus we expect the
result of the integration to be quite insensitive to the
detailed shape of the phase space except in the vicinity
of ks||Py and ks||P,. The maximum values of @; along
P; and P; can be obtained from Egs. (3.15a, b) by
setting f13=7—0 and f13= 0, respectively, and they are
to be denoted as wsm2x(k||P;) and &zmex(fyl|Py), re-
spectively. We have tacitly assumed that @z is much
smaller compared with £ in order to obtain a very
simple expression [Eq. (3.16)] for the 3y annihilation
cross section. But from Fig. 7 we see that even for small
A&y, @3 can be as large as ~ (£/2). However, as can be
seen from Eq. (3.15) and Fig. 7, if

T—B>0>8, (3.17)

both wymax(f3||P1) and wszmex(ks|Py) are always small
compared with B, if A®; is small. Hence we shall
assume that inequalities (3.17) are satisfied.® The
integration (3.16) is a familiar one occurring in every
bremsstrahlung calculation. Past experiences show
that the phase space shown in Fig. 7 can be replaced
by a sphere with a radius K ;™»* defined by a geometrical
mean

KgmaxE [&3max (]53”1_)1) X 5)3max(]63HP2)]1/2
=2BAc1[ (E+A&1)2— (E—Ad1)? cos?0 2. (3.18)

Carrying out the integration in this spherical phase
space, and neglecting nonlogarithmic terms, we obtain'®

doy,  dooa B/ 4B

=—————|:2 In <ln———1)

dQy, aQ « K gmax m?
-+%K<P1,Pl>+%1<<P2,P2>—K<P1,Pz>}, (3.19)

where K (P;,P;) are the infrared terms defined by
Hn(P22/N)
K(Pi;l)j)‘——— (Pi])j)/ Td%, (320)
0 z

with P,=P; X+ P;(1—X). It was emphasized by the
author in previous works? that it is a good idea not
to integrate terms like K (P;,P;) explicitly because they
always cancel between elastic and inelastic radiative
corrections. However, since we are going to use Harris
and Brown’s results on the elastic part, we give the
explicit expressions for K (P;P;) in the center-of-mass
system. (Of course the expression can be made co-

13 Tnequalities (3.17) reduce to (3.31) in the laboratory system.
Fortunately the angular range most convenient for experimenters
(Ref. 1) is in the vicinity of 3y62~% to 4 and thus these in-
equalities are easily satisfied.

14 See the discussion concerning Eq. (1.4) of Ref. 9 at the end
of Sec. ITI. Notice that the difference between the exact result
and the approximation is a Spence function ®((E;—E)/E)) in
this reference. This term vanishes in our case because we are in
the c.m. system.

15 See D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.
(N. Y.) 13, 379 (1961), Appendix C.
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variant easily.)
K (P1,P1)=K (P2,Ps)=1In(m/}).

E4-P 4P E+P
K(P1,Py)= o7 [ln In— }

4P E4-P
In— In——
N E-P

1 4P\ g2
— 1112<——)—~—:I . (3.23)
2 m? 6

E2+P2[
"~ 2PE

Experimentally meaningful cross sections can be
obtained by adding Eq. (3.19) to Eq. (3.4) and we
obtain finally

dO’ dO'Q»Y dO'()
aQ

@ 4 49
—2a E 3\, 4 f
o= {(In —)(ln 1>+~} , (3.25)
T Kamax 4 m2 2

where f is the function defined in Eq. (3.5), and is
numerically very small in the range where inequalities
(3.17) hold.1®

The radiative correction 6 in Eq. (3.24) can be
written explicitly in terms of laboratory quantities by
the following substitutions:

dogy

(3.24)

with

4E2/mP=2E,/m=2vy, (3.26)
B wel (yeR)ue
~— R (3.27)
K Ay (14396V2
2(0161 2')/
K= ~ , (3.28)
m 143v6°
and
2eoq! ~26°
T= ~ — . (3.29)
m 1456

In summary, Eq. (3.24) gives the area under the
curve of Fig. 4 from w™™ to ¢ as a function of Aw; in
the range

wle‘0.1>Aw1> H/, (330)
provided the angle 6 is such that
wl/Aw1>>’yO2/2>>Aw1/w1. (331)

16 See Sec. 4 for numerical examples, (—a/r[=Y).
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The lower limit of Aw; in (3.30) is necessary because
near the peak in Fig. 4 the shape of the spectra is
mainly determined by AE; and A6, and further even if
AE, and Af were zero (i.e., W=0), Aw; should not be
taken too small because of infrared divergence diffi-
culties, i.e., Eq. (3.24) diverges as Aw;— 0. A proper
criterion to ascertain that we are not in the infrared
region is that Aw; should be taken large enough such
that!? —§<0.2. On the other hand, the upper limit of
Aw; and inequalities (3.31) were imposed because we
had assumed &3 to be small compared with E in order
to obtain Eq. (3.16). Inequalities (3.31) are merely the
re-expression of the c.m. condition (3.17) in terms of
lab quantities.

Differentiating Eq. (3.24) with respect to Awi we
obtain the spectral distribution of w; at angle 6 in the
lab system

d*osy a < do > day 2a(1 2E, 1)
—_— )= [ p——
dﬂk,dwl 6Aw1 dﬂkl dglcx ™ m

1
X )

w1l —w;

(3.32)

which is correct only if Awi=ws*!'—w; and 8 are such
that (3.30) and (3.31) are satisfied.

4. NUMERICAL EXAMPLES

In order to facilitate numerical computations we
shall rewrite all our formulas in more compact form.
We are mainly interested in the regions of 6 and Aw;
specified by inequalities (2.11), (3.30), and (3.31). Let
us introduce two new symbols

2=~0%/2,
R=w?"/Aw;.

4.1)
(4.2)

The lowest order cross section for et4e~— 2y can
be written as [see Eq. (2.13)]

dog ¢ 1 /1
—~— (—+z> .
a2 (142)%\z

The radiative corrections 6 can be written as [sece
Eq. (3.25)]

2a \z 31
8= ——~{ln<R——>—~ (In2y—1)+7,
- 142/ 4

17If we believe in Schwinger’s conjecture that the radiative
corrections to all order can probably be written as ed=145
~+8%/214-- - -, then for —§<0.2, the next-order correction will be
expected to be less than 29,

(4.3)

(4.4)
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where

i)

<)o)

1 3
+(1+-Z-+-2-){1n2<1+z>—1n<1+z>}
i) o

The spectra of the photon for et-+e~— 3y can be
written as [see Eq. (3.32)]

d20' 3y

ko,dwl

ar 02 1 /

Nz, (a6
. (1+z)\z+;)(n7_ )F:' (*0

The quantity ¥ (z) has a rather complicated expression
but numerically it is very small. For example

Y (10)=¥(0.1)=0.0024,
Y (1)=0.004.

The numerical values for § are given for y=3X10*
(i.e., Es=15 BeV) and z=1:

R=100, §=—0.207;
R= 50, &=—0.175;
R= 25, §=—0.142;
R= 10, §=—0.10;
R= 5, &=—0.068.

5. CONCLUDING REMARKS
A. The purpose of writing this paper is threefold.

(1) To obtain useful formulas concerning the use of
v rays from et+-e~— 2y as a source for high-energy v
rays. It is hoped that the various formulas and con-
siderations given here may be of some help to experi-
menters in designing experiments.

(2) To show how this type of calculation can be
done in order to take into account the realistic experi-
mental requirements.

(3) As a byproduct of this calculation, we observe
that there is no term such as (a/7) In2(4E2/m?) in our
expression for § [see Eq. (3.25)]. Such a term occurs
only in the infrared term K (P;,Ps) which is cancelled
completely after addition of elastic and inelastic cross
sections as previously observed.’® Thus we conclude
that the appearance of such a term in Brown and
Feynman’s and in Harris and Brown’s results is due
purely to their choice of phase space for kj, namely,
ws isotropic and <m in the lab frame. As emphasized
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previously, this kind of term is very undesirable. If,
irrespective of how one chooses the phase space for k3,
terms such as (a/7) In?(4E?%/m?) occur in §, it means
that quite independent of infrared catastrophies the
perturbation expansion is not valid at energies higher
than the value at which (a/) In2(4E2/m2)~1. (This
will occur at E~BeV.) In other words, the existence of
such terms in (BF) and (HB) and the disappearance
of such terms in our expression simply indicate that
such terms are closely related to the infrared catastrophe
of the perturbation expansion and can be eliminated if
one chooses the phase for w; to be such that ws™><>m
in the center-of-mass system.

B. It is interesting to notice the similarity between
our expression for § [see Eq. (3.25)7] and Schwinger’s
radiative corrections to the potential scattering,

—2a E 13
6Schwinger ~— { (ln — ——)
T AE 12

x[m(%)q]%—g} NGRS

The similarity can be made more striking if we de-
compose Oschwinger into the contributions from the
vacuum polarization, the vertex part and the brems-
strahlung:

BSchwinger: 6vz:\(:"l‘_svertex'i"abrem ) (5 . 2)

where
2 =5 1 —¢*
5vac="|:—‘_+_ hl< >:| )
L 9 3 m?
—2af 1 1
5vertex=‘“—[_K(PI,P:S)_”“K(PI;PI)
r L2 2
3 /—¢
~un(SH ], 6
4 m?

—2a—1 1
6brem="‘_“|:—2—K (P1,Ps3) +§K(P1,P1)

™

(5.3)

E —¢
+ln——<ln ——1)] . (5.5
AE m?
Now if we omit 8y,c and consider

—2a E 3
6vertex+5brem = ———|:<ln———- —>
T AE 4

— 1
X (lnm————-— 1)—{——:‘ , (5.6)
m? 4

we arrived at a formula almost identical to Eq. (3.25)
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if we make the following substitutions:

E E
— , (5.7a)
AE K3max
—¢*— 4F? (in the more usual notation
—t—s). (5.7b)

It is obvious why one should omit dy,¢, because there
is no vacuum polarization in our problem. It is also
quite obvious why by making substitutions (5.7a), (5.7b)
on Eq. (5.5) we can obtain our Eq. (3.19). However,
it is not quite obvious that by making a substitution
—t¢— s into the ordinary vertex correction one obtains
the bulk of the virtual radiative corrections represented
by Eq. (3.4).18

C. The present calculation can be easily adapted to
the need of the colliding beam experiment proposed at
Stanford. The purpose of investigating the reaction
et+e~— 2v in the colliding experiment is to test the
validity of quantum electrodynamics at high energies.
Owing to the background bremsstrahlung, the experi-
ment will probably be done by detecting two photons
in coincidence, each photon detector having fairly good
energy and angular resolutions. The lowest order cross
section can be obtained from Eq. (2.4) by making the
expression inside the bracket covariant and recalcu-
lating the function 4 which represents the phase space
and flux density. The result is

D

doy  ro2m? [E'+P cosd E—P cos
—_ ]

ko,— 8PE \E—P coséTE—I—P cos

Dt

2
ol )
E2—P? cos?d  (E2— P2 cosf)?

~ (rom?/8E2){cot?(8/2)+tan2(8/2)}. (5.8)

The second equation holds only if 8 and E; satisfy

sinf>>1/9<<1. (5.9)

The radiative correction can be calculated by using
Eq. (3.25). The only thing one has to do is to relate
K™= to the energy and angular resolutions of the
detecting system. If Af is negligible, and further, if
Ao is the smaller one of the energy resolutions of the
two detectors, then Eq. (3.18) can be used as Kzme*.
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APPENDIX

In applying the Feynman rules to calculate the
transition probabilities involving identical particles in
the final states, considerable care must be exercised.
Take the example of reaction et4-e~— ki+ko+%; in
the c.m. system. Because of energy-momentum con-
servation, only momenta of two particles (say k; and
k,) are needed to determine the kinematics completely.
Suppose we have two detectors A and B. We may
arbitrarily assign the photon detected by A to be %;
and that detected by B to be ks, and calculate the cross
section according to the standard rule

1 1
do= (2m)*
4[(P1 P1)2 m12m22]l/2 (27r)3><3

d*ky Bk dPks
—— 8 (b 1 )SIZ M2,

2w; 2we 2ws

(A1)

where .S is averaged over initial spin and summed over
the final polarizations, and the M s are the matrix
elements written according to the standard rule. [We
normalize to one particle per (2E)™' cm® for each
particle.] The integral is to be taken in the range speci-
fied by detectors A and B. Now suppose the detector B
is removed; do we get the right result by just inte-
grating over all d®%2? The answer is no. The expression
(A1) must be divided by 2 and then integrated over all
possible d®%s. To show this, consider an event where
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one of three photons goes into A and another into B.
The probability of this event is independent of whether
or not there is a detector at B. Now corresponding to
this event, there are two possibilities, either k£, goes
into B or k; goes into B. Both of these possibilities
occur when there is no detector at B. But now as soon
as we put a detector in B %3 can not go into B because
we said the photon detected by B is called %;. This
proves our assertion. The result can be generalized to
n identical particles in the final states. We need n—1
detectors to determine the kinematics of the problem.
Thus if there are n—1 detectors we use the standard
rule. If we have n—2 detectors we divide the whole
expression by 2. If there are n—d detectors we divide
the standard expression by d!. Specifically if there is
no detector (i.e., total cross section) we have to divide
the Eq. (A1) by nl.

The arguments given above can be used in our
calculation of spectra of k; due to et+e~— 3vy. The
radiative corrections calculated by Brown and Feynman
and by Harris and Brown apply only to the coincidence
experiments. Since we are not measuring %, and ks we
have to integrate over all the phase space of ks and k;
and divide it by 2! according to our prescription. The
phase space of ks and k3 can be represented as an ellip-
soid as shown in Fig. 6. Now the matrix element | M |2
is symmetric with respect to interchange of ks <> k.
Thus instead of integrating ks and k3 in the whole
phase space and dividing it by 2!, we may equivalently
integrate over half of the phase space as shown in Fig.
7. Now in this modified phase space ks is never small
and thus an infrared divergence occurs only when
k3 — 0, although both %, and %; can become infrared
in the complete phase space.



