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Certain theorems 6rst pointed out by Meiman are used to include the information contained in analyticity
in energy and crossing symmetry in the derivation of upper bounds for the forward scattering amplitude.
We have obtained theorems relating the asymptotic behavior of the ratio of the real part to the imaginary
part of the forward amplitude on the one hand, to that of the total cross section on the other. Except for
the special case where Ref/Imf~zr(inE) ' as the incident Iaboratory energy E ~ za, we Gnd that the
Froissart bound can be improved. We also Gnd that the Greenberg-Low bound which follows from axio-
matic 6eld theory can always be improved by a fractional power of E under the physical assumption that
the amplitude does not become purely real as E ~ ~.As a result of our theorems we And that the asymptotic
behavior Ref~cE is not allowed. This sheds light on the question of the "elementary" nature of vector
mesons. Finally, we give an inequality which, in principle, could lead to an experimental check of analyticity
and crossing with data obtained only from a 6nite range of energy.

I. INTRODUCTION Both Refs. 2 and 5 did not make use of the fact that
the scattering amplitude is analytic in the energy vari-
able and satisfms the crossing symmetry relations. It
is the purpose of this paper to show that certain theo-
rems first introduced by Meiman' provide a very useful
tool for including some of the information contained in
analyticity in E and crossing in the derivation of upper
bounds for the forward scattering amplitude.

We have found that there is a very close relationship
between the asymptotic behavior of the ratio

~
Ref ~/

~Imf~ for large energy and that of the total cross
section. (For convenience we limit ourselves erst to
self-crossed forward scattering of a spin-zero particle.
Most of our results, however, hold for more general
cases, as pointed out below. ) We give three theorems
in Sec. II which clarify this relationship. We first show
that if, as E +, (

Ref ~ / ~

Imf ~
)tanzrcr, 0(cr (-', , then

the total cross section must vanish faster than E
Secondly, we show that, if as E +~, )Ref~/iIm—f~) (lnE) ', with 0(zt(1, the total cross section is
bounded by (lnE) ", where X is positive and may be
chosen as large as we please. Finally, to treat the cases
where

~ Ref (/ i Imf
~

goes to zero faster than (lnE)-',
we make some extra assumptions about the smoothness
of o(E) as E —+~. Under t-hese assumptions we show
that, if L ~ Ref ~ / ~

Imf ~ j lnE ~ 0 as E~~, o is bounded
'by (lnE) ', where e is an arbitrarily small positive num-
ber. We find that the only case in which the Froissart
bound cannot be improved by these methods is the one
for which Ref/Imf zr/1nE, as E —+co. All these re-
sults also hold for the amplitude

' 'N 1961 Froissart' obtained upper bounds for the
- ~ scattering amplitude and the total cross section at
high energies based on unitarity and the Mandelstam
representation. Later, Martinm showed that these upper
bounds can be obtained without assuming the validity
of the Mandelstam representation. Essentially, all that
is needed, other than the properties that follow from
the Lehmann-Symanzik-Zimmermann (LSZ) scattering
formalism and unitarity, is analyticity in the momen-
tum transfer variable t in a small domain around the
origin. The minimum size of this domain should be
finite and independent of energy.

In the work of Kinoshita, Loeffel, and Martin, ' the
proof of Ref. 2 was sharpened. It was also shown by
construction of counter-examples that the Froissart
bound for forward scattering cannot be improved if
one does not use information other than analyticity in t,
unitarity, and boundedness by a polynomial in the
energy variable.

The analyticity in t assumed by Martin has never
been proved either in local field theory or in perturba-
tion theory. The best that one can do starting with
analyticity in t in the usual Lehmann ellipse4 is the
upper bound obtained by Greenberg and Low' which
has one more power of laboratory energy than the
Froissart bound.

*Permanent address: The Rockefeller Institute, New York 21,
New York.

f Work supported in part by the Atomic Energy Commission.
f. Work supported in part by the U. S. OfBce of Naval Research.
' M. Froissart, Phys. Rev. 123, 1053 (1961).' A. Martin, Phys. Rev. 129, 1432 (1963). See also Ref. 5.
' T. Kinoshita, J. J. Loeffel, and A. Martin, Phys. Rev. Letters

10, 460 (1963).Also, Phys. Rev. 135, B1464 (1964).
4 H. Lehmann, Nuovo Cimento 10, 579 (1958).' O. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961).
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where f+ and f are the forward s-+p and. s p ampli-
tudes, respectively.

Theorems 1 and 2 do not treat the case where Ref
changes sign an infinite number of times as E—+~.
(Such a behavior is not very plausible if the total cross
section does not oscillate with large amplitudes for
large K.)

All the theorems of Sec. II are obtained by assuming
that f(E) satisfies the Froissart bound. In Sec. III we
remove this assumption and take as a starting point
the Greenberg-Low upper bound. We show that if
~Imf~/)Ref( does cot tend to zero as E~~, then the
Greenberg-Low bound can be improved by a fractional
power of E. This result holds even if Ref oscillates
around zero an infinite number of times. As a conse-
quence, in any field theory with analyticity in a Leh-
mann ellipse, the forward dispersion relations require
at most two subtractions, provided that the amplitude
does not become relatively real as E—+~. Thus, for
example, one does not have to use the Froissart bound
to prove that Lf(E)—f(0)j/E is a Herglotz function. r

Our theorems enable us to make some statements
about the kind of contributions that the exchange of
"elementary" vector mesons can give to the real part
of the forward amplitude. This question will be taken
up brieQy in Sec. IV.

Recent experiments at Brookhaven' and CERN'
have indicated the existence of a substantial real part
in s+p and pp scattering amplitudes at high energies.
In Sec. V we give an inequality which in principle can
give a direct test of analyticity, crossing symmetry,
and boundedness by a polynomial. The test depends
only on data on Ref and the total cross section ob-
tained for

aconite

range of energies, for example 1—500-
BeV incident laboratory energy. If a real part is main-
tained to such high energies, this inequality could be
violated. Such a violation would mean that the forward
dispersion relation is invalid. The main attractive fea-
ture of this inequality is that, unlike the dispersion
relation, it does not contain integrals that extend to
infinite energies.

The theorems of Meiman which are the basis of this
paper follow immediately from certain inequalities on
harmonic measures given in the book of Xevanlinna. "
For the convenience of the reader we have included in
the Appendix a brief summary of definitions and basic
results from Nevanlinna's book necessary to under-
stand the origin of Meiman's theorems. For complete-

' If p(s) is analytic for Ims&0 and if, for Ims&0, Imp(s) &&0,
then p is called a Herglotz function. See J. A. Shohat and J. D.
Tamarkin, The Problem of 3loments (American Mathematical
Society, New York, 1943), p. 23.

K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
Yuan, in a paper presented to the 1964 Conference on High Energy
Physics, Dubna, USSR (unpublished).' G. Bellettini et a/. , paper presented to the 1964 Conference on
High Energy Physics, Dubna, USSR (unpublished).' R. Nevanlinna, in EAtdeNHge Aealytische PNNktiolerl (Springer
Verlag, Berlin Gottingen Heidelberg, 1953), 2nd ed.

ness we also include proofs of the two theorems of
Meiman. Those interested in the proofs of the results
in Secs. II and III should read the Appendix before the
paper.

Throughout this paper we have ignored the possible
existence of bound-state poles in the scattering ampli-
tude. However, since these pole contributions are real
and behave asymptotically like 1/E, one can easily
subtract them out from the amplitude and deal with
the quantity, f'(E) =f(E)—I'/(E —Es). The theorems
in this paper all remain unchanged and hold for f' as
well as for f
II. THE REAL PART OF THE FORWARD AMPLITUDE

AND THE IMPROVEMENT OF THE
FROISSART BOUND

AVe shall first consider the forward scattering arnpli-
tude, f(E), for the scattering of a neutral scalar particle
A by another particle 8, where we assume that 2=—A.
As a function of the energy E of the incident particle
2 in the laboratory system, f(E) is known to have the
following properties:

(i) f(E) is analytic in the cut E plane with cuts on
the real axis extending from 1 to +~ and from —~
to —1,"

(ii) j(E+i0)=f*(E s0), —
(iii) f(—E—i0)= f(E+i0),
(iv) f(E) is bounded by a polynomial in ~E~ for

large ~E~ in all directions in the E plane. (For most
of the results of this paper it is enough to make the
weaker assumption that for large enough ~E~, (f(
(e'~~~, for any arbitrary e)0.)

For some actual scattering processes the properties
(i)—(iii) follow rigorously from the LSZ scattering
formalism. The property (iv), although never proved,
is usually assumed to be a feature of local field theories.

If one further assumes following Martin' that, in
addition to the properties that result from the LSZ
formalism, the nonforward amplitude f(E,t) is analytic
in t in a finite neighborhood of t=0, whose size is inde-
pendent of 8, one obtains the Froissart bound:

(v)
~ f(E) ~

(CE(lnE)s for sufliciently large E.
In deriving (v), however, analyticity in E and crossing
symmetry, i.e., properties (i), (ii), and (iii) were not
used.

In this section we shall show that the theorems of
1Vleiman (given in the Appendix) provide us with a use-
ful tool for including the information contained in
(i)—(iii). We shall namely show that there exists an
intimate relationship between the behavior of the ratio
~Ref~/~Imf~ for E~~ and the asymptotic behavior
of j(E) itself. For all possible behaviors of ~Ref~/
~Imf~, excluding one special case, we find that the
Froissart bound (v) can be improved. The main results
are contained in the three theorems given below.

»We set mg=1 throughout this paper. Thus E stands for
E/ma.
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Theorem 2: If f(E) satisfies the conditions (i)—(v),
and if for sufficiently large real E the inequality

Ref
— & tanxo. , 0(n&-,',

Imf

holds, then the function f(E) has the upper bound

I f(E) I
&CE' ~~2 (lnE)2 (2)

as E—+~.

Proof: Consider the function

f(E)
w(E)=,y&2, 0&argE&s . (3)

iEflnE —i (s-/2) g&

By definition w(E) is analytic in the upper half E plane
excluding the unit semicircular disk around the origin.
Furthermore, w(E) —+0 as E—+ &~ above the cuts.
Thus, using the Phragmen-I. indelof principle and (iv)
we can conclude that, as IEI~~, w(E) ~0 in all
directions in the upper half E plane. " It also follows
from (v) and the dispersion relation for f(E) that
f(E)/E has no zeros and that Im(f/E)&0, for IEI
greater than some constant. This insures that w(E) has
no zeros for sufficiently large IEI in the upper half-
plane and that ReM»0 in that region. From unitarity
we know that Imf(E)&0 for E&1. Hence along the
positive real axis Rem(E) is positive for large E.

The reality condition (ii) and the crossing relation
(iii) give us

I 1m~(E)
I
&C

I
Re~(E)

I
",

For sufficiently large real E we have

Imiv (E+i0)

my Imf(E) 1—Ref(E)j
[El(»IEI)'

(10)

power of E as E~~, then
I Ref[/IImfl must tend

to zero in that limit. (For the moment we are excluding
the possibility that Ref changes sign an infinite number
of times. We come back to this point at the end of this
section. )

It has been known for some time that if f(E)/E has
a definite finite limit as E—+~, then Ref/E must tend
to zero." The theorem above makes this statement
much more precise starting with much weaker assump-
tions. We go even further in the next theorem.

Theorem Z: If f(E) satisfies the conditions (i)—(v),
and if for suKciently large E

[Ref/Imfl &C/(lnE)' 0&a&1,

then the following upper bound holds for large E:
ly(E) I

&CIEI (in[El)-&, »O. (9)

Here 'A can be chosen arbitrarily large.
Proof: We again consider the function, w(E), con-

structed as in (3). To prove our theorem we have to
show that w(E) satisfies for large real E the conditions
of Theorem II of Meiman (see Appendix), namely

Rem(E+i0) = Rem( —E+i0),
1m~0(E+i0) = Imw(—E+i0—) .

For large enough 8 we have

Rem (E+i0)

my Ref (E)—Imp(E)+
[El (in[El)~

and hence

Imw(E)/Rem(E) ——Rej/Im j,

I Imw/Rew
I
& tannin.

The symmetry relations (4) still hold and give Rew

X( E+i0) and —Imw( —E+i0). From (8) and (11)
we now get

Thus w(E) satisfies the conditions of theorem I of
Meiman given in the Appendix, and we have for large
enough real E

IImw(E)
I

=
I Ref[/[E I (in[El)&

&C
I
Imp I/IE I (» IE I)~+' (»)

Let us choose v such that
I ~(E)/~(Eo) I «(Eo/E) "", (6)

~= h —2+~)/(v —2). (13)

[Imp[ &CIImfl/IEI (in[El) ~&
—'i"+'.

Using (v) we get

and the theorem is proved.
As a consequence of Theorem 1 we see that if

I Ref I / Then we obtain

I Imf I
& tanm. n as E~~, the total cross section should

fall off asymptotically at least as fast as a power of E,
or more precisely

(14)

0(E)&CE "'", for a'&n. —
(7) [1m~[ &C'[1m/I

[Impel"

'/IE[ "(in[El)'"
Conversely, if the cross section tends to a nonvanishing
value or decreases more slowly than any negative

and thus by 11

' The Phragmen-Lindelof theorem is also valid for a region
obtained from the half-plane by deforming a Qnite part of its
boundary. (See Ref. 6 footnote 2.)

I
Im~

I
&C'I Rew I" C'&0. (10')

"H. Lehmann, Null. Phys. 29, 300 (1962). L. Van Hove,
Phys. Letters 5, 252 (1963).
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From Theorem II of Meiman we now have

IImw(E)1&C[ln(E/Ep)g& "t&~ &

where i is given by (13).It follows that

IRef I &CIEI (lnlEI) ~- « -».

Using (13) to eliminate v we obtain

where P(E) is a, function satisfying the following
properties:

(a) P(E) is analytic in the upper half-plane and so
is [Il (E)g-'.

(b) For any e)0 and for sufIiciently large IEI
)Ep(e), we have (lniEI) —'(ig(E)1((lniEI)+'.

(c) Along thereal axis [iP(—E)/P(E)$ ~ 1 as E~~,
and [(Imp/ I Il I) 1n I El ]~ 0 as E~~.

I
Ref I

(C
I
E

I (ln I
E

I )
—"',

~'= [(.-2) (1-a)/aj-1, v».
where

Theorem 3: Assume that o(E) behaves as in (21).
If f(E) satisfies (i)—(v), and if as E-+pp

I Ref/Imf I
lri

I Ei ~ 0, (22)
Clearly, since 0(u(1, we can always choose p large
enough to make X' as large as we please.

The inequality (16) holds only for Ref, but we can
get a simila, r inequality for Imf. Using (10) and (15)
we have

then the positive constant y in (21) must be arbitrarily
small.

Proof: We construct the function
I
Rewi &C(lnIEI) 'ti

I
Imf I

&C IE I
(ln IE I)-",

I~= [(7—2) (1—a)/aj —2, p) 2.

w(E) = f(E)/iE[lnE —i(w/2)g&$(E), 0(argE&pr. (23)and hence

where By definition w(E) is analytic outside the unit semi-
circle in the upper half-plane. Furthermore, we have(19)

For example, any positive or negative power of ln lnE
(16) will satisfy (a), (b), and (c). We can now state our

third theorem.

Again we can choose y large enough to make X arbi-
trarily large.

Thus we can immediately see from Theorem 2 that,
if the total cross section does not go to zero faster than
any inverse power of lnE, IRefi/IImfi must go to
zero as E~~ faster than (lnE), a&1.

We now turn to the question of the behavior of the
total cross section when IRefi/IImfi tends to zero
faster than (lnE) '. In proving both Theorems 1 and 2,
the inequality (A9) given in the Appendix was essential.
The quantity p in that inequality is closely related to
the ratio of the real and imaginary parts of f. It is
ea,sy to see that if p is, loosely speaking, smaller than
(lnE) ' the inequality (A9) is always easily satisfied for
large E and very little new information can be squeezed
out of it. However, under certain assumptions about
the smoothness of o(E) for large E it is st.ill possible to
improve the Froissart bound from (lnE)' to (lnE)'
where e is small and positive.

To treat the case where IRefi/IImfi &1/lnE, we
shall supplement the conditions (i)—(v) by the physical
assumption that the total cross section does not oscillate
for large E but has a de6nite growth, for exp, mple,

o (E) C(lnE) &(ln lnE) e(ln ln lnE) P . (20)

From (v) we already know that &&2. The exponents P
and 5 could be any positive or negative numbers. We
can cover a much larger class of possibilities than in
(20) by assuming that o(E) varies as E~~ accord. ing
to the law

o (E) c(lnE)71$(E)1, c/0, 0&p&2, (21)

lim w(E)=c, c)0.
I Fi I~&n

(24)

This limit is approached uniformly in all directions in
the upper half-E plane. "For sufFiciently large E above
the real axis we have the symmetry relations

Rew(E+i0) Rew (—E+i0—),
Imw (E+i0)= Imw (—E+i0—) .

(25)

"~ dN E
&4' ln—.., p(u) Ep

(27)

As in the case of Meiman's theorems in the Appendix
we consider the mapping of a region of the upper half
E plane bounded by two semicircles of radius Ep and
E(E))Ep, both large) onto a domain of the w plane.
The upper edge of the real axis from Ep to E is mapped
into a curve in the m plane which lies above a straight
line drawn from the origin above the positive real axis
making an angle ez with it. For sufficiently large E,

I
Ref1/ I

Imf
I

—o(1/lnE), and one finds

tan8e —~y/2 ln
I
E I . (26)

Similarly, the upper edge of the real axis from —E to
—Ep is mapped into a curve symmetrical with the one
above with respect to the real axis of the w plane [see
Figs. 1(a) and (b)j.

We set w =u+i p and define up and u~ as in Theorem
I of the Appendix. There are two cases to be dealt
with separately.

Case 1:up(c [see Fig. 1(a)j.
In this case the inequality (A9) gives
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w(EO)

Using (28) we obtain

ln
I up/us I

)sory ln(E/Ep)/lnE

and taking the limit E—+~, we have

ln (up/c) )—s,s.y. (33)

Up UE C

( E )
w(Eo)

Fro. 1(a). The w
plane for large (E~
(case 1). (b) The ro

plane for large IE)
(case 2).

Sy an argument similar to case 1, this would be a con-
tradiction unless p is arbitrarily small. This completes
the proof of Theorem 3.

So far we have covered three distinct cases for the
asymptotic behavior of the ratio Ref/Imf:

(1) I «fl/IImfl &constant as E~"
(2) IRefl/I 1mfl &(»E) 0«&1
(3) IRef/Imfl lnE~O as E~~.

There are two situations not yet covered by (1), (2),
and (3). They are

(4) I Ref/Im f1 (lnE) ~~ and

I
Ref/Imf I

(lnE)' ' -+ 0, 0(e( 1, as E~op, (34)

C U
U

0 (5) Ref/Imf a/1nE as E~~, (35)

From Fig. 1(a), it is clear that

p(u))u sin8ir, uo&u&ue.

One then obtains from (27)

lnl us/ulp& 4Lln(E/Ep) j sin8e,

a,nd hence, using (26),

ln
I
uz/uo I

& sory ln(E/Ep)/lnE.

We now let E—+~. Then u~ —+ c and we get

Inl c/upi &-,'~y.

(29)

(30)

0 du
)-,' 1n(E/Ep) .

e p(u)
(32)

The function rc(E) approaches c uniformly in all direc-
tions in the upper half-E plane. Therefore, given an
e)0, we can always choose a finite but large Eo such
that

I
M(Eoe'P) c

I
(' 0(&(or. (31)

Such a choice of Eo makes the ratio c/lupi close to
unity. Thus (30) would be a contradiction unless p
is arbitrarily small.

Case Z: up) c Lsee Fig. 1(b)]
Here we have

~ (E)=-:Lf,(E)+f (E)&, (36)

where f+ and f are the 7r+p and or p forward ampli-
tudes. This amplitude satisfies the same crossing rela-
tion (iii) as the self-crossed amplitude and Theorems 1,
2, and 3 hold also for T(".

Finally, we would like to remark on the possibility
that, as E—m oo, Ref changes sign an infinite number of

where a is a constant.
The case (4), which is intermediate between (2) and

(3), can be treated by a method almost identical with
that of Theorem 3 and leads essentially to the same
conclusion. The main difference is that now the angle
8ir is larger than (lnE) ' but less than (lnE) —'+', and
one obtains inequalities like (30) with infinity on the
right-hand side. This is obviously a contradiction and y
must be zero.

The case (5) can be reduced to that of Theorem 3 if
we rePlace s7' by I

—,'7' —a
I
.Thus we find that

I

r
sory —a

I

must be arbitrarily small in order that (35) is compatible
with (21). For 0(7&2, this means that f(E) cannot
have an asymptotic behavior of the form (21) if a&0
or u)or+8 (8 small positive). Only when 0(a(or+8
and a=-,sy, is (35) not in contradiction with (21).
Thus, the only case in which the Froissart bound cannot
be improved by this method is when a=x. If 0&a&x,
the (lnE)' in the Froissart bound can be replaced by
(lnE) (o~)l~

So far we have only treated the forward scattering
for the self-crossed case. However, a generalization of
the results of this section to other cases is easy. For
example, we can consider the amplitudes T"i(E) de-
Gned in the usual way,
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times. Although such a behavior can be tolerated in
Theorem 3 as far as

~
Ref/Im f ~

lnE —+ 0, it is explicitly
excluded in Theorems 1 and 2. Therefore, from a strictly
mathematical point of view we have not covered all
possibilities for the asymptotic behavior of Ref/Imf.
However, we feel that such oscillations are highly un-
physical for it would mean that for very high energies
the interaction changes from being repulsive to being
attractive and vice versa an infinite number of times.

~ f(E)
~

&CE'(lnE) . (v')

This inequality follows from unitarity and analyticity
in the Lehmann ellipse in the t plane. At this point it
will be natural to ask whether it can be improved by
the methods used in the previous section. The following
theorem analogous to Theorem 1 can easily be proved.

Theorem 4: If f(E) satisfied (i)—(iv) and (v'), and if
for suKciently large E

~
Imf/Ref

~
&tamrtr, 0&u&-', , (37)

then as E~~
~ f(E)

~

(CE" ~~'&(lnE)' (38)

To prove this theorem one only has to apply Theorem I
of the Appendix to the function,

to(E) = f(E)/E'flnE —i(vr/2) 1&, y) 2,
0(argE&s . (39)

We note that this theorem is much stronger than
those discussed in the previous section. First, (37) can
hold even if Ref oscillates through zero an infinite
number of times. Secondly, one must notice that the
only condition outside the LSZ formalism which we
impose here is the assumption that Imf/Ref does not
tend to zero as E—+~."This is an extremely reason-
able physical assumption for, in a theory with many
inelastic channels, the scattering amplitude will not
become purely real at high energies.

Thus, without using the Froissart bound, one can
conclude that any forward-scattering amplitude which
does not become purely real at infinite energies (i.e.,
Im f/Re fW 0 as E—+~ ) needs at most two subtrac-
tions in the dispersion relations. From this statement
one can easily show that the function

g(E) -=Lf(E)-f(0)3/E
'4 One should notice that here we are dealing with the inverse

of the ratio used in Sec. II.

III. IMPROVEMENT OF THE GREENBERG-LOW
UPPER BOUND

The analyticity in the I, plane needed to prove the
Froissart bound (v) has never been established rigor-
ously either in axiomatic 6eld theory or in perturbation
theory. The best that one has been able to do within
the LSZ formalism is the much weaker bound obtained
by Greenberg and Low, ' namely

is a Herglotz function so that Img(E) &0 for ImE) 0.
Various useful results may be derived from this property
making use of the methods of Iin and Martin. "

If Imf/Ref goes to zero as E~~ but not faster
than (lnE), 0(a&1, we obtain a theorem similar to
Theorem 2. We find that

~ f ~

(CE'(lnE) —", E—&~, X)0,

where P can be chosen arbitrarily large. Thus again in
this case f(E) will satisfy dispersion relation with two
subtractions.

IV. REMARK ON VECTOR MESONS

We would like to remark here on the relation be-
tween the theorems of Sec. II and the contribution of
an "elementary" vector meson to f(E) at high energies.
It has been conjectured on the basis of perturbation
theory that, if an "elementary" particle of spin J is
exchanged, then, as E —+~, Ref CE . For j&-',-, this
is already in contradiction with the Froissart bound.
One usually concludes from this that either all particles
of spin J& 2 are Reggeized, or there exist some mecha-
nism, other than Reggeization, which damps Ref and
gives it an asymptotic behavior quite different from
what one expects by looking at perturbation theory.

Fo1 vector mesons, however, there have been no
direct arguments to show whether it could be ele-
mentary in the above sense or not. We point out here
that the beha, vior Ref CE is riot allowed by the theo-
rems of Sec. II. For example if o (E) —+ const or vanishes
as E~~, then

~ Ref ( / ~
Imf

~

is asymptotically larger
than a constant when Ref CE. By Theorem 1, how-

ever, we obtain an upper bound for
~ f(E)/E~ which

decreases faster than a negative power of E, and hence
a contradiction. Similarly, C'(o.(E)&C(lnE), 0(a(1,
leads us to a contradiction by Theorem 2. Finally, if
C'(lnE)&a(E)&C" (lnE), 1(a(2, then Theorem 3
will give a contradiction again. So except for one special
case where LRef/Imf a(lnE) ', vr/2&a&m. , as E +~j-
Psee argument below (35)$, we are forced to conclude
that Ref cannot behave like CE. Thus the possibil-
ity for the existence of a vector meson, "elementary"
in the sense discussed above, is ruled out in almost all
cases."

V. POSSIBLE EXPERIMENTAL TEST OF
ANALYTICITY AND CROSSING

At present, analyticity of scattering amplitudes and
crossing symmetry play a central role in strong inter-
action physics. It is of fundamental importance to ex-
amine whether such properties are consistent with
experimental data. Of course, the ordinary dispersion

"Y.S. Jin and A. Martin, Phys. Rev. 135, 31369 (1964).
"Conclusions similar to those reached in this section were

obtained under stronger assumptions and by using unitarity by
P. G. O. Freund and R. Oehme, Phys. Rev. Letters 10, 199 (1963)
arid also K. Yamamoto, Phys. Letters 5, 355 (1963).
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}mg

g(E)

Reg

FIG. 2. A sche-
matic plot of the
function g(E).

1 1=—ln(E/Eo) ——ln(8/m. u), (41)
2b b

a= (2/m) tan '(1/m), b= (1+e)/2= 1.859,

relation for the forward scattering amplitude f(E) may
be used for this purpose, if data on Imf(E) and Ref(E)
are available at all energies. This approach will not be
fully conclusive, however, since it requires data for
E~~ which cannot be obtained experimentally.

We wish to point out here that experimental test of
analyticity and crossing symmetry may also be made
starting from the inequality (A6) or somewhat im-
proved version (41). This method has a difficulty
similar to that. of dispersion relations in the sense that
it requires information of f(E) for complex E. However,
if we can make a reasonable estimate of f(E) for some
complex E, this approach may have some practical
advantage over dispersion relations because it requires
only data at 6nite energies and, furthermore, it utilizes
the experimental information on Ref(E) and Imf(E)
in a more direct fashion.

Let us consider the function g(E) defined by

g (E)= 7'it& (E)/E (40)

where T"' is the average of ~+p and ir p forwa, rd ampli-
tudes defined by (36). Let us assume that experimental
data for Reg(E) and Img(E) are given for the energy
range Eo—E(E&Eo). If the present trend of the data
continues up to higher energies, the plot of g(E') as
E' varies between Eo and E would look somewhat like
the curve in Fig. 2. By crossing symmetry the curve as
we go from —Eo to —E will lie symmetrically on the
other side of the Img axis. Let v~ be the farthest inter-
section of the curve g(Ee'+) with the positive imaginary
axis as y varies between 0 and m. Similarly, let vo be
the nearest intersection of the curve g(EO'") with the
positive imaginary axis.

Following the arguments given in the Appendix, the
conditions (i)—(iv) on T&'i(E) lead us to the inequality
(A6), or the somewhat more accurate formula (See
Ref. 10, p. 84)

where we integrate along the imaginary axis in the g
plane and p(v) is the shortest distance from the point
v on the imaginary axis to the curve representing the
data.

Of course vz and vo are not directly given by any
measurement. Thus, before we can use (41), we have
to make an estimate of both vg and ~0. Since the useful-
ness of (41) for our purpose depends on this information,
we are at present looking for a method for estimating v~
and vo. It might turn out, however, that we need only
a rough estimate of vz and vo. For the moment we only
note that e~&0 for ~E~ larger than some constant. If
E/Eo is too small, the right-hand side of (41) is negative
because of the second term, and thus the inequality is
trivially satisfied. The right-hand side of (41) becomes
positive when the ratio E/Eo passes about 170. Thus
for our purpose we need the energy range in which
E/Eo is substantially greater than 170.

As we make E/Eo larger, the right-hand side of (41)
grows logarithmically. Thus, unless p decreases [e.g. ,

Reg (E) decreases], we would eventually reach an energy
where the inequality (41) is violated. In this manner,
it will therefore be possible to say whether a certain set
of data for a 6nite energy range is consistent with
analyticity and crossing symmetry.

We should choose as Eo the smallest energy beyond
which ReT&'i(E) is of definite sign (repulsive according
to recent experiments'9). Since Eo will be around 1

BeV, we will then need E of several hundred BeV.
For a crucial test of analyticity and crossing by means
of the formula (41), we may therefore have to wait
until an accelerator of 300 BeV or more becomes avail-
able. Meanwhile, we might try to improve (41) further
because it is not the best possible inequality. A more
detailed discussion of the problem of this section will
be published separately.
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APPENDIX

For the convenience of the reader we give in this
Appendix a few definitions and theorems on harmonic
measures which are necessary to understand the origin
of Meiman's theorems. ' Most of these results are found
scattered in Ref, 10. We also state and prove the two
theorems of Meiman used in this paper. There are no
new results in this Appendix.

Let D be a domain in the s plane whose boundary F
consists of a finite number of Jordan curves. Let I' be
divided into two subsets n and P. Then the harmonic
measure cv(s,u,D) of ct with respect to D at the point s
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in D is defined uniquely by the conditions:

(i) to(s,n, D) is harmonic and bounded for all s in D,
(ii) co= 1 on cr and co= 0 on P.

For a discussion of properties of harmonic measure see
Ref. 10. We note here in particular that it is invariant
under the one-to-one conformal mapping s ~ s', n ~ a',
D ~DI.iv

FIG. 3. The domain G* in
the m plane.

co(s,cr,D) =co( s', c'r, D'). (A1) let
If the mapping is not one-to-one, (A1) is no longer
valid. However the harmonic mea, sure still satisfies a
useful inequality: Let w(s) be regular in the domain D
bounded by Jordan curves I',. Assume that

(i) the value w=w(s), s in D, falls in a domain G
whose boundary F„consists of a finite number of Jordan
curves (note that F„ is not necessarily the map of F,),

(ii) at each point of a given subset cr, of I'„w(s) is
continuous and takes a value which lies in a subset A,
bounded by a finite number of Jordan curves cr„, of G.
Let G* be a domain obtained from G by removing A.
Obviously G* is bounded by some parts of O,„and I'„.
Then, at ea,ch s in D such that w(s) is in G*, the har-
monic measure satisfies the inequality'

co(s,cr„D)&co(w(s),n„,G*). (A2)

In the following we shall specialize D to a rectangular
domain bounded by the straight-line segments Res= x&,

yi&Ims&y2), (Res= x2, yi&Ims&y2), (Ims=yi, xi
& Res& xs), and (Ims=ys, xi& Res&x2).' The last two
lines, parallel to the real axis, will be called L~ and L2.
The function w(s) is assumed to be regular in D and
continuous on the boundary. We further assume that
the values of w(s) on Li and L2 fall in some given sub-
sets A& and A2 of G, respectively, where A& and A2 are
a positive distance apart. We let n~ and a2 be the sets
of Jordan curves which form the boundaries of Ai and
A&, respectively. The boundary F„of G will contain
some curves belonging to cr=cri+cr2 as well as a comple-
mentary part not belonging to n which we denote by P.
We denote by 0.' the part of n~ which is not in F„and
n" the part of cr2 not in F„.We also let P' and P" be
the two parts of P joining cr& to tr&, P=P'+P". Thus the
connected domain G*, which is obtained from G by
removing 2& and A2, is bounded by the curves cr'+P"
+n"+P' (see I'ig. 3).

Let us consider a harmonic measure co(s, cr'+cr", G*)
and denote by m(X) its minimum on a curve X which
connects n' and n" inside G*. We de6ne further

m„= lim supm(X),

where lim sup is taken with respect to all possible paths
X. Similarly, let srt(x) be the minimum of the harmonic
measure co(s, Li+L2, D) on the line x(xr&x&xs), and

' See Ref. 10, p. 38.
"See Ref. 10, p. 39."See Ref. 10, p. 7~—86 for a treatment of a much more general

case.

tl, = lim suprtt (x) .
xy(x((xg

Then we can derive from (A2) the inequality'

m, &m„. (A3)

It is obvious from the symmetry that m, is equal to
the value of the harmonic measure co(s, Li+Ls, D) at
the center (xi+x2)/2+i(y&+y2)/2 of the rectangle.
This can be evaluated easily by mapping the rectangle
on the upper half-plane by means of an elliptic func-
tion. "The result is

rrt, = (4/7r) tan —'(Qk),

where k is the modulus of the complete elliptic integral
of the first kind E (k), 0&k(1. It is determined by the
relation 2E/E'= (x2—xi)/(y2 —yi) where E' is the
associated complete elliptic integral. On the other hand,
m„ is found to have an upper bound"

1 ( "ds)
rrt„(1——exp~ —2

2m k „p(s)l
(AS)

& ——,
' 1nL2sr —g tan '(Qk)$

, p(s)
(A6)

Meiman s theorems are derived by applying this in-
equality to a function related in a certain way to the
forward-scattering amplitude. Before showing how this
is done, let us recall some specific features of mapping by
such a function.

We are interested in a function g (E) which is regular
and bounded by a polynomial of E in the region ImE& 0
of the complex E plane. Let us assume for simplicity

"See Ref. 10, p. 65.
"H. Kober, Dtctiortary of Conformal RePreserttateorts (Dover

Publications, Inc., New York, 1957), 2nd ed. , p. 172.
"See Ref. 10, p. 85.

where the integration is carried out along a curve 1

which connects the boundary curves P' and P" inside
G*. Here, s is the parameter describing the length of
this curve l, taking the value si on P' and s2 on P", and
p(s) is the shortest distance from the point w, on I,
corresponding to the value s of the parameter, to the
boundary curve n'+cr".

From (A3), (A4), and (AS) one obtains easily the
inequality

" ds
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g(Ep)

positive semi axis u&0 (w=u+in), and let u@ be the
farthest point of intersection of the map of Res= x with
the same semi axis. We can now apply the inequality
(A6) to this problem. As is easily seen, when E))Es, it
can be reduced to the form

(A9)

Fro. 4. The g plane for large ~E~.

that it has the symmetry property

g(—E+i0)=g*(E+i0)

on the real axis and that

lim g(E+iO) =0.
Q-++oo

(A7)

(AS)

This is the basic inequality of Meiman. Applying it to
special cases he obtained the theorems discussed below.

The function g(E) we are considering is regular and
bounded by a polynomial of

~
E~ in the region ImE&0.

It is continuous on the real axis and it satisfies (A7)
and (AS). We further assuine that g(E) has no zeros in
the finite upper half E plane when

~
E~ is greater than

some constant. For such a function g(E) one has the
following two theorems. '3

Theorem I: If g(E), in addition to the properties
above, satis6es for sufFiciently large real E the inequality,

I Img(E)/Reg(E) I
& tansies, 0&rr& ,', -(A10)

then, starting with some Ep,

I g(E)/g(E ) I &c(Eo/E)" (A11)

Then the function g(E) maps the upper half E plane
into a certain domain of g plane. In particular the
upper edges of the semi real axis (0, —~) and (0, + ao)
are mapped onto the curves F& and I'&, symmetrically
located with respect to the real axis of g plane. In this
mapping a sufficiently distant upper-half neighborhood
of the point E= ~, which is the region we are primarily
interested in, is mapped into a certain neighborhood
(perhaps many sheeted) of the point g=O. Let us as-
sume that for ~E~ &Ei, Ei being a large positive con-
stant, I'~ and I'2 have no common point except the
endpoint g= 0.

To apply the formula (A6) to our problem it is con-
venient to consider the function gi(E) not in the E
plane but rather in the s plane, where s=lnK Accord-
ingly, we define the function to(s) by w(s) =g(e') and
consider the mapping s —+ m. As the domain D we choose
the rectangle enclosed by the straight lines Res=xp,
Res=x, Ims=0, and Ims=x, where x&xp&lnE~. Obvi-
ously this is a map by s= 1nR of a region of upper half-E
plane bounded by two semicircles of radius Ep= e*o and
E= e*. Let us denote by G the map of D by w(s) and
denote by G* the subset of G bounded in part by F&
and F2. For definiteness we assume that G* is bisected
by the positive real axis of the m plane. This can always
be achieve by a proper choice of the sign of g(E).

Let w(xs) and M(x) be two points on I's and let
I'(x,xs) be the portion of I's connecting these points.
Let p(u) be the shortest distance from the real point
to=(u, O) to I'(x,xo). Let us be the nearest point of
intersection of the map of Res=xs (hence the map of
semicircle of radius Es——e*a of the E plane) with the

Proof: Although this theorem is proved in Ref. 10
we shall repeat the proof here for the convenience of
the reader. In this case the straight lines through the
origin of slope tannin and —tan~a can be considered as
part of the boundary of the region G*, corresponding
to rr' andes" above (see Fig. 4).

It suffices to consider the case n=-,' since other cases
can be reduced to it by considering the function g'= g'j"".
Now, for cr=-,', we have p(u)& (u'+ Ig(E) I')'», us&u
&Np, as is obvious from Fig. 4 when the angles are
opened up to 90'. Thus we have

tgo(
p(u) o (u'+

I a(E) I')"'
-u + (u s+

~ g(E) ~

s)i»-
=ln

I a(E) I

(A12)

Combining this with (A9) one obtains

g(E)
&C(E /E)i/4

us+ (us'y
~ g (E)

~

')'»

and hence
Ig(E) I

&C'(E,/EP .

(A13)

(A14)

~'Pote added irI, proof. From a strictly mathematical point of
view, the proof of Theorems I and II given below requires a further
restriction on g(E). The proof does not hold when ~g(E) ~

as
E~ ~ is allowed to oscillate an inhnite number of times with an
amplitude whose ratio to the minimum magnitude in a certain
interval becomes arbitrarily large as 8 —& ~.We limit ourselves in
this paper to functions g(E) that do not have such a physically
pathological behavior. We would like to thank Professor W. Fuchs
for critical remarks on this point.
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This completes Meiman's proof except for the following
special case. Even though we always choose E))EO and
Eo large but finite, it is still possible that- for some real
E', Eo&E'&E,

~
g(E')

~
&

~ g(E) ~. In that case the in-
equality for p reads p(u)& (u'+

~
g(E') ~')'". One then

gets, instead of (A14), the inequality

I
g(E') «(Eo/E) "4

However, E'&E, and we have finally

I
g(E')

I
«(Eo/E')"'

Theorens II: If n vanishes but g(E) satisfies the
relation

IImg(E)l&CI«g(E)l", ~&0, »I, (A»)

for large real E, then, starting with some Eo,

~
Img(E)/Img(Ep)

~

((I+-,'C'(v —1) 1n(E/Eo)) —"""" (A16)

where C' is a constant.
Proof: Put g=u+iv Acc.ording to the assumption

(A15), the two curves defined by

with
p(u ) = P(u' —u )'+v"jii'& v',

u' = b (v'/a)'I",

ui ——u'+ v(a'/b) (v'/a) ~' '&~".

(AIS)

(A19)

Since v) 1, we obtain

ui~b(v'/a)"" ifui/dv'~(1/v) (b/a) (v'/a) &'—"&~" (A20)

in a sufficiently small neighborhood of g=0.
Making use of (AIS) and (A19), we find that

u0 d+ g g Img(EO)/a

x" '")~"dx

~g» ~ Zmg(Z) ga-~ p(»)
(A21)

b
-(La/Img(E) j'" "'"—La/Img(Eo) j'-"'").

v 1 8

From (A9) and (A21) we obtain the inequality

~
Img(E)/Img(EO)

~

section of this normal with the I axis. Then it is easily
seen that

a (p 1 ) (E)
——s/(w —1)

& I+-Dmg(Eo)/a3'" "'"I
&4i EE)

v =+a(u/b)" (A17)

where a, b are properly chosen positive constants, can (A22)
be regarded as the boundary curves of the domain G*.
Let us take a point (u', v') on the upper curve and draw which reduces to (A16) for an appropriate choice of C',
a normal to it at this point. Let (ui, 0) be the inter- Q.E.D.


