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Solution of a Bethe-Salpeter Equation*
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The Bethe-Salpeter equation arising from a qP theory is solved numerically for several energies (bound
states only) and symmetry states. The method used is a variational calculation in the four-dimensional
Euclidean space arrived at by the transformation due to Wick. A high degree of accuracy is achieved by
using only a very small amount of common computing machine capabilities.
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BILE there is no general theory for the inter-
actions of the elementary particles, theorists

wish to have some equations to play with, in attempts
to describe experimental phenomena, even though the
truth contained in these equations is admittedly well
circumscribed. Thus it is that relativistic two-body
equations, similar to that written down by Bethe and
Salpeter' for quantum electrodynamics, have recently
become quite popular objects of study. The main draw-
back seems to be that the equation can not be solved
generally either by a perturbation expansion or by
reduction to a single-variable differential or integral
equation; and it is therefore considered by many people
to be intractable. (Explicit solutions have been found
for the special cases: exchanged-particle mass equals
zero'; and total energy equals zero, for a few particular
potentials. ) It was our thought that what is intrinsi-
cally a problem in two dimensions should be easily
solvable with the help of an electronic computer; and
in this paper we report the veri6cation of this guess for
a particular simple Bethe-Salpeter equation. All the
important analytical work, done a decade ago, may be
learned from the very clear paper by Wick4; we have
simply added the numerical details.
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I. THE BETHE-SALPETER EQUATION

We consider the problem of two scalar particles
(masses mt and its) which interact via the exchange of
a third scalar particle (mass tt). For a bound state of
total energy E, the center-of-mass coordinate can be
removed, and one has then to deal with a single four-
dimensional independent variable, the internal co-
ordinate x. Wick then shows that one can transform to
an imaginary relative-time variable, so that one is left
with the following eigenvalue problem in a four-
dimensional Euclidean space. We have taken ml=m2
as the unit of length and use the parameter

st= E/(rrtt+rrts); 0(rt(1. (1)

where
L= (— +1—tt')' —4st'(8'/Bx4'),

4 8
U=Z

2=1 gg,2

and the interaction is

where

1V=-
7r2

'bq' x

d'q =—Et(aR),
q'+tt' R

R= (Q x,s)'".

Ei is the modified Bessel function with the properties

E,(s) —+-,'s lns+

(m./2s)'t'e '.

With respect to the volume integral

I. is self-adjoint, and since both I. and V are positive
operators the Rayleigh quotient

[Xj= de P*LP dex f"'VP

I=I"t (~ v)xt(R(t) (10)

gives stationary approximations to the true value of X

which are also upper bounds. [We consider t) as given
and 'A to be found; but once the calculation of X(tt) has
been completed we can of course recover ti(X) without
loss of accuracy. ]

Equation (2) is invariant under rotations in the
three-dimensional subspace (but not in the complete
four-space except for rt= 0). Therefore we can make the
usual separation of the orbital angular momentum.
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where we have taken the angles to be defined by

$4=8 cosg)

@3=R sine cos8,

@2=R. sin8 sin8 cosy,
@~=E sin8 sin8 sing,

and the I'& are conventionally normalized as

and

sin8(8/88) l«m)= —(1+2)A„&'&l (tz —1)lm)

+ a„„ol(+1)i ), (18b)
with

2 „&'&= ((zz i—) (st+i+1)/4N(tz+1))" . (19)

a.(o}=0.

Thus we arrive at the structure for our trial function

Yt *(4),p) Yt ~ (t), q) sin&)dt)dy=btt 8
0 (12)

where
Pt ——P. l «m) f.t(R),

st=i, l+2, 1+4,

(20)

(21)

i&i=0, 1, 2, ".
It will be convenient to introduce the four-dimen-

sional spherical harmonics

l«m)= Yt-(8 & )l:(2"+'(~+1)(~—i) i!')/
(zr(st+I+1)!)ji"sin'8C„ t'+'(cos8),

i&st=0, 1, 2, (13)

involving the Gegenbauer' polynomials C ". These are
orthonormal with the volume of integration for the
third angle as

sin'Od 0, (14)

We should note that our equation is also invariant
under the "time reflection" x4~ —x4, and under this
transformation our four-dimensional harmonics trans-
form as

l«m) ~ (—1)"-'l«m). (16)

The quantum numbers of a state will thus be given as
l+, with the upper or lower sign according as e—1 is
always even or odd. (The eigenvalues are (2k+1)-fold
degenerate in the m index, which we shall drop; and
instead of "principal quantum numbers" for each
symmetry state we shall simply say "low'est" or "first
excited, "etc.)

The mixing of the e index is of course due to the term
8'/Bx4', and we resolve this in our polar coordinates as

(8/Bcc4) =cos8 (8/8R) (1/R) sin8(8/—88) . (17)

and are eigenfunctions of the four-dimensional
Laplacian.

8' 3 8 tz(tz+2)
l«m)= (15)

BE' E BE E'

for the l+ states; or

st=i+1, 1+3, i+5, (22)

for the 1
—states.

Now we must choose the radial functions f„t(R).
First, examining near the origin, one easily sees (fol-
lowing Wick) the required behavior

f„,(R)-R" (R~0). (23)

lh~e —ole) & (24)

g= f1+rt' cos28&2zt cos8(1—zP sin'8)'t'J't . (25)

'Ihis may be simplified in particular directions: Along
the time-like direction

~&—[(1—q}R co88]-
)

while along the space-like direction

lh-exp L
—(1—zt') 't'R sin8), (27)

which is familiar from the Schrodinger equation.
We shall, for simplicity, try to use just a single,

direction-independent exponential

f e o~ (R~ ~).

Noting that I. and V are even functions of E. one might
guess that the next term after E" in the small E ex-
pansion of f~t would be R"+'. However because of the
1/R' singularity of the potential Y one finds the next
term to be R"+'AzE. It would be inconvenient to
put logarithmic functions into the basis; and so we
shall compensate by allowing the intermediate powers
of R—E" E"+' E"+' E"~' —in order to gain more

flexibility in this region. (An analogous situation, where
known logarithm terms are represented by powers, may
be found in the study of the helium atom. ')

Now look at R ~ co (following Wick again):

Then we calculate the following formulas: If the parameter n is taken between (1—rt) and

(1—zt')'ts we may expect fairly good convergence (see
cos8I«m)=~-'"l(~ —1)im)+~-+i'"l(~+1)im) (1&a) Ref. 6) provided g is not too close to one. (Thus we

expect the most difficulty in the limit of weak binding. )
5 See W. Magnus and F. Oberhettinger, Functions of 3IIathe-

zaatical Physics (Chelsea Publishing Company, New York, 1954l, See C. Schwartz, in Methods iN Cotstpzttatiottat Physics (Aca-
p. 76. demic Press Inc. , Neer York, 1963), Vol. II.
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TABLE I. Lowest I=0+ eigenvalue p).

Size of
E matrix

0 1
1 2
2
3 6

9
5 12
6 16
7 20
8 25
Extrapolation

g=0.0, n=1.0
3.52070
3.500/0
3.45316
3.43165
3.42375
3.42083
3.41966
3.41915
3.41888

3.4185~0.0002

g=0.9, a=0.3
2.90247
2.18762
1.84898
1.76092
1.71556
1.69850
1.68/94
1.68179
1.67729

1.667~0.008

Our final structure for the trial function is now

n)l A)n
C„s

~

ntm)Rse ~R —
(29

With this basis the matrix elements of L are simply
computed, and for those of V we need only the integrals

dt e ~'t"+'Ei(bt). (3o)

These may be tabulated, along with

dt e "t"Eo(bt), (31)

by means of the recursion formulas

TABi.E II. Computed values of X (mi ——ms=s).

St

Lowest 0+
(1st ex.) 0+
Lowest 0
Lowest 1+

0.0

3.419
16.92
16.38
16.38

0.4

3,115
15.7
15.85
15.23

0.6

2.718
14.3
15.18
13.74

0.8

2 ~ 10
12.0
14.2
11.4

0,9

1.67
10.1
13.6
9.80

starting from

Io= (ln([&+ (' —b')'")/b)/(~' —b')"') (34)

Jo= —b(B/Bb)Io, (35)

(or the app'ropriately modified formulas for the cases
a& b). The formulas (32), (33) involve numerical
cancellations which get worse as the order e increases.
This may be overcome simply by computing in extra
precision; or one can compute I„and J„at the maxi-
mum value of I needed first (by means of well-con-
vergent infinite series) and then safely iterate to the
lower values of m.

II. RESULTS AND CONCLUSIONS

In our calculations the approximations were so
ordered that one fixed the maximum power of g. in
(29), i.e. , keep all k&K and all N&E. Table I shows
the convergence of the results at the two extreme
energy values which we investigated (with R= mi ——ms).
Table II summarizes all our numerical results.

It is clear from the contents of Table I that we have
achieved a very eS.cient solution of the equation, since
the results converge quite rapidly; each X value was
obtained at a cost of 2 to 4 sec computation time on an
IBM 7090 computer. We could obviously have con-
tinued the calculations to get much more accurate
results at still very little cost, or alternatively we see
that this type of problem could be readily handled by
computers much smaller and slower. We conclude that
the Bethe-Salpeter equation —after being given the
Wick treatment —may, in fact, as he predicted, be
accurately solved by straightforward numerical means.

One can look forward to an enlargment of the scope
of this work. A few coupled equations, as one would
expect for particles with spin, should not offer new
difhculties. For the treatment of more singular (re-
pulsive) potentials one would use trial functions suitably
modified at R —+ 0 (see Ref. 3), but no serious problems
are expected. The major task remaining here is to see
if we can carry out a similar analyticaL-numerical
resolution of the Bethe-Salpeter equation for scattering
states (g& 1).

The author is grateful to C. Zemach for essential
encouragements.

Note added ie proof. S. H. Vosko [J.Math. Phys. 1,
505 (1960))reports a numerical calculation of the Bethe-
Salpeter equation for the case of very weak binding

(g close to one), where the method described in the
present paper would not work well.


