
HIGH —ENERGY LARGE —MOMENTUM —TRANSFER PROCESSES

high-energy large momentum transfer processes, ie-
trirtsic ieformatiort Pertairtirtg to eery small distartce
i eteracfi ops.

Ke wish to thank the Brookhaven National Labora-
tory for the hospitality we enjoyed during our visit. We
also wish to thank R. Adair, K. W. Chen, J. Orear, B.
Ulrich and R, Wilson for fruitful discussions and
communications.

APPENDIX

1. Consider the process

8a
(0, PP ~ PP) = 2 (0, Pn ~ Pn)

dQ dQ

do
=2—(~—e, Pn~ Pn),

dQ

da 9 do-—(8, ~+P ~ ~+P) =-—(0, ~+n~ ~+n)
dQ 5 do

9 do.=-—(e, ~+n 'P),
4dQ

(10)

Let the matrix element for the process with a total
isotopic spin I be denoted by a~. The statistical hy-
pothesis means that

(azar )= EEEE a, (8)

where the average (. ) is defined in footnote 8. This is
essentially the assumption made by Fermi. ' Using (8),
it is clear that the di6erential cross section on the
average is proportional to

&rl(Is(A) Is(&) II)(IIIs(C),Is(D)) ~', (9)

where Is(A) etc., are the Is component of the isotopic
spin of A etc. , I is the total isotopic spin, and the (~)
symbols are the appropriate Clebsch-Gordan coefh-
cients. Application of (9) to pp and orp large-angle
scattering yields

9 do.
=——(8, orep ~ Erep).

5dQ

2. One could discuss the spin dependence in a similar
way. For example, consider large-angle p+I —+ p+tz.
Denote the spin components of a particle in a direction
perpendicular to the scattering plane by tt (for up) and
d (for down). There are the following possibilities" of
spin arrangements:

QQ~QQ) QQ~ dd) QS~~) Q&~ GQ)

dQ~ Qd) 4Q~ dip Zd ~ QQ)

The statistical hypothesis requires that they all have
on the average' the same amplitude, and random phase
differences.

"A. Bohr, Nucl. Phys. 10, 486 (1959).
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The uncoupled-phase method is a nonperturbative formalism, developed by Ross and Shaw, relating the
scattering amplitudes describing n strongly coupled two-body channels to the "uncoupled" amplitudes
describing e-1 channels alone. The "uncoupled" scattering amplitudes are deined to be those that would
exist if the couplings to the nth channel were switched off while the interactions among the n-1 channels re-
main unchanged. The uncoupled-phase method, previously based on th'e potential model, is extended to the
relativistic problem by considering a set of n coupled N/D partial-wave dispersion relations. For the situa-
tion in which the left-hand cut is approximated by the form g/(s+m) where g is an nXn matrix of constants
and s is square of the total energy in the center-of-mass system, the uncoupled-phase method is exact. The
quantitative validity of the uncoupled-phase method for more complicated left-hand singularities is tested
by performing a two-channel computer experiment. A full numerical solution of the coupled integral equa-
tions for the X functions is obtained by the matrix-inversion technique. We consider the situations in which
(a) the left-hand cut is replaced by a set of dipoles and (b) the left-hand cut is assumed to be given by ex-
change of a scalar particle in the corresponding "crossed" t channel of any given reaction. The coupled-phase
method is found to be quantiatively accurate under a wide range of conditions. The range parameter of the
coupled-phase method is directly given by a principal-value integral, and an estimate of it can be made
8 PfZ01'Z.

I. INTRODUCTION

HE uncoupled-phase method was developed' to
confront certain theories of strong interactions

with experiment. Consider a physical situation where

* Supported in part by the U. S. Air Force through Air Force
Off'Ece of Scientific Research Contract AF 49(638)-1389.Computer

the scattering is described by a set of e strongly coupled
two-body channels. The "uncoupled" scattering ampli-

time was supported by National Science Foundation Grant No.
NSF-GP948.

f Present address: University of California, Department of
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~ M. Ross and G. Shaw, Ann. Phys. (N. Y.) 9, 391 (1960);
G. Shaw and M. Ross, Phys. Rev. 126, 806 (1962).
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tudes are defined to be those that would exist if the
couplings to the eth channel were to vanish while the
interactions among the m-1 channels remain unchanged.
The uncoupled-phase method is a nonperturbative
formalism that relates the uncoupled amplitudes (for
which one may propose theoretical models) to the
actual amplitude describing all e channels. For example,
a theory may predict uncoupled m. F' amplitudes p r
which describe an idealized 7r I' system in the absence of
coupling to the EE channel. ' The uncoupled-phase
method can be used to calculate the actual wF ampli-
tudes P,r from the P,r, the complex-scattering length
in EX channel, the production ratios from the EE
channel to the ~V channels plus the range of forces in
the XE channel and test it against experiment. '

The uncoupled-phase method was based on the model
of an eXe potential matrix coupling the e channels.
The interactions were assumed to have a short well-

dedned range and no hard core. ' In a previous paper, 4

we found the uncoupled-phase method to be a quanti-
tative procedure over a much wider range of conditions
than originally anticipated: we derived the uncoupled-
phase method for interactions with hard cores. By
performing a two-channel computer experiment, the
method was seen to be quantitatively accurate for
Yukawa interactions with hard cores, for p as w-ell as
s-wave angular moment3, , and when one of the channels
was closed as well as when both were open. The un-

coupled-phase method was compared with other
methods which include the neglected channel as a
perturbation and was seen to be superior to these
approximations. A review of the general features of the
uncoupled phase method is presented in Sec. II.

In this paper, we extend the uncoupled-phase method
based previously on the potential model to the rela-
tivistic problem in which the scattering in a given
partial wave is calculated using an n-channel E/D
formalism. ' We show in Sec. III that for the simple case
when the left-hand cut is approximated by the form

g/(s+m) where g is an nXn matrix of constants and s
is the square of the total energy in the center-of-mass
system, the uncoupled-phase method is exact. The
resulting uncoupled-phase relationships are completely
analogous to those obtained from the potential model.
To test the uncoupled-phase method for more com-
plicated left-hand singularities, we perform a two-
channel computer experiment. The calculation, de-
scribed in Sec. IV, involves a full numerical solution of
the coupled integral equations for the E function by the
matrix inversion technique. We consider two diGerent

2 M. Nauenberg, Phys. Rev. Letters 2, 351 (1959);J. Franklin,
Proceedings of Midwest Conference on Theoretical Physics, 1962,
p. 82 (unpublished).' M. Ross and G. Shaw, Phys. Rev. 115, 1772 (1959);Bull. Am.
Phys. Soc. 5, 504 (1960); G. Shaw and M. Ross, Phys. Rev. 126,
814 (1962).

4P. Nath, G. Shaw and C. Iddings, Phys. Rev. 133, B1085
(1964).

5 Preliminary results were reported in P. Nath and Q. Shaw,
Bull. Am. Phys. Soc. 8, 626 (1963).

situations for the "generalized potential": a set of
dipoles and the potential produced by exchange of a
scalar particle in the "crossed" t reactions of the scatter-
ing processes. The uncoupled phase method is found to
be quantitatively accurate over a wide variety of
conditions. This is true when one of the channels is
closed as well as when both are open. The range
parameter L„of the uncoupled-phase method is given
by a principal value integral and hence can be deter-
mined u priori It d. epends on the diagonal singularities
in the eth channel alone.

II. GENERAL FEATURES OF THE UNCOUPLED-
PHASE METHOD

n—1

K„=(K,,e+B„+p B,HALI, 'K(„)(1 5,„)(1—8;„).(2—.2)

From (2.1) and (2.2) we get the set of equations

ZI i"O' tio=o,
where

O'A. =~a —B'a/LA. ,

(2.3)

(2.4)
and

tI,; Kp; Kg; (1 8;„)(——1—8p„—)+L„5p—„5;„. (2.5)

In order that a solution to (2.3) may exist, all 2)&2
submatrices of the matrix t must have zero determinant.
We have (n' —n)/2 independent relations of this kind
equal to the number of the uncoupled-phase amplitudes
K;,. We have (n —1) relations

t K,,—K;, K;„'
det~

~
=0, for i4n, (2.6a)

K,„K„„+I.„
and (n —1)(n —2)/2 relations

tK;;—K;; K,; K;, —
det~ =0, for iWn, jAn. (2.6b)

kK,,—K,, K,,—K,,

Before we go on to derive the uncoupled-phase
method in the S/D formalism, we would like to estab-
lish the general form the reaction matrix E for a multi-
channel problem must have for the uncoupled phase
relations to follow. From our discussion of the un-
coupled-phase method in the potential model, ' we
expect E to satisfy the ega matrix equation for a given
partial wave:

K(s) =K'+B(s)+B(s)L 'K(s), (2.1)

where 8 and the diagonal matrices E' and L are such
that if we switch oG the couplings to the eth channel,
i.e., set 8,„=0,then';, , E;;; and L;; fori, j&n remain
unchanged. The parameters L;;—=L; are closely related
to the range of forces in the ith channel and thus can be
estimated a priori, .

When the couplings to eth channel are switched o6
the uncoupled X matrix elements X;; are given by
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For a two-channel problem the uncoupled-phase
relationships have the form

(It 11 i~ 11)(&22+~2) I(.12 (2.7)

The two-channel uncoupled-phase relationship (2.7)
also has strikingly similar forms in terms of the scatter-
ing matrices M and T which are defined in terms of
E by'

(2.8)

where the numerator function X has only left-hand cuts
and the denominator function D has only right-hand
cuts. The diagonal matrix p depends on kinematics:

p = b kst'. +'/Qs (3 2)

1
;Y(s)=8(s)+

s—sp
&(s )— &(s)

The E and D equations, in terms of the "generalized
potential" 8 (s)2 which is regular in the physical region,
are'

k/+1/2 (~ ik2 1+1)—1k1+1/2 (2.9) s —sp

where (k'+'/') "=h,,k,'r+'" The diagonal elements of T
have the familiar form (e""—1)/2i. The uncoupled
phase relationship (2.7) expressed in terms of the
matrix M is

ds'
XHp(s').V(s')-, (3.3)

S —S
P oo

D (s) = 1—(s—sp)— Hp (s')1V (s')

(~ll ~11)(~22+12 ) /lf 12

and in terms of the matrix T is

(2 1o) ds
X —iHp(s)1V(s), (3.4)

(s' —s) (s'—sp)

where
(7 11 7 11)(2 22+1 p) T12

I —((L k 212+1) 1+i) 1

(2.11)

(2.12)

k2212+'cot52=——1/a. (2.13)

Here 52 is the complex phase shift in channel 2. Eq.
(2.10) may then be written

There are alternative forms of (2.10) and (2.11) which
may be more useful in some situations. We define a
complex scattering length in channel 2, (t(k).

where the 8 ensures that the right-hand cuts in A—'
start at the appropriate thresholds. We note that the
solutions 2 are independent of sp, ' Moreover, it is well
known that for symmetric input 8 (s), 2 (s) is symmetric
as required by time reversal invariance. ' Note that the
integrand in (3.3) is well behaved a,t s'= s so that we do
not have a principal value integral in (3.3). The integral
equations (3.3) are a set of coupled inhomogeneous
Fredholm equations of the second kind, " if the kernel
X(s,s') where

&11—kls"+'Ima ')Re(t—'—I. —'j-'
(2.14)

k
—(2l 1+1)Im(t—1LRe(t—1 I —lg—1~ + ]

1 s—sp Hp (s')
X(s,s') =—8 (s') — 8 (s)

s —sp s —s
(3 5)

while (2.11) has the form

Im(2—1k2
—(212+1)

L/2
—1k2

—(21~1)+sj—le2ia

711 711+
Lp(i+(t 'k2 (2"+") 1—

where
cr = tan '(M)1—

'k)2 "+') .

(2.15)

Using the above relationships, one is able to estimate
all the scattering amplitudes at a given energy from an
experimentally determined scattering length a, and
theoretical estimates for the range parameter 1.2 Lsee
e.g., Eq. (3.18) of Sec. III and Eq. (2.22b) of Ref. 4j
and the uncoupled amplitude in channel 1. See Ref. 3
for similar relationships for a three-channel system.

' We use units A=c=m =1.

III. EXTENSION OF UNCOUPLED-PHASE
METHOD TO N/D FORMALISM

We consider the usual i))/'/D equations for the case
where there are e coupled two-body channels and define
the invariant partial-wave amplitude 2 in terms of the
S matrix by

g=+D l=p 1/2((S—1)/2i)p 1/2 (3.1)

B(s)=g/(s+m). (3 6)

Now choose the subtraction point sp —— m. Then—
2 G. Chew and S. Frantschi, Phys. Rev. 124, 264 (1961).' J. Uretsky, Phys. Rev. 123, 1459 (1961);D. Y. Ih/ong, Phys.

Rev. 126, 1220 (1962).
9 A. W. Martin, Phys. Rev. 135, 3967 (1964).
'0 J. D. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250

(1961).
"'P. Morse and H. Feshbach, Methods of Theoretscat Physscs

(McGraw-Hill Book Company, Inc. , New York, 1953), Part I,
Chap. 8.

"X(ss') is an I' kernel if J~"dsip"ds') X(s,s') )2( ~. See
F. Smithies, Integral Eqlutions (Cambridge University Press,
New York, 1958).

"X(s,s') is called degenerate if it can be written as X(s,s')
=Z; I"g;(s)h;(s') where n is finite.

is an I.' kernel. "Moreover, if the kernel is degenerate, "
the integral equations (3.3) may be reduced to a, system
of linear algebraic equations. If, however, the kernel is
nondegenerate the integral equations (3.3) may only
be solved numerically.

We shall now show that for the situation in which the
left-hand cut may be approximated by the simple form
g/(s+m), where g is an 22X22 matrix of constants, the
uncoupled-phase method is exact. Let
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X(s,s') =0 so

and
N(s) =g/(s+m) =B(s)

Hp(s')ds'
XP

S tN S —S

(s+m)'
B (s) = (B

' (s)—

(3.7)
Substituting (3.14) in (3.13), we get

P "f'(s)Hp(s')ds'
s1 (s) = (B

—'(s)— ——13p (s)
~

. (3.13)
f'(s') (s' —s)

Using (3.1), (2.9), and (2.8), we can calculate K'(s). We
have

K(s) =B(s)/V's+(B(s)/gs)L 'K(s), (3.16)
where

Thus

where
K(s) = (B(s)/gs)+ (B(s)/V's)L 'K(s) (3.9)

Sss " p(s)pp(s')

)
'

L= ——P
S S —S

(3.17)

((gs) (s+m)' " Hp(s')ds'I=i P . (3.10)
S t8 S —S

B(s)=B(s)(C '(s)—
S—Sp

and

" Hp(s')B(s')ds'
XP

(s' —s) (s'—sp)

—ipp(s)B(s)) (3.13)

00

C(s) '=1—B '(s)—
ds

B(s')Hp(s')B(s'),
S —S

S—Sp
--P

"Hp(s')B(s')ds'
(3.14)

p (s —s)(s sp)

'4 T. Fulton, Elementary Particle Physics end Infield Theory, 1968
Jjrundeis Lectures (W. A. Benjamin, Inc. , New York, 1963),
Vol. 1, p. 55.

"G. Shaw, Phys. Rev. Letter 12, 345 (1964).

Equation (3.9) satisfies the conditions of (2.1) so that the
uncoupled phase relations (2.6) follow immediately.
The parameter L„of the uncoupled-phase method is
given directly in terms of a principal value integral
from (3.10).

In the simple situation for the left-hand cut con-
sidered above, the uncoupled-phase method is exact. In
general, we would need some approximations (as in the
case of the potential model) to derive the uncoupled-
phase relations. Let us consider, for example, a some-
what more general form for B(s).Let

B(s)=g/f(s) (3 11)

where again g is an ex' matrix of coefFicients. We now
use the Fulton"-Shaw" approximation to solve for the
scattering matrix A. This approximation has the exact
same degree of simplicity as Baker's determinantal
method but has the added advantages that (a) the
scattering matrix 3 does not depend on the subtraction
point sp and (b) the scattering matrix is symmetric. We
define

N(s) =B(s)C(s). (3.12)

We use (3.12) in (3.3) and (3.4) and replace C(s') by
C(s) in all integrals over N(s). Therefore,

The uncoupled-phase relations (2.6) follow immediately.
In a general situation where one has more complicated

left-hand singularities, the uncoupled-phase method can
be derived under more restrictive approximations. We
would not go further in this direction but would only
summarize the essence of such calculation. " For a
general left-hand cut, Eq. (3.16) can be derived under
the restrictive approximations. However, the parameter
L„of the uncoupled phase method is now given by

"B '(s') p„(s')ds')-'

B„'(s)(s'—s) r
(3.18)

where s is the threshold for the eth channel. We note
that the parameter L depends only on the diagonal
interaction in the eth channel. The estimate L„given
by (3.18) is expected to be particularly good at low
energies. However, due to the nature of the approxi-
ma, tions made in obtaining (3.18), the estimate is not
expected to be good in regions of energy several orders
of magnitude higher than the threshold energies. Note
that in the potential model we estimated L„directly
from the range of interaction in the eth channel (see
Eq. (2.22b) of Ref. 4). In the above relativistic model,
Eq. (3.18) allows us to make a somewhat more quanti-
tative estimate of L„.

IV. TWO-CHANNEL COMPUTER EXPERIMENT

We have shown in Sec. III that the uncoupled-phase
method can be derived in the multichannel N/D
formalism and the resulting uncoupled-phase relation-
ships are exactly analogous to those obtained in the case
of the potential model. Furthermore, an estimate of the
parameter L„of the uncoupled-phase method can be
made a priori in terms of a principal value integral
which depends only on the diagonal interaction in the
gth channel. In this section we shall demonstrate that
these relations are quantitatively valid for a variety of
conditions by solving numerically a set of two coupled
ED—' integral equations. The present calculations
consider p-wave scattering, and two different situations
for the left-hand cut are investigated. In the first
situation the left-hand cut is replaced by a set of dipoles,

~~ P. Nath, Ph.D. thesis, Stanford University, 1964 (un-
published).
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while in the second situation the left-hand cut is
assumed to be produced by the exchange of a scalar
particle in the "crossed" t, reaction of the corresponding
channels. The two-channel uncoupled phase relation
tested in each case is

TABLE I. P-wave case in which both the channels are open.
Masses in channel 1 are 4.0 and 4.5 while in channel 2 they are 4.0
and 5.0 (Ref. 6). Total energy is 9.2. The position of the dipoles
for the top 16 cases is 5.0 in all channels. The last seven entries
show the results when the dipole in channel 2 is kept fixed at 5,0
while the dipole in channel 1 is moved to 3.0 and the dipole in the
inelastic channel is moved to 4.0. Theoretical estimate of I.~ ob-
tained from the principal value integral=0. 13.

(I~ 11 I~ 11) (+22 L2) It 12 (4 1)

where X~~ describes the scattering in channel 1 when we
set B12——0 (with Bll remaining unchanged). The
theoretical estimate of L2 is given by

(Qs " B222(s')k22(s')ds' )—'

... B222 (s) (s' s)gs')— (4.2)

2 s—Sp

E,;(s)= B,, (s)+Q B, (s') — B, (s)
&=I $ —Sp

ds
X"(")&.;("), , (43 )

S —S

p, ( ) ( )
4.3b

,. (s'—sp)(s' —s)

s—sp " s' E;. s' ds'
ReD@(s)=8,,— P

The coupled E/D equations we solve for a two-channel
problem are

0.133
0.137
0.140
0.147
0.128
0.129
0.126
0.123
0.138
0.136
0.151
0.146
0.145
0.136
0.152
0.125
0.121
0.160
0.154
0.152
0.147
0.152
0.145

0.080
0.107
0.027—0.416
0.01.2
0.010
0.006
0.170
0.536
0.493—0.341
0.066
0.091
0.359
0.124—0.150
0.287—0.352
0.038
2.664
0.120
0.168
0.015

0.022
0.038
0.022
0.124
0.009
0.009
0.005
0.010
0.086
0.086
0.278
0.059
0.059
0.059
0.059
0.125
0.014
0.207
0.032
0.135
0.032
0.056
0.014

0.119
0.105
0.041—0.046
0.012
0.009
0.006
0.370
0395
0.342—0.281
0.029
0.056
0.341
0.270—0.217
0.550—0.336
0.029
1.794
0.153
0.144
0.011

0.121
0.129
0.029—0.408
0.021
0.010
0.010
0.281
0.489
0.440—0.283
0.035
0.081
0.378
0.165—0.159
0.431—0.313
0.033
2.218
0.163
0.182
0.013

p'(s) =

In order to solve the coupled integral equations (4.3)
numerically, we choose a certain distribution of energy
points s(1), s(2), , s(X) in the interval sl to ~ and
reduce the integral equations (4.3) into a set of matrix
equations over these points. Calculations involve in-
version of a number of EXP matrices. A number of
checks are used to test the accuracy of our solution.
First the subtraction point sp is moved around to see if
the solution is independent of sp. The symmetry of the
reaction matrix (i.e., %12——E21) provides another check
on our solution. We also change the size of mesh to
check the stability of the results. A mesh of 35 points
gives excellent stability (solutions are stable to within
1%). Finally we test the accuracy of the solutions by
substituting the values of E and D thus calculated in
the equation

p
1V(s) =B(s)ReD(s)+—

cfs
B(s')Hp(s')Ar(s') . (4.4)

(S+tÃ11) ($+rr212)

B(s)= (4.5)

(S+21221) (S+tS22) 0

efirst consi'der the situation where B(s) is 2X2
matrix of dipoles:

Using the B(s) given by (4.5), we solve the Eq. (4.3) to
determine the elements E. Then g~2 is set equal to zero
and the one-channel equations are solved for Xtt. First
we fix the "kinematical conditions, " i.e., the masses of
the particles in channels i and 2 and the orbital mo-
menta (we consider ll ——l2 ——/=1), and in addition we
fix the positions of the dipoles, i.e., m~~, m22, and
222»(=2N21). Then (4.3) are solved for many diferent
sets of g;;,' and E;; and X~~ are determined for each
set; the quantity L2 is calculated using (4.1).

Typical results are shown in Table I. This is the case
when both the channels are open. The first 16 rows show
the results when we assume m~~ ——m22 ——m~2. We find
that over a wide range of coupling strengths, 1.2 is found
to be a constant' as well as equal to its theoretical
estimate given by the principal value integral

(QS) (S+22222)'
1.2= p

P2(s') ds'
(4.&)

(S'+22222)'(S' —S) /

The last seven entries in Table I substantiate our con-
jecture that L2 is dependent only on the diagonal
singularities in the 22th channel (in this case the second
channel) since L2 for these entries is unchanged when
21211 and mls are given values different from n222 (which
is kept fixed). Calculations similar to those presented
in Table I were performed with different values of the

' The ratios of the diagonal to nondiagonal elements g»/g„,
g22/gis have been allowed to vary over the range ~0 to 10.

"Total variation in 1.2 is seen to be &~10%.
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8 "(s)=—0 -"0 -'~
2

TABLE II. Results for scalar particle exchange potentials (in /th partial wave are given by
the "crossed" t reactions). Threshold energy for channel 1 is 2.0,
while for channel 2 it is 2.1 (Ref. 6). Masses of the exchanged
particles are m1» =4.5, m22= 7.1 and m12= 7.1.Total energy in the
center-of-mass system =2.6. Theoretical estimate of L2 ——0.23,

+' ri(s)ds

1 kv —nv'
(4.7)

L2

0.249
0.250
0.250
0.254
0.253
0.252
0.245
0.248
0.242
0.238
0.249
0.250
0.253
0.253
0.253
0.251
0.252
0.249
0.253
0.252
0.248

—7.343—1.279—0.740—0.606—0.602—0.606
0.385
0.829
0.237
2.087—l.590
5.834—36.230

50.233
3.422

62.557
6.624—1.256—1.414—1.357—1.151

9.531—2.819
—1.450

2.956
0.253—1.827
0.145
0.145
0.145
0.145—1.827
2.956
2.956
4.662
2.087
2.956
2.956—1.827

—12.458—1.827—12.458

—0.517—0.055
0.044—0.355—0.875—0.041
0.526
1.310
0.204
2.234
0.106
0.450

—5.718
4.745
0.456
7.987
0.649
0.061.—0.198
0.152

—0.216

—2.125—0.549—0.457—0.601—0.732—0.508
0.430
1.031
0.202
2.191—0.290
1.420

—14.636
15.095
0.973

22.162
1.818—0.421—0.781—0.436—0.595

where t;; is the square of the four-momentum transfer
for scattering from channel i to channel j and s is the
cosine of the scattering angle in the center-of-mass
system,

t,;=m,'+mP s/—2+ 2k Js;z, (4.g)

where for o. real
2k;k,

Q~(n) =-'n»
I (n+1)/(n —1) I

—1 (4.10)

Qg(in) =n tan —'(1/n) —1, (4.11)

m;; is the mass of the scala', r particle exchanged in the
"crossed" t reaction of this process.
For P-wave scattering we get

masses and positions of the dipoles and entirely similar
conclusions were drawn.

Let us now consider the situation where the left-hand
cut corresponding to a particular channel is produced
by exchange of a scalar particle in its "crossed" 3

reaction. For the sake of simplicity let us assume that
the masses in channel 1 are equal and have the value
m&, while in channel 2 they have the value m&. The
elements of the 2X2 matrix B(s) for scattering in the

we use (4.9), (4.10), and (4.11) in (4.3) to solve for E
and X~~ as before. As usual we first 6x the "kinematical
conditions" and in addition we fix the masses of the
exchanged particles; mqq, mss, and m~s(=ms~). Calcu-
lations are then done for many different sets of coupling
strengths. Some typical results are shown in Table II
for a fairly large variation of coupling strengths. Even
for large modifications of /C~j from the uncoupled value
E~~ we find I.2 to be approximately a constant" and in
good agreement with its theoretical estimate as calcu-
lated from (3.18).


