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Three-Field Model and Higher Symmetry Group Ws with Parity Interchange*
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A theory of hadrons (strongly interacting particles) based on the higher symmetry group Ws= U& QU&
(or SW, =SUs 3SU&) with parity interchange between the two U, (or SUs) groups has been developed. The
four-fermion vector model with three massless Dirac Gelds has been used to guide the construction of the
meson and baryon particles. A parity doublet structure in the W& (or SWs) limit is found for the mesons but
not for the baryons. Mass relations between scalar (axial vector) and pseudoscalar (vector) octets or nonets
of mesons are derived under various assumptions concerning the underlying group, the tensorial behavior of
the symmetry-breaking terms, and the particle representations. Some experimental tests of these mass re-
lations are noted. The possibility of incorporating the leptons into the theory is discussed.

i. INTRODUCTION

~ 'HE number of particles (and resonances) which
undergo strong interactions is vastly greater than

the number of invariance principles which characterize
these interactions. If we put aside the discrete trans-
formations I', C, T, we And that the strong inter-
actions are invariant under two independent gauge
transformations (baryon and hypercharge) and the
isospin rotation group. Expressed in terms of group
theory, we say that the strong interactions are invariant
under' (Ut Us). Some time ago, Thirring' showed that
at least three Weyl (2-component) fields are required to
yield this group structure and that six Acyl fields are
needed in order to obtain the rnultiplicative constants
of motion which follow from I', C, T invariance.

The Sakata' model satisfied Thirring's conditions
since three Dirac (4-component) fields were associated
with the observed particles (p, st,A). On the other hand,
Heisenberg's model4 did not satisfy Thirring's condi-
tions since he attempted to develop a unified theory of
hadrons on the basis of one "basic"' massless Dirac
field (equivalent to two Weyl fields). Hy a judicious
choice of the nonlinear four-fermion interaction (axial
vector), Heisenberg et al. could enlarge the underlying

group to U2 and take care of baryon conservation as well

as isospin invariance; however, they were compelled
to postulate a degenerate vacuum, spurions, etc., in

order to understand the role of hypercharge in the strong
interactions and further they could not treat the dis-

crete operations in the usual fashion.

*Work supported in part by the U. S. Atomic Energy Com-
mission; preliminary results were reported at the Dubna High
Energy Physics Conference (1964).

f Present address: Palmer Physical Laboratory, Princeton
University, Princeton, New Jersey; on leave of absence from the
Atomic Energy Establishment, Bombay, India.

' U'z represents a combination of the isospin and hypercharge
groups while U& represents the baryon gauge group.' W. E. Thirring, Nucl. Phys. 10, 9'I (1959);see also J. E. Wess,
Nuovo Cimento 1S, 52 (1960).' S. Sakata, Progr. Theoret. Phys. (Kyoto) 16, 686 (1956); see
also M. M. Levy and R. E. Marshak, Nuovo Cimento Suppl. 11,
366 (1954) and M. A. Markov, Proc. Acad. Sci. USSR (English
transl. ) 101,No. 1, 51 (1955).

H. P. Durr, W. Heisenberg, H. Mitter, S. Schlieder, and K.
Yamazaki, Z. Naturforsch. 14a, 441 (1959)and subsequent papers.' We shall sometimes refer to a massless Dirac (4-component)
field as a "basic" 6eld.

The success of broken SU3 symmetry as exemplified

by the Gell-Mann —Okubo (GMO) mass formula for
octets and decuplets has raised new difficulties for the
Heisenberg theory' and has also ruled out the identifica-
tion of the three Dirac fields in the Sakata model with

the known particles (p,N,A). However, if the three Dirac
fields are taken with equal mass and proper choices are
made for the internal quantum numbers, ~ then the un-

derlying group structure becomes SV3 and it is possible
to break this symmetry in such a way that one ob-
tains the GMO mass formula for the hadrons. The mass
difference between the A and nucleon (as well as the
mass differences within any unitary multiplet) is then

due to the SU&-symmetry breaking term, and the U&

group structure takes over. From these remarks, it
follows that within the framework of a nonlinear four-
fermion theory, the choice of three Dirac 6elds with

equal bare mass involves a higher group structure,
namely Us (or SUs).

In a quite different context, the choice of three Dirac
fields is suggested by the existence of two (4-component)
charged leptons (e and tt) and two (2-component)
neutrinos (v, and v„). If we define a 4-component neu-

trino v by' ', then v, and v„are, respectively, the
Vp

positive and negative chirality projections of v, and

( e,v)tctomprise a triplet of 4-component Dirac fields.

Since there are no strong interactions among leptons,
there should be a close correspondence between par-
ticles and fields for leptons, a point recently re-
emphasized by Schwinger. ' In accordance with an old-

6 Heisenberg eI, al. have succeeded in deriving the GMO mass
formula for octets (despite the underlying Us group) by utilizing
some special properties of the spurions; it is not clear whether the
general GMO formula can be derived in this manner. One of the
authors (R.E.M.) is indebted to Professor Heisenberg and Pro-
fessor Durr for interesting conversations.

7 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys.
(Kyoto) 22, 715 (1959); see also H. Goldberg and Y. Ne'eman,
Nuovo Cimento 27, 1 (1963), M. Gell-Mann, Phys. Letters 8, 214
(1964) and G. Zweig, CERN report (unpublished).

This definition implies opposite lepton number for v, and v„
and hence opposite lepton number for e and p, as is well-known
such as assignment can ex~&lain the failure to observe processes
ike p ~ e+y, p —+3e, etc. i~see C. Iso, Nuovo Cimento 25, 456,
(1962)j.' J. Schwinger, Phys. Rev. 135, 8816 (1964).
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baryon-lepton symmetry principle, ' this would imply
that a triplet of Dirac 6elds is a reasonable starting
point for a theory of baryons (and of mesons).

If it is granted that a possible starting point for a
theory of hadrons is one triplet of (4-component) Dirac
fields with equal bare mass interacting via four-fermion
terms, the question is still open whether one should be-
gin with zero or finite bare mass. In a previous paper, "
two of the authors showed that with the choice of zero
bare mass for all three Dirac 6elds, the four-fermion in-
teraction would be consistent with an underlying group
structure of a higher symmetry than the obvious U3
group, the particular higher symmetry group depending
on whether the interaction is scalar (S), pseudoscalar
(P), vector (V), axial vector (A), or tensor (T). More
generally, it was proved'" that if lt; (i=1, n) are n
"basic" fields and P; is decomposed into the positive and
negative (2-component) chirality projections p; and $;,
respectively, then one 6nds the higher symmetry group
for each type of interaction shown in Table I.

In Table I, R„ is the rotation group of dimension e,
U is, as usual, the unitary group of dimension n, and
USp(n) is the unitary symplectic group of dimension n.
The W group in Table I is not to be confused with the
8'„group studied by several authors recently (see
Ref. 16 below); the W„group is W„with parity inter
chaege in the sense that the parity operation inter-
changes the two U„groups comprising W since the
first U„group arises from the n d 's, the second U„group
from the n $'s, and the parity operation transforms d
into $, and conversely (see Ref. 11 and Sec. 2 below).
From Table I, it follows that for n=3, the 5 or I' four-
fermion interaction is governed by the E6 group, the U
interaction by the Ws group, the A interaction by the
Us group, and the T interaction by the USp(6) group.

Table I shows clearly why one "basic" field (i.e.
n = 1) is insufhcient for a theory of hadrons. It is appar-
ent that the largest group corresponding to e= 1. is U2
and, as mentioned earlier, the success of broken SU3
symmetry requires a larger group than U2. We must
therefore look. beyond m= 1 within the framework of the
nonlinear four-fermion theory. Since x=2 will not
accommodate hypercharge and isospin in a natural way,
the next simplest choice is m=3, which is our choice.
We now try to give some arguments for selecting one of
the four possible groups corresponding to m=3: R6,
Ws, Us, and USp(6).

' A. Gamba, R. E. Marshak, and S. Okubo, Proc. Natl. Acad.
Sci. U. S. 45, 881 (1959); in that paper, the neutrino was treated
as a 2-component particle and the correspondence was set up
between the lepton triplet and the triplet (p,n,h); the baryon-
lepton symmetry principle would now postulate a correspondence
between the triplet of 4-component lepton Gelds and the triplet of
"basic" fields whose interactions produce the hadrons Lace also
C. Iso, (Ref. 8)j."R. E. Marshak and S. Okubo, Nuovo Cimento 19, 1226
(1961) (see Appendix); see also A. Salam and J.C. Ward, i'. 20,
419 (1961).'"Vote added in proof. In our original paper (Ref. 11),we used
p and y=0.2&~", p and x are (-', ,0) representations whereas g is a
(0,—',) representation of the Lorents group.

TABLE I. Hidden group symmetries for e "basic"
fields on the four-fermion model.

Four-fermion interaction

SorI'
V
A
T

Higher symmetry group

Eg„8;=U.SU.
U2

USP (2n)

The group E6 has the smallest number of generators
and possesses the interesting property that a finite bare
mass term (it is a scalar) does not destroy the I's in-
variance of the S or I' four-fermion interaction; in
addition, the parity operation commutes with the E6
group. However, the R6 group has the unpleasant feature
that a reduction at the Us (or SUs) level of an irreduci-
ble representation of R6 always leads to at least one
irreducible representation of Us (or SUs) with nonzero
triality number. Thus, one finds

6=30+3*,
15=80+ &0+30+3*,

20=80+60+6*,

50= ~00+ ~0*0+ ~50+ ~5*,

where the numbers on the left-hand side designate di-
mensions of irreducible representations of E6 while
those on the right-hand side are the appropriate reduc-
tion into irreducible representations of the Us (or SUs)
group. Since there is no evidence for unitary triplets or
other multiplets of hadrons with nonzero triality associ-
ated with octets (which have zero triality), the Rs group
is not very attractive.

The last objection can also be raised against two of
the other groups corresponding to e= 3, namely U6 and
USp(6). In the case" of Us, some examples of the reduc-
tion are

6=30+3~,

15= 80+ 10+30+3*,

35=80+80+ &0+60+6*0+30+3*,

and for" USp(6)
6=30+3*,

14=80+30+3*,

2i =80+60+6*0+ i.
In all reductions of Us and USp(6), there is always a
contribution from a unitary multiplet with nonzero
triality (together with an octet) and we have no evi-
dence for such hadron multiplets. Moreover, the U6 and
USp(6) groups listed in Table I have a further com-

"The Ufl group with a different rationale has been investigated
by F. Gursey and L. Radicati, Phys. Rev. Letters 13, 173 (1964),
A. Pais, ibid 18, 175 (1964), .and by B. Sakita, Phys. Rev. 136,
31756 (1964).

'3 A USp(6) group based on two triplets has been studied by
H. Bacry, J.Nuyts and L. Van Hove, Phys. Letters 9, 279 (1964).
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plicating feature in connection with the parity opera-
tion; for both of these groups, the parity can be repre-
sented by an operation similar to an antiunitary opera-
tor with the unitary part a member of the group. This
produces some peculiar mixing effects which, in our
opinion, justify the rejection of these two groups.

We are left with the Ws (or SWs)'4 group, some of
whose irreducible representations contain only irreduci-
ble representations of Us (or SUs) with zero triality
number; this can be seen immediately if one recalls
that at the Us (or SUs) level, a representation of the
product of the two Us's (or SUs's) comprising Ws (or
SWs) becomes the ordinary product of two representa-
tions of the same Us (or SUs) group. Furthermore, the
parity operation involved in the Ws (or SW,) group is,
so to speak, external to the group (in group-theoretic
language, it is an Abelian group extension) and can
easily be handled (see Sec. 2). The Ws (or SWs) group is
the smallest group (corresponding to the choice ts=3)
which does not commute with the parity. The parity
interchange aspect of the Ws (or SWs) group leads to
parity degeneracy in the limit of Ws (or SWs) symmetry
(see Sec. 2) and is especially intriguing because of the
special role which parity plays in weak interactions"
and the ultimate hope of developing a theory of lep-
tons in conjunction with a theory of hadrons.

For all these reasons, we propose in this paper to ex-
plore rather fully the consequences of the Ws and SWs
groups. "In Sec. 2, we investigate the structure of the
W3 and SR 3 groups and the tensorial behavior of the
very strong (V.S.) and medium strong (M.S.) inter-
actions which can be expected to break Ws (or SWs)
symmetry; the four-fermion vector model is used as a
guide for this discussion. In Sec. 3, we work out the
predictions —under various assumptions —for mesons of
spin 0 and 1 on the basis of broken Ws (or SWs) sym-

metry. In Sec. 4, we sketch an extension of our theory
to the more complicated case of baryons, and finally in
Sec. 5, we brieRy discuss our results and mention further
directions in which the theory might be developed.

'4 We shall also be concerned with the SW3 group (see Sec. 2)
which is de6ned by S9'3=SU3SU3 mth parity intercharIge.

"Riazuddin and R. E. Marshak LPhys. Letter ll, 182 (1964)j
have recently introduced scalar and axial vector meson octets on
the basis of a generalized Goldberger-Treiman treatment of all
partially conserved currents (see Sec. 3 below).

's M. Gell-Mann LPhys. Rev. 125, 1067 (1962) and Physics 1,
63 (1964)j came upon the SW& group by looking for the group
generated, under equal-time commutation, by the integrals of the
time components of the vector and axial vector current octets.
Despite the different starting points, there is a close connection
between our theory and that of Gell-Mann; see also the more
recent work of P. G. 0. Freund and Y. Nambu LPhys. Rev.
Letters 12, 714 and 13, 221 (1964)j. The work of Schwinger
(Ref. 9) and of F. Gursey, T. D. Lee, and M. Nauenberg I Phys.
Rev. 135, B467 (1964)j is based on the Wa (or SWs) group. Since
Schwinger and Gursey et al. postulate the existence of two triplets
(in contradistinction to our one "basic" triplet), the parity
operation does not interchange the two V3 (or SV3) groups whose
product is 8'3 (or SS"3) and the important feature of parity
degeneracy does not enter the picture.

2. GROUjF' STRUCTURE OF Wg AND 8S'3 AND THE
BREAKING OF THESE SYMMETRIES

While the essential predictions that follow from
broken Ws (and SWs) symmetry do not depend upon
the particular nonlinear four-fermion model (vector
interaction of three "basic" 6elds) which motivated this
study, it is convenient to begin with a discussion of this
model. It will be recalled that the Lagrangian density
describing three massless Dirac (4-component) fields
with a quadrilinear interaction of the vector type is

where the coupling constant g has the dimension of
(length)'. This Lagrangian density P is invariant ' un-
der separate three-dimensional unitary transformations
of the positive and negative chiral projections of the
fields f;; that is, under

where ~(a ~[
and ~~b ~~

are independent unitary matrices.
This invariance is characteristic of vector coupling, "and
we have called this invariance group Ws, Ws being the
direct product of two Us groups (with parity interchange—see below).

Corresponding to the transformation (2), we have
two sets of conserved currents

(3)

These currents are mixtures of vector and axial vector
currents. We shall call the generators of the two separ-
ate Us groups, A,' and 8 . These are the integrals (over
space) of the time components of the corresponding con-
served currents

and, as Gell-Mann has shown, " they obey the equal

"Actually, one can add an axial-vector four-fermion term to
8 without losing g 3 invariance since g'3 is a subgroup of U6 (see
Table I); a unique choice would be (V-A) since the Ws group
structure is manifestly preserved for this combination of inter-
actions under Fierz rearrangement (compare the four-fermion
weak interaction).
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time commutation relations (C.R.)

then the effect of P and C on the generators A, ', 8;& is
as follows:

P: 3;&—+8
C A. & —& —8'

8;&' —+ 3;&,

8. —+ —2'
The C.R.'s (5) are invariant under the I' and C opera-
tions defined. in (7). In the present theory, the parity
operation interchanges the two Us groups of which Ws
is composed (this is the reason why, as already explained
in Sec. 1, we use Ws rather than the standard Ws
notation).

Consider next the addition to 2 of terms that gradu-
ally decrease the symmetry group of Z. First we add a
common mass term Z'.

3
Z'=ms 2 PyP, .

This immediately reduces the invariance group of the
total Lagrangian, 2+2', from Ws to Us. 2' is invariant
only under comedos unitary transformations of the two
chiral projections of P;. Correspondingly, only the slm
of the two currents in (3) is conserved

and whereas both A and 8 are constants of motion in
the absence of ', now it is only their sums

[8'8 ')=8 ~8' 8'B—s&

[g .jB„E$—0

If the parity I' and charge conjugation C operations
are defined in the coeveetioea/ way for the three basic
fields ip, ,

where Ri* (or Rs*) indicates the conjugate representa-
tion of Ri (or Rs).

Now a tensor of type (3,1) obeys the C.R.'s

[A Ts1= 5s'T; rs fi,'Ti„—-
(12)

[The term —rsb Ts in (12) and in all the subsequent
equations is present or absent depending on whether
we deal with SWs or Ws.j Similarly, a tensor T of type
(1,3) obeys

metry (these will be described shortly). However, if we

wish, we may retain just the group-theoretic structure
given by (5) and (7), assume some definite tra, nsforma-
tion properties for Z' and g", and then explore the con-
sequences of assigning known (and unknown) particles
to various representations of Ws. We shall also consider
the possibility that the underlying symmetry group is
SWs SU——s8SUs with parity interchange, rather than
UsS Us with parity itsterchaege. In this case, we definitely
move away from the three-field model, at least as set up
above.

From now on, we shall distinguish between the two
Us (or SUs) groups by using unprimed tensor indices
for the group generated by the 2,' and primed tensor
indices for that generated by the 8 (so that we shaH

henceforth write 8;&'). An irreducible representation
of Ws is made up of an irreducible representation for
each Us group De.noting the latter by Ri, Rs, an ir-
reducible representation of Ws may be labelled (Ri,Rs).
Since we deal with only a few low-dimensional represen-
tations, we shall refer to them by their dimensionality.
Under P and C, we have"

P: (Rr,Rs) —+ (Rs,Ri),
C: (R,,R,) —& (Rs",Ri*),

A +8
that are constants of the motion, and generate the
group Us.

Upon addition of a further term, 2", to 2+2'of the
form

2"=miipstps

[A,'Ts j=0.
A mixed tensor T of type (3,3*), say, is defined by

(13)

we destroy U3 invariance, and only maintain in-
-variance under a group U~. Z" corresponds to the
usual (M.S.) symmetry-breaking term, and the re-
sulting V2 is a subgroup of Va and comprises the
customary isotopic spin rotations and hypercharge
gauge transformations.

The algebraic structure of the theory, embodied in
Eqs. (5), (7), has here been derived from a specific three-
field model. The model also prescribes definite tensorial
behaviors, under 8 3, for the terms 2' and 2" that suc-
cessively destroy first the 8 3 and then the U3 sym-

"The property (11) of the C operation at 6rst sight seems to
possess the following unpleasant feature. If a particle 8 is assigned
to the representation (RI,R2) of g3, and if we believe that the C
operation takes 19 into its antiparticle 8, then in general the annihi-
lation of 8 and S into photons or vacuum (for example) is forbidden
if RI/R&. One may take the point of view that one must deal
always with eigenstates of E, certainly in the presence of 2'; a
particle s is then of the form (Ri,Rs)&(Es,Ri), 8 has the form
(R2*,Ri")& (Zi*,Rs*), and now the annihilation of 8 by 8 is always
allowed. This is similar to the situation for E10 and Eg' where the
(weak) interaction between E0 and K' requires us to de6ne the
decaying particles in terms of the CP eigenstates, namely, as K1
and Es' (assuming CI' invariance for the time being).
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As another example, a tensor of type (8,1) obeys three more multiplets degenerate
with the given one.

We form eigenstates of C and I'

0 "=T "'+5 "+U "'+V .":

(in mass and spin)

by setting

C=I'=1,
By explicitly writing out both 2' of (8) and p" of (10)

in terms of g;, f; [which transform like (3,1) and (1,3),
respectively], we 6nd that they are both made up of
components of tensors of types (3,3*) and (3~,3),
namely

I'T "'E '=5
CT "'C '=U„', (18)

where 5 and U are tensors of types (3*,3), (3,3*), re-
spectively. Operating on 5 with C, or on U with P, we
next obtain

,nC—I PU m'P —1 P

[This is because CI'=I'C.] Thus starting with T "',
we generate, in general, three diferent tensors 5, U, V.
In the limit of exact W3 symmetry, if T "' represents a
multiplet of particle states, we should find, in general,

' It is worth noting that even though 2" is weaker than Z' and
the effects of the latter must be calculated 6rst, we may specify the
tensor behavior of Z" with respect to the group g 3, invariance
under which is destroyed by 2'. This is analogous to the situation
for electromagnetic processes within the context of approximate
SU3 (or V3) invariance for the strong interactions. There we
specify the SV3 quantum numbers of the electric current operator,
for instance, even while taking account of the breakdown of SV3
invariance to various orders in the M.s. interactions.

k=1

2"-m i(Tg'+Tg').

Under transformations generated by the operators

~a'+BI, ',
that is, under the group U3, the primed and unprimed
indices transform in the same way, and the distinction
between them disappears. 2' is then clearly invariant
under V3, while 2" has the tensor character under U3
that is assumed in the usual derivation of the GMO
mass formula. An alternative assignment of the be-
havior of 2" under 8'3, leading to the same behavior
under V3 is

~(T3 +Tgi ).
In (17), Z" is made up of tensors of types (8,1) and (1,8),
rather than (3,3*) and (3*,3), but at the Ua level it ex-
hibits the same tensorial behavior. We shall examine
some consequences of both assignments" for
under W8.

The definitions (7) of I' and C lead to an interesting
behavior under CI', for W~ multiplets. We shall discuss
the (3,3*) and (8,1) representations of Wq. Let T ' be
a tensor of type (3,3*). [T "' could be a set of states,
or a tensor operator. $ Then under I' and C we must
have, according to (11),

C= —I'=1,
C= —I'= —1. ,

(20)

3. MASS PREDICTIONS FOR MESONS
OF SPIN 0 AND I

In this section we shall discuss spin-0 and spin-1
mesons on the basis of our theory and, in the next sec-
tion, treat the baryons. Consider first, the spin-0 mesons.
If we think of them as built up from pairs of 2-component
objects g;, $,, and if we suppose that they are s wave
bound states (i.e., no powers of momenta are involved),
then the only spinless objects we can form are

4 "kj, ki'0 i (22)

This follows from the chirality properties of the
2-component objects g, $. But the quantities (22) belong
to the representations (3,3*) and (3*,3) of Wa, and we

are thus led to consider nonets of pseudoscalar and
scalar particles. With nonets belonging to the (3,3*)
and (3~,3) representations, both must have the same C
quantum number (and therefore opposite CI', see Sec. 2)
and we may assume them both to be norma. 1.

Gell-Mann" has suggested another reason to assign
the spin-0 mesons to the representations (3,3~) and
(3~,3).He notes that, whereas in the W3 limit, the axial
vector current [i.e. the difference of the two currents
of (3)] is divergenceless, the presence of. 2' makes this

By commuting the tensors O', C, O~', C' with the genera, —

tors A, ', BI, ', we find that O~ and C are linked to one
another, while O~' and C

' are similarly linked. In other
words, an irreducible representation of C, I', and W3 is
made up, in the case of the (3,3*) and (3*,3) representa-
tions for W3, of two multiplets with opposite values of
CP. If we speak of a multiplet with C=+1 as being
normal, then, for example, if we regard O~ and C (or O~'

and 4') as referring to spin 0 mesons (see Sec. 3), both
the scalar and pseudoscalar multiplets are normal (or
both are abnormal). Further, it is possible to have

(21)

in which case the quan. tities (or states) O~', C' in (20)
will not exist. If we have negative signs in both equa-
tions in (21), then O, C will vanish but the above con-
clusions are unchanged.

The situation is opposite in the case of the representa-
tions (8,1) and (1,8) for WB. Here we find that the gener-
ators A, BI, ' link operators (or states) with the same
values of CI'. Thus a normal pseudoscalar multiplet
would be degenerate with an abnormal scalar multiplet
or conversely,
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divergence nonzero; the specific tensor form (16) for 2'
requires this divergence also to belong to (3,3*), (3*,3).
If we now think of these divergences as being approxi-
mately proportional to the pseudoscalar meson fields
(in the sense of the Goldberger-Treiman relations), then
we are led to the same assignment of representations
for spin-0 mesons as was arrived at above by our more
direct argument.

It should be emphasized that neither our argument
nor Gell-Mann's is conclusive. If we are willing to form
the spin-0 mesons out of p-wave bound states, then (22)
would be replaced by"

and the spin-0 mesons would belong to the representa-
tions (8,1), (1,8) of Ws. Gell-Mann's argument would
also change if we considered 2' to have a tensor struc-
ture other than [(3,3*)+(3*,3)j, e.g. (8,8); however,
in the present paper, we shall only consider [(3,3*)
+(3*,3)].In one way, (22a) is preferable to (22) since
we are more naturally dealing with octets rather than
nonets and experimentally there is no clear evidence for
a pseudoscalar nonet. Since the octets of scalar and
pseudoscalar mesons would then belong to the (8,1),
(1,8) representations of Ws, they would have the same
CI' and therefore one octet would be abnormal (see
Sec. 2).

For the vector mesons, we have to construct vectorial
quantities out of p, $. Again, if we assume that s-wave
bound states are involved, the only vectors we can
form are

P' oA'~'& 4 &~6" (23)

This suggests assigning the vector and axial vector
mesons to the representations (8,1), (1,8), coinciding
with the tensor properties of the currents conserved in
the 83 limit. This time, if we assume that the vector
particles have charge conjugation parity C= —1, the
axial vector particles would have C=+1 (and hence be
abnormal, see Sec. 2). If, instead, we built up spin-1
mesons out of p-wave bound states, then we could re-
place {23)by

hk t~,pi, (23a)

and the situation would be reversed and correspond to
the s-wave bound states for spin-0 mesons [cf. (22)].
Henceforth, we shall assume only s-wave bound states,
namely that (22) and. (23) are the proper models for
spin-0 and spin-1 mesons, respectively. The changes
introduced by choosing (22a) in place of (22) or (23a)
in place of (23) will be self-evident.

"Strictly speaking, {22a) will not generate CI'= —1, J=O
meson octets because it leads to the combinations BI'g;p„f, and
0&P;p;»P; which are identically zero {CI'=+1, J=O meson
octets are permitted); however, it is possible to generate CI' = —1,
J=O meson octets by means of multi-quark pair operators. We
are indebted to Professor G. I'einberg for calling attention to
this point.

When we start with a set of mesons assigned to the
representations (3,3*), (3*,3), we have, in the Ws (or
SWs) limit, two nonets Ss, I's of opposite parity (0+
and 0, respectively) degenerate with one another.
When the interaction Z' is "switched on, " each nonet
breaks up into an octet with respect to U, (or SUs) and
a singlet; thus we have S8, S», P8, I'», no longer de-
generate with one another. The lowest order in which
this separation is produced, will depend on which un-
derlying group is used, Ws or SWs, and we shall con-
sider both possibilities.

When the interaction g" is then also "switched on, "
the unitary octets break up into isomultiplets. If, in the
U3 limit, the unitary singlets are well separated from
the octets, there may be reason to neglect mixing of
octets and singlets when 2" is present. In that case, we
shall 6nd the GMO mass formula to be valid in both
octets. In addition, we may find additional relations con-
necting members of different octets such as E, ~, K', z'
(the primed particles are members of the scalar octet).
If mixing of unitary octets and singlets must be allowed,
then we lose the GMO formulas, but the remaining rela-
tions may still be valid.

In the case of the representations (1,8), (8,1),we have,
in the 5 3 limit, only two octets of particles. However,
since we assign the known vector mesons to this rep-
resentation, we are led to asslike the existence of two
unitary singlets of mesons (1 and 1+). These need
not be degenerate with the octets in the 8 3 limit. Also,
in computing effects of 2', 2", these singlets can in

principle behave quite differently from the octets. But
past experience suggests that we treat them "dy-
namically in the same way" as the octets. It also seems
clear that one should take proper account of mixing for
the vector and axial vector mesons.

If we assume the tensor structure [(3,3a)+(3*,3)]
for 2', we have then to consider two possibilities for
each of the following: underlying group, tensor struc-
ture of 2", representations to which the particles belong,
and mixing or no mixing. This leads to a total of six-

teen cases, summarized in Table II. In the last two
columns of Table II, we have written down the lowest

orders, in a perturbation calculation, in which 2', 2"
are effective,

Note that in all the odd-numbered cases (no mixing),
the GMO formula is valid v ithin the unitary octets,
and in all the even-numbered cases {mixing), it is not.
From now on, we shall not state explicitly in each case
the validity (or otherwise), of this formula. As a sample
calculation, we treat Case 3.

Case 3. We have a tensor (of states) fs ', which goes
into fs under the parity operation I'. We define scalar
and pseudoscalar nonets by

Ss ——((1+8)/V2) fs
' ——(1/&2)(fb'+ fs"),

Pe =((1—P)W2)fs"=(1/V2)(fs" —fs"). {24)
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TAnLE II. DiBerent cases considered for meson mass relations but always assuming 2'~f(3,3")+(3*,3)g.

Case

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Group

8'3

SFV3
Sg'3
8"8
8'3
SR'3
S83
N"3

SS'3
5&3
FV3

N'g

S5'3
$8'8

(3,3*)+(3*,3)
(3,3~)+ (3*,3)
(3,3*)+(3*,3)
(3,3*)+(3*,3)
(3 3}+ (3bir 3)
(3,3*)+(3",3)
(3,3')y (3",3)
(3,3')+ (3',3)
(1,8)+ (8,1)
(1,8)+(8,1)
(1,8)+ (8,1)
(1,8)+ (8,1}
(1,8)+ (8,1)
(1,8)+ (8,1)
(1,8)+ (8,1)
(1,8)+ (8,1)

Particles

(3,3*),(3*,3)
(3,3*),(3*,3)
(3,3*),(3*,3)
(3,3*),(3*,3)
(1,8),(8,1)
(1,8), (8,1)
{1,8), (g, i)
(1,8), (8,1}
(3,3*),(3*,3)
(3,3*),(3*,3}
(3 3g) (3g 3)
{33Q} (3bit 3)
(1,8), (8, 1)
(1,8), (8,1)
(1,8), (8,1)
(1,8), (8,1)

Mixing

No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes

Breakdown
of g3 or Sg'8

z, /z/

z'z/

g/

Breakdown
of U3 or SU8

g/g //

g//

g/g //

g /g//

g//

g//

g//

g//

g//

g//

To evaluate the matrix elements of Z' we have

(Sb I @
I
Sd ) s(fb I (1+I )&'(1+I)

I
fs")

= &f "I~'(1+&)lf"'&
=&fb l(7'b'+2'b")If'&

+&fb" I(T."+7'."')If"& (26)

The two matrix elements in (26) must, by the separate
SUB invariances of the underlying group $83, be
written as a sum of terms containing Kronecker deltas
8 and epsilon symbols & separately in the two kinds of
indices. (The use of e is allowed because the group here
is SW's, if it were lT/s, we would be restricted to the use
of 8 alone as in Case 1, for example. ) Thus we find

(fb"
I (Tb "+T~,"')

I
fs")=O

&f I(» "+T"')If. &=~."".,'. .

Similarly, for the case of 2",

(27)

&fb" l~" If"'&=&fb"l(Us'+&s') lf"')=O
(28)

&fb"
I
(Us'+ Us')

I f"&=&""es'"
Using (25), (26), (27), (28), and assuming a common
(mass)', p', for all the mesons in the SWs limit, we find
the following extra relations (in addition to the GMO
formulas) in lowest order, for Case 3

The physical mesons are identified as

E+'=S 3 m+'=S ' Eo'=S '
(25)ri'= (Sr'+Ss' —25ss)/+6, s."= (1/V2) (5 '—5 ')

etc.

ms '+m '= ssm'+rsm. '
m '+m '=-'m '+-'m '.

1 11 2

(30)

Cases 5 aed 7. If the spin-1 octets and singlets possess
unequal masses ps and pt in the IT's limit, then

2mx*'+m ' 3m', s—=2mx. '+mp ' 3m', ' (3—1).
tIn Case 5 alone, if ys ——fbi, both sides of (31) vanish. f

Case 6. Assuming @8=p~, we get

f2=m 2
p Ql ) 2mx4 m(y +m$

5$pr —8$~r ~
2tÃ++' fSo/r ~854'

(32)

Cases 9, 10, aed 16. Depending on whether we

have spin-0 or spin-1 mesons, we get similar-looking

equations
(33)

(34)

m~ —
tlat~ =m~r —tÃ&I2 2

7S+e 1Ã p
—'HS ~sr' ~p'2 2

Case ll. In addition to (33), we get

ms, '+mp, ' ——-', (mx'+ms')+ s (m. '+m. '),
(35)

m. s,' mp, '= 2(—mx' mx') . —

The last of Eqs. (29) reduces to msis —mp, '=2(mp, '
—ms, ') when B=O (in agreement with Gell-Mann" ).

We now summarize the extra relations obtained in

the other cases:
Cases 1, 2, aed 8. Xo relations.
Case 4. If the physical particles obtained after mixing

are called 5&, g', I'~, g, we get

mx +mQ~ m~ +m~'

mK +mx' =m~ +m~i

ms, s+mp, s =mrr'+ms',

ms, ' mp, '= ,'(mx' m—x')+-,'-(m ' —m, ') . —
(29)

Case 13. In addition to (33)

ms/+mr = smx + smK'
(36)
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Cases 13 and 15. We find relations (31) and (34). Lln
Case 13 alone, both sides of (31) vanish if its ——p, i.$

Case Z4 W. e obtain relation (34), and (32) if p, s ——p, .
The relations (32) have been obtained previously by

Okubo, " and by GQrsey et a/. "All the remaining rela-
tions above connect meson multiplets of opposite parity
and are characteristic of the present model. Equations
(33) and (34), which are identical at the Us level, from
the group-theoretic point of view, are remarkable in
that they appear in all the cases from Case 9 onwards.
In other words, they depend for their validity only on
the tensor behavior t (8,1)+(1,8)$ for Z". In particular,
they are independent of the tensor structure of Z' as
long as 2' is invariant under Us. I

Note that in Cases 9
to 16 in Table II, breakdown of U3 occurs with a term
of the form 2", not 2'g".)

It is interesting to see to what degree of approximation
the above relations are maintained, and to compare
their domain of validity with that for the GMO
formula. Clearly, Eqs. (33) and (34) are true to all
orders in 2' alone, since 2' affects mz and m equally
and m& and m ~ equally (similarly for E~, p and E*',
p'). They also turn out to be valid to all orders in 2"
by itself, as long as Z" has the tensor character

I (1,8)+(8,1)j, independently of whether the particles
are assigned to the representations (3,3*)+(3*,3), or
(8,1)&(1,8). To prove this statement for Eq. (33), ob-
serve first that with 8" of the form

2"=Us'+Us ',
2" conserves the hypercharges and isospins associated.
with the two independent Us groups, separately. I This
is not true with 2" L(3,3*)+(3*,3)].I Now the con-
tributions of a term of the form (2")"to err ' and mx'
are, respectively

The difference between these is

this vanishes since the states on the two sides of (Z")"
have different isospins for the unprimed indices (or
primed indices). Similarly, by considering the hyper-
charges corresponding to unprimed. indices, say, one
finds, in the case of m ' and m ',

This shows that a term of type (2")"does not destroy
Eq. (33). Similarly, we establish that Eq. (34) is main-
tained to all orders in 2" alone.

If we consider cross terms in 2' and 2" in the case of
the representations (8,1), (1,8) for the mesons $i.e.,
Eq. (34)j, a term of the type 2'2" gives no contribu-
tions by triality considerations; and it is only in the

"S. Okubo, Phys. Letters 5, 165 (1963).

next order (2')'2" that Eq. (34) breaks down. For the
representations (3,3*),(3*,3) for the mesons I i.e., Eq.
(33)j, the term that destroys Eq. (33) is 2'2" or
(2')'2", depending on whether we take SWs or Ws as
the underlying group. On the other hand, the GMO
formula is valid (in the absence of mixing, of course. )
to all orders in Z' by itself, and for all values of n in
cross terms of the type (2')"2".It breaks down where
we have more than one power of 2".

The generality of Eqs. (33) and (34) is encouraging
and. justi6es, in our opinion, an intensive search for
octets of scalar and axial vector mesons. %e have seen
that as long as the tensor character of Z" is L(1,8)
+(8,1)$, these relations should hold regardless of
whether the underlying group is 'Ws or SWs, the mesons

belong to (3,3*), (3~,3) or (1,8), (8,1) representations of
the underlying group, or there is mixing between a uni-

tary octet and a unitary singlet. The independence of
the relations (33) and (34) with respect to the choice of

particle representation is particularly welcome since
there is no way of really knowing at this stage whether
the lowest mass mesons with a given spin are s- (or p-)
wave bound states. If we admit a natural preference for
s-wave bound. states, then the m' and E' particles in Eq.
(33) belong to a normal scalar octet and the p' and E*'
particles in Eq. (34) belong to an abnormal axial vector
octet (see above) .But the point is that the mass relations

(33) and (34) would hold equally well if the scalar octet
were abnormal and/or the axial vector octet were nor-

mal. The feature of normality or abnormality will re-
Qect itself in the production cross sections and decay
modes of the scalar and axial vector octets but not in the
masses. In order to make use of the mass relations (33)
and (34), the mass of one member of the scalar or axial

vector octet must be known (since a GMO formula
holds within each octet). If we identify the E' in Eq.
(33) with the 225-MeV resonance (an identification
which is very tentative"), then we find m =555 MeV
and m„= 780 MeV. For the axial vector octet, we prefer
to make no mass predictions since the evidence for a
J= 1+ resonance is even less certain.

We have laid special emphasis on the relations (33)
and (34) because of the generality of these results.
However, we cannot be sure that 2"

I (1,8)+(8,1)g,
and some brief remarks are in. order concerning

L(3,3*)+(3*,3)$. While Cases 1—8 in Table II are
all based on the I (3,3*)+(3",3)) tensor behavior of
2", only two cases (Cases 3—4) lead, to a mass relation
analogous to (33), namely the first of Eqs. (29). Both
of these cases require the underlying group to be 514 3

and the mesons to be assigned to the (3,3*), (3*,3) rep-
resentation of this group. %e have already noted that
this representation requires the spin-0 (1) mesons to be
s (p) wave bound states and implies that both the scalar

2 G. Alexander, G. R. Kalbfleisch, D. H. Miller, and G. A.
Smith, Phys. Rev. Letters 8, 447 (1962); and M. Ferro-Luzzi,
R. George, Y. Goldschmidt-Clermont, V. Henri, B. Jongejans
et al , Phys. Letters 1.2, 255 (1964).
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and axial vector octets will be normal (since the pseudo-
scalar and vector octets are taken as normal). If we
choose mrc ——725 MeV (see above), then Eq. (29) would
yield m ~ =875 MeV and the GMO formula (which
only holds for Case 3, not for Case 4) would give
ns, =680 MeV.

4. BARYON MULYIPLETS

The discussion of spin-~ multiplets within the frame-
work of our theory differs from that of the mesons on
two counts: (i) the problem of constructing baryon
multiplets from the basic fields P; is more complicated;
and (ii) the question of whether the existence of a J~=-',
multiplet is implied by the existence of a J=—,+ multi-
plet is more difficult to answer. We briefly discuss both
points.

The simplest way to construct a spin--,' multiplet is to
build up a multiplet trilinear in the it; (such as itPit or
PPf, say) such that, at the level of Us, we obtain an
octet of baryons. But this immediately restricts us to
the choice it~ since the product pit-3*S33 con-
tains no octets in its reduction. Even the product

3333 will lead to an octet representation with
the desired hypercharge (and electric charge) contents
only if we assign fractional values of hyper and electric

quantum numbers to the basic fields P;. This leads to
the familiar "quark" scheme considered by several
authors. " In addition, in order to obtain a baryon
multiplet with unit baryon number, we must assign a
baryon number of rs to each f field, this quantum num-
ber being disjoint from the U's (or SUs) grouP and its
quantum numbers that lead to the correct hyper and
electric charges. If we assign a fractional baryon number
to each P field, we are forced into an octet rather than
a nonet representation for the baryons (if we wished to
build up a baryon nonet, we could not assign any baryon
number to the 1('s).

Turning away from an explicit construction of spin-~
baryons in terms of the p, , $; but still retaining our
original three-field model with Ws symmetry transfor-
mations defined on 2-component Weyl fields, let us next
inquire into the parity doublet properties of the baryons.
Suppose we assign the baryons to the representations
(8,1), (1,8) of Ws. We deal then with a tensor f,P of
type (8,1) transformed by the parity operation I' into
f;s' of type (1,8). The important question is whether
these tens ors f are 2-component Weyl fields or
4-component Dirac fields. If our three-field model is
used as a guide, we should choose 2-component f's. If
we do, we have an octet of baryons, with each baryon
a Dirac 4-component object defined by

Ef„.s J
(37)

In (37), the parity operation interchanges, as usual, the

"M. Gell-Mann and G. Zweig, Ref. i.

& "=(1/~~)(f "+f""')
& '"=(1/v2)(f."—f""'). (38)

'4 According to an argument of Y. Nambu /Phys. Rev. Letters
4, 380 (1960)j, this is consistent with the finite masses for the
mesons in the Wa (or SF3) limit which we have assumed (see
Sec. 3).

"Gell-Mann (Ref. 16} considers but rejects the octet repre-
sentation for the baryons on the ground that it leads to pure P-
type coupling for the axial vector weak current in the Sg"3 limit;
we do not consider this a strong argument because of the size of
the SR 3-symmetry breaking term.

upper two and. lower two components of 8„". [Note
that f,l' and f„&' transform contragrediently to one
another under the proper homogeneous Lorentz group. $
We have thus just owe octet of baryons with J~ defined
to be —,

'+ with the two chiral projections —,'(1&ps)B,"
of 8„& belonging to the two representations (8,1) and
(1,8) of Ws.

Our treatment of the baryons is similar to that of
Gell-Mann" in some respects but divers in others. We
agree in finding no parity degeneracy for baryons in the
W, (or SWs) limit and we also find vanishing masses
for the baryons in the Ws (or SWs) limit. '4 We differ in
that we are dealing with a baryon octet, whereas Gell-
Mann ends up with a baryon nonet. "One disadvantage
of the nonet representation for the baryons is that when
Z' is "switched on, " the average mass of the unitary
baryon octet is pushed above the zero mass Ws (or
SW,) limit while the unitary singlet is pushed below.
While it is possible, according to Freund and Nambu, "
to reinterpret a negative mass J= 2+ baryon singlet as
a positive mass J=-, particle, it is difficult to reconcile
this inversion of parity and mass with the parity opera-
tion which we have used (see Sec. 2). This diRiculty
would not arise with the octet representation. There
may be a further advantage in dealing with a baryon
octet rather than a baryon nonet: the impossibility of
writing down a Ws (or SWs)-invariant interaction be-
tween a baryon octet and a meson nonet (triality con-
servation). This implies the absence of a Ws (or SWs)
invariant interaction between the baryon octet and a
spin 0 meson nonet which could have the undesirable
consequence of a very strong (unobserved) coupling of
scalar mesons to baryons. LOn the other hand, there
could be a Ws (or SWs) invariant interaction between
the baryon octet and the spin 1 meson octet.) It is
therefore encouraging that our three-field model sug-
gests a baryon octet without parity degeneracy.

If we choose to ignore the three-field model, as we
have done on occasion (see Sec. 3), then it is possible to
construct a parity doublet theory for the baryons.
Thus, let us take an octet (8,1) of (4-component) Dirac
fields f.& which are transformed by I' into f„&' as

~: f"(x&)~Vsf""'(—x, &)

The parity interchange aspect of Ws now suggests that
a —,

—octet will accompany a 2+ octet; indeed, the two
octets, denoted respectively by 8' and B, are
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With the deftnitions (38), we can expect that many of
the mass relations for the mesons will find their counter-
parts for the baryons. As an illustration, if we assume,
as in Cases 9 to 16 of Sec. 3, that Z" [(1,8)+(8,1)],
then Eqs. (33) and (34) generalize into

(39)

where Ã', Z', ™Idenote the ~ analogs of S, Z, . Other
baryon relations bearing a strong resemblance to the
meson relations can easily be derived.

S. CONCLUDING REMARKS

In Secs. 2—4, we have explored the consequences of a
very special type of symmetry group higher than U3
(or SUs), namely the product of two Us (or SUs) groups
with parity interchange. Initially (see Sec. 1), we were
motivated in our study of this Ws (or SWs) group by a
four-fermion vector model based on one triplet of
"basic" 6elds. However, it should have been apparent
from the treatment in Secs. 2—4 that while the four-
fermion vector model served as a guide, the essential re-
sults did not depend on the details of the model, but
followed from the group structure of Ws (or SWs) and
the tensorial behavior of the V.S. and M.S. interactions
which were presumed to break the Ws (or SWs) sym-
metry. Experimental tests of our mass predictions for
scalar and axial vector mesons will be of crucial im-
portance in deciding whether a group as large as W3
(or SW,) is a more useful ordering principle for the large
number of observed particles (and resonances) than the
present Us (or SUs) theory. In view of the fact that the
masses of the hadrons themselves [within the same Us
(or SUs) representation( are generally larger than the
mass di6erences between the strange and nonstra, nge
particles (this is always true for the baryons but not
always true for the mesons), we cannot expect that our
mass relations will hold as well as the GMO mass
formula. Since there is so far such meager evidence for
the existence of mesons of the "wrong parity" (i.e.
scalar or axial vector mesons), the discovery of these ob-
jects with masses even near the predicted values would
be a most promising development.

%bile con6rmation of the mass predictions following
from broken Ws (or SWs) symmetry would certainly
not enable us to conclude that the three-6eld vector
model is correct, it would increase interest in the
Heisenberg-Nambu" type program for a triplet of
"basic" 6elds. As was remarked in Sec. 1, a nonlinear
three-field model oGers the hope of providing a basis
for a theory of leptons side by side with a theory of
hadrons. ""According to Heisenberg and Nambu, a

'6 Y. Nambu and G. Jona-Lasinio Phys. Rev. 122, 345 and 124,
246 (1960) as well as Heisenberg et al. (Ref. 4) have worked with
one "basic" Dirac 6eld, but the generalization of their arguments
to three fields would be straightforward.

nonlinear interaction among massless Dirac Gelds gives
rise to a 6nite mass (as well as a zero mass) solution for
fermions. From our present viewpoint, if we assign the
6nite mass to the baryons, then this common 6nite mass
[i.e. the V.S. interaction 2' in Eq. (8)$ breaks the Ws
(or SWs) symmetry for the baryons and reduces it to
Us (or SUs); the mass difference between the strange
and nonstrange hadrons [i.e., the M.S. interaction in
Eq. (10)j then breaks the Us (or SUs) symmetry and
reduces it to Us (or SUs). The new version of the baryon-
lepton symmetry" principle would then tell us to assign
the common zero mass solution" to the lepton triplet
(v, e,p) so that Z' would vanish and the Ws (or SWs)
symmetry would not be broken; it is only at the level
of the Us (or SUs) symmetry-breaking term, i.e., 2",
that the mass of the third component of the lepton
triplet, namely p, would be split away from the other
two, namely v and e, and given a Gnite value. This would

imply that the muon mass has a nonelectromagnetic
origin and is due to the M.S. interactions. ' Since the
electron presumably acquires a 6nite mass due to its

electromagnetic interaction, "it wouM follow from the
above line of argument that the 4-component neutrino
r (consisting of the positive chirality 2-component v,
and the negative chirality 2-component v„) is a "mani-
festation" of one of the three "basic" fields with which
we started.

These speculations concerning the leptons are sug-

gestive but they run into one dif6culty —as long as one
holds on to a three-held model. %e found in Sec. 4 that
in order to accommodate the baryon octet within our
theory, we were compelled to assume that the triplet
of "basic" 6elds were objects with fractional electric
charge, hypercharge and baryon number (i.e. "quarks").
While the failure thus far to observe baryon "quarks"
does not constitute an argument against a theory of
hadrons based on the three-field model (because the
strong nonlinear interaction can, in principle, produce
representations of particles with zero triality which
are much lower in mass than those with nonzero
triality), it does constitute an argument against the
possibility of incorporating the leptons into such a three-
field theory.

One way to incorporate the "baryon-lepton" sym-
metry principle within the framework of a nonlinear
fermion model is to postulate a quartet of "basic"
6elds and to regard v, and v„as themselves 4-component
objects, a possibility noted by several authors. "This
quartet of "basic" GeMs would also have the advantage

2~ One would then expect that an M.S. interaction of muons
with (virtual) kaons —in contrast to electrons —should show up at
momentum transfers of several BeV in muon-proton scattering.
Thus far, no eRect has been found up to 1-BeV momentum
transfer LJ. H. Tinlot (private communication)g.

See K. Johnson, M. Baker and R. Willey, Phys. Rev. Letters
11, 518 (1963).

s' Z. Maki, Progr. Theoret. Phys. (Kyoto) 31, 331 (1964); and
Y. Hara, Phys. Rev. 134, 8701 (1964).
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that they would not have to be "quarks" to permit the
construction of a theory of baryons. The great dis-
advantage, from our point of view, is that with n=4
(see Table I), we would be forced to start with an even
higher symmetry group, namely W4 (or SW4) which
when broken would lead to U4 (or SU4) rather than to
the thus-far-successful Us (or SUs) group. We consider
it preferable to hold the "baryon-lepton" principle in
abeyance at this stage and to seek experimental evi-
dence for broken Ws (or SWs) among the ha, drons.

Finally, we note that there is no very strong reason
for restricting oneself to a four-fermion nonlinear inter-
action model. One might inquire whether postulating
in addition, say, a six-fermion interaction would alter
the chief conclusions. The answer is negative if one con-
siders some simple forms of the six-fermion interaction,
One can write down a six-fermion interaction among

three "basic" fields' having the structure

I'~(f&C 'Qk2) QaC 1QPl).

P &tmneijk(P Q
—1Q g, .)

X(lt.&-'Qsp,:)(it.c- Qslt. )+H.c. (40)

which is invariant under SUs, but not under U, )in
(40), Qt, Qs, and Qs are some appropriate Dirac matrices).
A small admixture of such an interaction in addition to
the main four-fermion interaction ma, y serve to break
both Us and W's symmetry. However, it is premature to
discuss this possibility further at this time.

~ For a quartet of "basic" fields, one may write down a four-
fermion interaction which is invariant under SU4 but not under
U4, namely:
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It is speculated that the sharp decrease with increasing energy of differential cross sections at large angles
is due to a mechanism independent of the method of excitation. Some consequences of such a possibility are
discussed.

' 'T has been known for some time that (i) the total pp
~ - cross section remains essentially constant at high
energies, and that (ii) above 300 MeV of excitation
energy the nucleon has many excited states. More re-
cently, experiments' have shown that the large-angle
elastic pp cross section drops down spectacularly with
energy. For example, when the center-of-mass mo-
mentum of each proton is 3.8 BeV/c, the differential
cross section at 90' is only about 10 "cm'/sr.

These facts together suggest that the nucleon is an
extended object with an internal structure having a
"rigidity" characterized by an excitation energy of the
order of a few hundred MeV. For hard collisions where
the available energy is much larger than this, many
degrees of freedom are excited in the nucleons, resulting
in general in the emission of many particles.

*Work performed under the auspices of O'. S. Atomic Energy
Commission.

$ Permanent address: Harvard University, Cambridge, Massa-
chusetts.

$ Permanent address: Institute for Advanced Study, Princeton,
New Jersey.' G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R. Rubin-
stein et al. , Phys. Rev. Letters 11, 499 (1963) and W. F. Baker,
E. W. Jenkins, A. L. Read, G. Cocconi, V. T. Cocconi et a/. , ibid.
12, 132 (1964).

Such a picture is more or less common to various
statistical discussions of high-energy collisions.

The spectacular drop mentioned above has been put
in a more quantitative form by Orear 3 His result is that
(iii) the elastic pp diA'erential cross section for large |i
in the center-of-mass coordinate system is given by

(d&r/dQ) (0, pp —+ pp) Ae ~i"" (1)

where pr is the transverse momentum transfer in units
of BeV/c.

Guided by these facts (i)—(iii), we attempt to specu-
late about the high-energy behavior of other processes.
We observe that in picturing the nucleon as an extended
object the difFiculty in making large transverse mo-

'H. W. Lewis, J. R. Oppenheimer, and S. A. Wouthuysen&
Phys. Rev. 73, 127 (1948); E. Fermi, Progr. Theoret. Phys.
(Kyoto) 5, 570 (1950);G. Fast and R. Hagedorn, Nuovo Cimento
27, 208 (1963);L. van Hove, Rev. Mod. Phys. 36, 655 (1964); G.
Cocconi, Nuovo Cimento BB, 643 (1964); A. Bialas and V. F.
Weisskopf, CERN (to be published); and many other papers.
Notice that for very small angle elastic scattering, the many modes
of excitation contribute in phase so that one has an enormous
"diffraction peak. "See R. Serber, Rev. Mod. Phys. 36, 649 (1964)
and earlier papers.' J. Orear, Phys. Rev. Letters 12, 112 (1964). See also A. D.
Krisch, ibid. 11, 217 (1963), and D. S. Narayan and K. V. L.
Sarma, Phys. Letters 5, 365 (1963).


