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system, and it can be shown that in more realistic
models unitarity yields Regge-type singularities in
Tum-’. Nevertheless, as real-life situations are usually
more complicated than simple models, we cannot help
feeling that they are not going to be the only singular-
ities in the J plane, because it seems very difficult to
get in general only clean Regge singularities from
singularities which depend upon so many subenergy
parameters. If this is the case, then the Regge pole
concept will not be very useful in analyzing the proper-
ties of three-body systems.

For the sake of completeness, let us note that the
same analysis could be done if, in place of fixing the
values of M and M’, we were to fix the relative angular
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momentum of one of the “electrons” with the “nucleus.”
(That choice has been made by Newton! and Choud-
hury.*) Here again, and in a much more elementary
way, one could get poles dependent upon the sub-
energies. The same conclusion, namely thatno Fredholm
equations can give this result, would stand.
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Extending the arguments by Goebel and Sakita, it is shown in a general framework that a pole of the
proper vertex function does not lead to a pole in the scattering amplitude. Connections between zeros of the
propagator, poles of the proper vertex function, and upper bounds on the coupling constant are discussed in
rather general terms as well as in terms of the Zachariasen model. By making use of the analytic continuation
of the partial-wave scattering amplitude into the complex angular-momentum plane, a possible physical

interpretation of the pole of the vertex function is given.

1. INTRODUCTION

N quantum-field theory the masses of the inter-
acting particles and the coupling constants are
introduced from the outset as mutually independent
parameters. Recently, however, Geshkenbein and
Toffe! have obtained an upper bound on the coupling
constant for the Yukawa interaction of three particles
a, b, and ¢, in terms of the masses of the particles alone.
The starting point for their derivation was the con-
sideration of the Lehmann representation for the prop-
agator A(s) of one of the particles, for instance par-
ticle @, and the analyticity properties of the function
A(s)=gT'(s)A(s) where I'(s) is the proper vertex func-
tion with & and ¢ on the mass shell. However, the
assumption was also made that I'(s) has no pole in the
complex s plane, on the grounds that a pole of I'(s)
would also appear in the scattering amplitude through
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the term (g2/87)T'AT' and therefore would correspond
to a bound state of the system (b,¢) with the same
quantum numbers of particle @. It has been pointed
out by Goebel and Sakita? that it is possible for the
propagator to have a zero, coupled to a pole of I'. Such
a pole would not appear in the physical amplitude and
would have no direct physical significance. They have
constructed specific models in which A develops a zero
and the G-I bound is violated. They have also shown
in nonrelativistic elastic models the dynamical origin
of the pole of T' and how the pole of (g2/8m)I'AT is
canceled out in the d-¢ scattering amplitude.

In this paper we shall generalize the arguments of
Goebel and Sakita and give an interpretation for the
pole of the vertex function.

In Sec. 2 we have shown that within the framework
of field theory a zero of the propagator is always associ-
ated with a pole of the vertex function. The basic
assumption for our argument is the possibility of ana-
lytically continuing A, A and the scattering amplitude
f as functions of the coupling constant.

In Sec. 3 we discuss the relation between the G-I
bound and the condition Z,>0 where Z,!/2 is the wave

2 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293 (1963).
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function renormalization constant, and in Sec. 4 a dis-
cussion of the Zachariasen model illustrates our con-
siderations. It is interesting to remark that, in this
model, the condition Z,>0 implies a restriction on the
coupling constant although one may have a pole of
the vertex function as close to s=m,? as we like, which
would invalidate the argument of G-I.

In Sec. 5 we give an interpretation of the pole of the
vertex function. We have shown, within the approxima-
tion of elastic unitarity, that if particle a is not a Regge
pole and if a Regge trajectory with the quantum num-
bers of @ and the proper signature crosses the values
s=s; in the interval (mg2,(mv+m.)?), then T will have
a pole at s; and the term (g?/8r)T'AT" exactly cancels
the Regge pole, so that it does not appear in the
scattering amplitude. On the basis of the asymptotic
behavior for large momentum transfer of Feynman
diagrams for the scattering amplitude, it is argued that
this interpretation is correct in the case of the Yukawa
interaction of three scalar particles and in that of a
spin-3 fermion interacting with a spin-zero boson. The
latter case is studied in detail in Sec. 5. A summary
of the conclusions arrived at is given in the last section.

2. ZEROS OF THE PROPAGATOR

Let us consider three scalar particles a, b, ¢, with a
Yukawa interaction expressed by the virtual transition

a="b+tc,

and let us assume that the least-massive state with the
quantum numbers of particle ¢ is a two-particle state
of b and c.

We shall consider the propagator of particle ¢ de-
fined by

A(s)=i / (T(bale/Dbal /D) dx, (1)

where s=p% The general axioms of local field theory
imply the Lehmann representation for the propagator.?
We shall assume no subtractions and write

1 © g (s’
A(s)= %-/ & )ds’, (2)

mE—s Jg §—$

where so= (m+m.)?,

() =2"1(@a(0) [) *6 (pn—p) (2r)?, ©)

with the sum Y_’ taken over all states in the continuum.

The spectral function o(s) is positive definite, where-
from it follows that A(s) is a Herglotz function. It has
no complex zeros but it may have one real zero in the
interval (mg?,s0). For sufficiently weak coupling, A(s)
has no zeros, as it reduces to the free propagator in
the limit of zero coupling and at least for small g% an
asymptotic expansion in power series of the coupling

3 H. Lehmann, Nuovo Cimento 11, 342 (1954).
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constant holds for small values of s. Then, since A(s)
cannot have complex zeros, as one increases the cou-
pling constant a zero would emerge on the physical
sheet only if it moves from the second sheet, across the
cut, around the branch point at s=s,. The second sheet
is reached from the first or physical sheet by crossing
the cut in the interval between the threshold so and the
next branch point. The discontinuity of A(s) across
this cut is given by the contribution to o(s) of the two-
particle state | psp.). One obtains

k
A(s+ie)—A(s—ie)= 213—\—/—5 ilA [2=24ga(s), (4)
where .
k=x/;{ [s— (mst-me)*I[s— (my—me)* 32 (5)

and

A(s)= (2m)3(2ps02p e0)'*ba(0) | pop) (6)

which is related to the form factor F(s) by F(s)
= (m.2—s)A(s) and to the proper vertex function I'(s)

by
gL (s)=A(s)/A(s), (7)

where g is the coupling constant.

Now, it can also be deduced (provided a certain
condition is satisfied by the masses #,, ms, m. of the
particles), that, A(s) is an analytic function of s in the
plane cut along the real axis in the interval (so, 4+ ),
with a pole at s=m,?. In the interval below the second
branch point only the two-particle state |ps,p.) con-
tributes to the discontinuity of A(s) across the cut,
which then will be given by

k
A(s+ie)—A(s-ie)=2i$A 1*, (8)

where f is the s-wave amplitude for (b,c) elastic scat-
tering, which is of the form

Vs

k

f=

¢ sind. 9)
In the elastic region, unitarity gives

k
f(st+ie)— f(s—ie)= Zi\—/;ff*- (10)

The relations (4), (8), and (10) allow us to express the
continuation of f, A, and A onto the second sheet in

terms of the functions in the first sheet. After straight-
forward computation, one obtains

Ju=fiST, (¢8))
AII=AIS‘-‘1) (12)
Au=AUS, (13)
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F1e. 1. Complex s plane, showing singularities of A™* and the
contour of integration C which encircles the pole s; as it moves
onto the physical sheet along the trajectory indicated by the
broken line.

where
k
S= 1+2i—\—/—sf1, (14)
U=1+2 i h (13)
= — 5
’L\/S 1,
and

h=f—(1/8r)AAA= f— (¢/8x)TAT.  (16)

From the definitions (7) and (16) one can also deduce
expressions for the continuation of I' and % onto the
second sheet. One readily obtains

Ip=Iy/U a7

and
hu=hi/U. (18)
The last relation shows that in the elastic region /%
satisfies the unitarity condition (10) and therefore one
can write
Vs
%% sindy.

h= (19)

From (17) it follows that in the elastic region I' has the
phase of /4 just as A has the phase of f. Now (11), (12),
and (13) tell us that the poles of Ar coincide with the
poles of Arr and fir and are given by the zeros of .S. On
the other hand, the zeros of Ar coincide with the poles
of T'r1 and %11 and are given by the zeros of U. Let us
suppose that the coupling constant is sufficiently small
so that A has no zeros; we recall that in the limit of
weak coupling Ar approaches the free-particle prop-
agator. Let us then assume that U has a zero on the
real axis below the threshold s=s,. As one increases
the coupling constant this zero may move toward the
threshold and eventually turn around it onto the first
sheet. From (16) it is clear that the zeros of U and S
do not coincide; since A1<0 for m2<s<so, it follows
that in this interval 4> f1 and the first zero of U is
located to the right of the first zero of S. In this way,
k and T develop a pole at the same position where A
has a zero and before a pole of f reaches the physical
sheet. Thus the poles of I' and % are not poles of f and
A. As will be shown later, in the expression (16) there
is complete cancellation of the poles of # and — (g?/8x)
XTAT by virtue of the relation

Resh= — (g2/8r) (ResI')?/ResA™L. (20)

We also remark that Ar(s) may have zeros, but accord-
ing to our analysis they would correspond to zeros in
T1(s) and not in the propagator Ar(s). These results
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contradict the assertion of G-I-to the effect that T’
has no pole where A has a zero because such a pole
would appear in the scattering amplitude through the
term (g?/8m)TAT.

3. THE GESHKENBEIN-IOFFE BOUND

If the propagator has no zeros, the Lehmann repre-
sentation (2) is equivalent to the following representa-
tion for the inverse of the propagator:

A7 (s)= (ma—>s)

1 /= A(s)ds'
1—(mp—s)— | ——
Xl: (m S)'/r 0 (s’—ma2)2(s’—s):l @)

with positive definite spectral function A(s"). In the
elastic region
g Lk
>\e1(S’)=—|Fl2—.
8w s

In the previous section we have seen that as one varies
the coupling constant a pole of I' may move from the
second sheet, around the branch point at s=s,, onto
the physical sheet. When this happens one has to de-
form the contour of integration in the expression (21)
so as to go around the pole in the way shown in Fig. 1.
As a result one picks up an additional term

(22)

1 g I 4 1 ds’
wt 8w 1+2i(k /A/s)hi/s" (s —m2)?s'—s
¢ (ResT)? 1 1

,  (23)
8t Resh (s1i—ma2)? s1—s

which gives a pole of A= whose residue satisfies rela-
tion (20).

The Lehmann representation for the propagator im-
plies the restriction 0<Z,<1 for the wave function
renormalization constant Z,/%. Hence, the condition
1 = NsDds'

Z.=1
T s (5'—

>0. (24)
ma2)2

This expression for the renormalization constant holds
in general, provided the path of integration is taken
along the contour C, when A~ has a pole at s; in the
physical sheet.

Let us suppose that Z, is a function of the coupling
constant g% such that for g2<g¢, Z,>0, and Z,—0 as
22— go®. We shall assume that A(s) has a certain domain
of analyticity as a function of the coupling constant
which includes the real open interval (0,g¢%), and ad-
mits the Lehmann representation for g2 in this interval.
As g? varies from the left to the right of go’, one may
have the following behavior of A(s):

(1) A complex pole of A(s) in its second sheet moves
to infinity and onto the first sheet from — « along the
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real axis. The residue of this pole when it emerges in
the physical sheet will be positive corresponding to a
state of negative norm, a so-called “ghost.”

(ii) A zero of A moves from the right to the left of
the pole at s=m,? and at the same time either:

(a) There is a physical pole in the interval (m4%s0)
whose residue tends to — « and changes sign. Thus the
norm of the state associated with this pole becomes
negative; or

(b) A complex pole of A in some sheet adjacent to
the physical sheet approaches the cut and crosses over
onto the physical sheet.

In the next section we shall discuss a model which
exhibits these features. We shall not consider here other
possibilities for the behavior of the propagator as a
function of the coupling constant, as well as the compli-
cations that arise when dealing with particles with spin.

In both cases (i) and (ii), g¢? is an upper bound of g
resulting exclusively from the requirement of the va-
lidity of the Lehmann representation. However, at
least in case (ii), the method of Geshkenbein and Ioffe
would certainly not apply because as we approach the
bound there will be a zero of the propagator moving
towards mg2.

In principle, A(s) may have a certain number of zeros
and poles in the interval (m.2,50) in alternated positions.
However the information on the existence of poles is
readily available, and there is no instance of two stable
particles with exactly the same quantum numbers. One
can then impose the condition that there is no pole of
A other than that at s=m,2 In this case A may have
only one zero at some value s; of s in the interval
(md?,s50). Therefore, (2) together with (4) gives

1 1 = |Al2 &
—ds’<0.
812/ sy ' —51 8

(25)

Mol —S1

For s;=sy, this inequality reduces to that used by G-I.
If no further information on A is given in addition to
its analyticity properties it is clear that this inequality
would yield only a bound on the product g?(s;—m.?)/
(so—m,?) and not on g? itself.

4. A MODEL

In this section we shall discuss the Zachariasen
model* for combined three- and four-particle inter-
actions. This model has sufficient structure to illustrate
the foregoing considerations. In this model the scatter-
ing amplitude is pure s wave, has no left-hand cuts and
satisfies elastic unitarity. It is obtained by iteration of
the diagrams shown in Fig. 2.

Each higher order term has of course divergent closed
loops, but they can be renormalized. The result in terms
of renormalized quantities may be determined from

¢ F. Zachariasen, Phys. Rev. 121, 1851 (1961); S. D. Drell and
F. Zachariasen, Phys. Rev. 119, 463 (1960).

F1c. 2. Lowest or-
der graphs for bc
scattering in the com-
bined version of the
Zachariasen model.

a) g coupling

b) A cquplinq
the relation

1 A v
f=—1&+Nmi—s)] —. (26)
8 g

Using dispersion relations and elastic unitarity, one
obtains

g r _maz—s 2 2o
e hra GECED
¥ ds -
_— 27
\/s' (s’——maz)2(s'—s):| » (20

which is the solution of the dispersion equations without
Castillejo-Dalitz-Dyson (CDD) poles. Now A and T'
can be obtained from (2) and (7), respectively, with
o(s) given by (4). However, it is simpler to use (16)
and remark that since f has no left-hand cut, neither
has %, and therefore % is simply proportional to I'.%
Setting z=aTl, one obtains

g -1
I'=f (——A—l—a) ,
8w

=871r<§1—rA+a>/ (s1—5),

si=mg+g2/\. (28)

Since f and therefore A have no poles at s=sjy, it follows
that = — (g/87)A(s1). Hence

A=

X

and from (7)

where

A=f[A<s>~A<sl>]/<sl—s> (20)
and

8w
=? FA(s)—A(s2)) (30)

One can now actually verify that
ImA= (1/8r)(k//s)|A|2%.

The wave function renormalization constant for par-
ticle ¢ will be given by

¢ Nt @k a
Z=(—-—A(s1)> =1————/ —_— (31)
A 8n2) /5" (s'—mg2)?

and is independent of X\. The condition Z>0 will then
impose a restriction on the coupling constant g2

(15 1\‘/11) L. Whippman and I. S, Gerstein, Phys. Rev. 134, B1123
964).
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If A<0, (28) gives s;<m.? and by (31), gA(s1)>0;
one then finds that A always has a pole below s;. The
value of X should be fixed in such a way that the pole
occurs at a positive s=mgq? corresponding to a physical
particle &’. One can rewrite the expression (27) so as to
explicitly exhibit the lowest pole. One obtains an ex-
pression formally identical to (27) but in terms of new
parameters X', ¢/, which will be taken as coupling con-
stants. One can easily show that the renormalized and
unrenormalized quantities are related by

(80%/No)+-me= (g8/\)+m? (32)
g¢/N= (&8/N)Z. (33)

These relations would, of course, hold with the replace-
ment of the unprimed by the primed set of parameters.
The connection between the two sets is thereby
established.

Since mq2<si it is clear that N’ is positive. From now
on we shall drop the primes with the understanding
that A is positive.

Let us investigate the behavior of the propagator as
a function of g% keeping s; constant. For small g2
A has two complex poles and two zeros in the second
sheet, their trajectories starting at s=0, for g2=0. One
can easily verify that as g? increases one of the zeros
moves onto the first sheet. When g? approaches the
critical value g2 for which Z=0, this zero tends to m,?,
exhibiting the behavior referred to in (ii) of the pre-
ceding section. Likewise, the poles of A behave in the
way described in either case (a) or (b), for s;<so or
$1> 80, respectively.

If one demands that there is no bound state other
than that corresponding to particle a, the inequality

2

8¢
ma2+—;\—> So (34)

gives an upper bound on A, independent of g%
A special case of interest of the Zachariasen model is
the case A=0. We have then

A=A/g. (35)

The renormalization constant will still be given by
(31). However, in this case A never has a zero and the
Geshkenbein-Toffe method is valid. As g* approaches
the critical value, a pole in the second sheet moves to
infinity and onto the physical sheet along the negative
real axis. This example belongs to case (i) considered
in Sec. 2.

5. INTERPRETATION OF THE POLES
OF THE VERTEX FUNCTION

In this section we shall investigate the physical mean-
ing of the zeros of the propagator or the poles of the
vertex function.

Let us take the scattering of spinless particles  and
c as in Sec. 2 and suppose that one can write a dispersion
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relation for the scattering amplitude at fixed energy,
with IV subtractions. Then for />N the partial-wave
amplitudes will be given by

™

1
()= / 6, t’)@(z’)—

- [“asteannn 2 e
+-— s,4)0:(2")—, (36
mJ ug ’ ! 2k?

where the indices = refer to the signature, and

tl
F=14+—7

1 1
<2s—mb —mP——(m—m 2)2+u)
2% 2s

2k2

The functions %,%(s) defined by (36) are analytic in
the half-plane Re/>N. The analytic continuation of
hiE(s) (with the proper signature) may or may not
coincide with the physical amplitudes for real integer
values of I<N. If %% does not coincide with fi(s),
their difference must be an analytic function which has
the physical cut, but no left-hand cut.® Let us write

(for 1=0)
Jo(s)—hot=(g/8m)AT, 37

where A and I' are as yet not identified but are analytic
in the cut plane except for poles on the real axis. In
the elastic region both f, and kgt satisfy elastic uni-
tarity so that their difference must be of the form

v
(¢/8TAT=——c ) sin(00—8r),  (38)

where 8o and &8 are the phases of fo and Agt, respec-
tively. Now one can choose the phases of I' and A to
be 8¢’ and § in the elastic region, so that one can write

1 r® s—mg2 8¢/ (s")ds’
P=r) exp-| S 7}})— 39)
d 0
o s—mg? 8o(s')ds’
A(s)=\(s) exp— / i & _s) (40)

where for the analytic functions v(s) and A(s) the cut
starts at the first inelastic threshold. Let us assume
that the pole associated with particle ¢ is not a Regge
pole. Then (g/8m)AT has a pole at s=m,* with residue
— (g%/8). One can choose v(s) to be regular at s=m,?,
with y(m.2)=1, so that A(s) has a pole at that point
with residue —g. If Ao+ develops a pole the contour of
integration in (39) is to be deformed in the manner
shown in Fig. 1. Within the approximation of elastic
unitarity I'(s) and A(s) are determined by (39) and

6V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 42, 1260 (1962)
[English transl.: Soviet Phys.—JETP 15, 873 (1962)]
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(40) with v(s)=1 and

As)=

g 8o(s0) s—mg?
(12t )
m.,"’-—s\ T So— Mgt

In this approximation A(s) coincides with the function
defined by (6). We also have’

A s g -1
A=—=—¢i(30=50") sin(&o—éo')<—| I‘|2> . (41)
e k 8

T
Hence,
kE g
ImAl=———|T|2 (42)
s 8w
and
1 k
ImA=—|A]2 ImAl=——]A|2, (43)
81 /s

which shows that A(s) coincides with the propagator
and T'(s) with the proper vertex function.

Moreover, by making use of the representation (21),
one can construct A(s) and then determine A by means
of (41). Therefore the scattering amplitude fo(s) will
become completely determined in terms of the Froissart
amplitude %¢*(s). This is in agreement with Martin’s’
result that the double spectral functions completely
determine the physical amplitude.

We conjecture that these results might be valid not
only within the approximation of elastic unitarity but
more generally when full unitarity is taken into account.
Let us investigate this possibility within the framework
of Feynman diagrams.

We shall consider the case in which the only inter-
action of particles b and ¢ is a vertex interaction with
particle a. In the perturbation expansion for the scatter-
ing amplitude one can distinguish two classes of dia-
grams. The first class consists of all diagrams which
contain a single line corresponding to the one-particle
intermediate state in channel s. These diagrams are
functions of the energy only and contribute to the
s-wave amplitude alone. The sum of these diagrams is
just (g2/8m)T'AT'= (g/8x)AT where I is the vertex func-
tion and A the propagator for particle a. The remaining
diagrams are functions of the momentum transfer
variables and contribute to all partial waves. It is easy
to verify that, at fixed energy, each one of these dia-
grams tends to zero for infinite momentum transfer so
that one can write a dispersion relation without sub-
tractions. Therefore the contribution of each diagram
to every partial wave will be given by an expression of
the form (36). Let us assume that for sufficiently small
values of the coupling constant the sum of the partial-
wave contributions of all these diagrams may also be
written in the form (36) and but for the s wave, cor-
rectly gives the physical amplitude. Now, to obtain
the s-wave amplitude one simply has to add the dia-

7 A. Martin, Phys. Rev. Letters 9, 410 (1962).
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grams of the first class. Hence, one can write

S1(s)= (g/8m)AT 810+ hi*(s) .

For the actual value of the coupling constant, a repre-
sentation (36) for /#;=(s) may break down for /<N but
if each term in (44) can be analytically continued as a
function of the coupling constant, then A,=(s) will
coincide with the analytic continuation in the / variable
of the function defined by (36) for Rel>N. Thus, in
this case, perturbation expansion provides a plausi-
bility argument for the validity of the relation (44).
According to this analysis I'(s) has a pole at the point
where the Regge trajectory crosses the value /=0. By
the mechanism discussed in Sec. 2 this pole exactly
cancels the Regge pole, so that it does not appear in
the scattering amplitude. It should be pointed out,
however, that this interpretation depends essentially on
the type of coupling and on the spins of the interacting
particles. In the next section we discuss in detail the
interaction of a spin % with a spin-zero particle.

(44)

6. THE PION-NUCLEON INTERACTION AND THE
NUCLEON PROPAGATOR

Let us now consider the interaction of a spin-3
fermion # with a spin-zero boson w. The Lehmann
representation for the fermion propagator is

Y QP ds’
AP ==t [ LB+ =)
me—s Jq s'—s
—PA+A,, (45)

where s=P? and so= (m+u)?. The spectral functions
satisfy the inequalities®

2(V/$)p12p220. (46)
The two-particle contribution to ImA is given by
ImA=— ( " pt )' ¢ (47)
mA=—A{ —P-+m JA—
81 \W/s s
where
E=(1/2¢/5)(s+m*—u?). (48)
For pseudoscalar meson one can write
A= (AP+As)ys, (49)

where P=p-¢q. At s=m? A; and A, have a pole with
residue —1 and —m, respectively. In the interval
so<s< (m~+2u)?, unitarity gives

E—m

1 k
ImA;=——{—- ArtAq|?
mA; S/s 2\/31(\/3) 1F+Aq|

E+m
+W;l (\/S)Al"‘AZ] } =p1, (50)
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8r/s

1 k& (E—m
ImA2=—7 ———I(\/S)A1+Azlz

E4+m
———2~!(x/s)A1—A212 =p1(v/s)—p2. (51)
Taking linear combinations of (50) and (51), one obtains

(52)

VA

1 %
Im[(\/S)Alzl:Az:l:g— V(E:Fm) [ (\/S)Al:{:Azlz.

The discussion of Sec. 2, concerning the behavior of the
propagator as Z —o would apply here, but a zero of
A; will not correspond to a pole of the vertex function.
One defines the vertex function by

gP=g(P1P+P2)78=A—1A. (53)

Then

(Ws)AitAe=2g[ (\/s)T1=£To L (Ws)ArE A ], (54)

It can readily be established that the amplitudes
(A/s==A,) correspond to the even (+) and odd (—)
states of #w in their center-of-mass system or to the
Py5 and S states, respectively. If we denote by fijar
and fye— the Py and S partial-wave amplitudes for
nw elastic scattering, unitarity in the elastic region gives

II’Il (Al\/S:I:Az) = k (A1\/S:!:A2)f1/2d:*. (55)

It is now convenient to use the variable k=4/s and
regard A,(x)=o(Ax=4=A,;) as analytic continuations
of one another in the x plane. The function A, () is a
Herglotz function analytic in the complex « plane cut
along the segments (4=2so, =) and with a pole at
k=m. For sufficiently small values of the coupling
constant, (k—m)A, is negative in the interval (—4/sq,
++/50). Any zero of A, has to come from adjacent
sheets around the branch points at k= 4=4/so. Follow-
ing the arguments developed in Sec. 2, one concludes
from (54) and the unitarity relations (52) and (55)
that the zeros of A, are associated with poles of
(T'1/s=£Ts). Since A, (k)—A(—k)=2«A;, as long as
A, does not develop a zero, neither would A; have any
zeros. As one increases the coupling constant A, (x) may
develop a zero through either branch point Z4/so. If
A, (x) develops a zero through both branch points and
k. and —«_ are the positions of these zeros, then A;(s)
will have a zero in the interval (k;2,x_%). Given the fact
that A;(s) has no poles other than that at s=m? one
can derive an inequality similar to (25).

One may also obtain an upper bound on the renor-
malization constant Z, from the inequality

1 o —8Q
o[-
8772 S0 —0

k/
X (E'—m)| Aw'+As|—d'=1+®.  (56)
K
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Since (Ak+Ap) is analytic in the x plane, ® has a
minimum which can be obtained by mapping the two
cut plane onto the unit circle and making use of certain
properties of orthogonal polynomials.® For pion-nucleon
interaction (taking into account the isospin factor) one
finds &> (1/85)g%/4r.

We shall now see that the poles of I'; and I'; can be
related to Regge poles as in the case of scalar particles.
The sum of Feynman diagrams of the first class, in the
terminology of Sec. 5, will be

gl (s—ie)A(s+ie)I'(s+1e). (57)
They contribute to the amplitudes fi/s+ a term
g2 EFm
- (T/s£T9)2(An/sEAs). (58)
4 24/s

Now one must write the representations for the co-
variant amplitudes 4 and B, with the minimum number
of subtractions required by perturbation theory. Ac-
cording to Mandelstam® the absorptive amplitudes in
the s channel 4, and B; have a representation of the
form

1
As(s,)=a1(5)+~ /

au'+
y—t

w—u g

dar’,

puo(sw) 1 /pw(s,t’)
- (59)

where the term ¢;(s) comes from (57). It follows that

the absorptive amplitudes for partial waves with j>3
can be expressed in terms of 4y; (and By) given by

ai= [ o0

$)=—[ p1s(s,2)01(z")—

)Y/ 13 i 2k2

™ %

1 [> du’
- / pia(s,) 0 (") (60)
) 2k?

From now on we drop the superscripts indicating the
signature. Likewise, the discontinuity across the left-
hand cut of the partial-wave amplitude, as defined in
the complex / plane by an expression like (36), is always
analytic in the half-plane Re/> —1.% Since the partial
waves are determined by their discontinuities, then for
small values of the coupling constant they will be given
by

2

2 EFm
ffi=; s T4 (5)*AL(5)851/2F i ()

(61)

where /;.(s) is an analytic function of j and corre-
sponds to the contribution of the diagrams of the second
class. Since the Feynman amplitudes require only one
subtraction, the partial waves with j>$ coincide with
the analytic continuation of 7;4 as in the case of scalar
particles. On the other hand, in the dispersion relations

8 It is much simpler to obtain ®yi, with this mapping than with
that used in Ref. 1.
9 S. Mandelstam, Phys. Rev. 115, 1741 (1959).
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for the helicity amplitudes with j=% and free from
kinematical singularities one subtraction is required.
This would contribute an additional term to (61) of
the form b..(s)= (cn/s)[ 1= (d/+/s)] where ¢ and d are
real constants. However, the unitarity relations in the
elastic region for Ay, Ay and %y would imply that
either ¢=0, or

by 1
Ijpe= ————(1— (1—kb,2)1"2)
2 2k

which has branch points at 2%.2=1, in contradiction
with the Mandelstam representation. This is analogous
to the result obtained by Martin.”

Let us assume that both sides of (61) can be analyti-
cally continued as a function of the coupling constant,
even though the representation (60) no longer holds
for Rel<N. Then, for /<N, the partial-wave ampli-
tudes will be given by (61) where the last term is
obtained by analytic continuation in 7, from the region
Rej>N=F3.

If %;4 has a pole which for =1 is on the real axis
(below threshold so), I'.(s) would also have a pole at
the same point, but this would not be a pole of the
scattering amplitude. The nucleon should therefore be
a fixed pole. Since Ay(s) has at most one zero, there
cannot be more than one pole of /5. (s) (with the
proper signature) in the interval (m?s,). In addition,
the pole of %124 (s), if any, must lie to the right of
s=m?, because no zero of A, (s) can reach that point.

7. CONCLUDING REMARKS

We have explored the possibility of defining the
physical amplitudes by analytic continuation in the
coupling constant and used the properties of the
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perturbation expansion to derive the following results:

(a) Whenever the propagator has a zero, the vertex
function has a pole, but not the scattering amplitude.
This invalidates G-I’s argument leading to a bound
on the scattering amplitude. However, the condition
Z2>0 may actually imply a bound on the coupling con-
stant as exemplified by the Zachariasen model.

(b) If the particle under consideration is not a
Regge pole, the vertex function will have a pole when-
ever there is a Regge pole with the same quantum
numbers and the proper signature. The Regge pole is
cancelled in the physical-scattering amplitude by the
pole of (g%/8w)I'AT. However, it would influence the
high-energy behavior of the scattering amplitude just
as any Regge pole and could show up as a resonance in
higher partial waves. Hence, in principle, a pole of T'
could be experimentally observed. The nucleon would
fit into this picture if one assumes interactions involving
only the coupling between spin-} baryons and spin-
zero mesons. On the other hand, if the particle corre-
sponds to a Regge pole, there seems to be no simple
physical interpretation for the pole of T'.

Note.added in manuscript. After the completion of
this manuscript we received a preprint by S. D. Drell,
A. C. Finn and A. C. Hearn covering some of the
questions discussed in this paper.
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