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Evidence That the Deuteron Is Not an Elementary Particle*
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If the deuteron were an elementary particle then the triplet n-p effective range would be approximately
ZE/(I—Z), wh—ere E=4.31F is the usual deuteron radius and Z is the probability of 6nding the deuteron

in a bare elementary-particle state. This formula is model-independent, but has an error of the order of the
range m =1.41F of the n-p force, so it becomes exact only in the limit of small deuteron binding energy,
i.e., R))m '. The experimental value of the efFective range is not of order R and negative, but rather of
order m ' and positive, so Z is small or zero and the deuteron is mostly or wholly composite.

I. INTRODUCTION

'ANY physicists believe that low-energy experi-
- ~ ments can never decide whether a given particle

is composite or elementary. I will try to show here that
low-energy rt psca-ttering data already provide very
strong model-independent evidence that the deuteron
is in fact composite, or more precisely, that the proba-
bility Z of ending the deuteron in a bare elementary-
particle state is very small.

This conclusion is based on a theorem proven in
Secs. II and III, which give formulas' for the triplet ss-P

scattering length and effective range in the limit of
small deuteron binding energy:

a, = L2 (1—Z)/(2 —Z) )R+0 (m ') (1)
r'e=

t
—Z/(1 —Z)]R+0(m i) (2)

where Z is the famous deuteron "field renormalization"
constant, and E. is the usual deuteron radius

(3)
k cot5= 1/a, +r.k'/2, — (6)

(1) and (2) give in this case

a, =R; r,=0(m.—'). (4)

This is in agreement with the conclusions of simple
potential theory, and, as is well known, it also agrees
with the experimental values:

a,=+5.41 F; r, =+1.75 F. (5)

In contrast, if the deuteron had an appreciable proba-
bility Z of being found in an elementary bare-particle
state then a, would be less than E, and more striking,
r, x Olid be large and eegaHee. This is clearly contradicted
by the experimental values (5), so we may conclude
that Z is small (say (0.2), and therefore the deuteron
is at least mostly composite. '

The large values for both a, and r, when Z is not zero
may suggest to the reader that the eGective-range
approximation,

R= (2tsB)
—'t'= 4.31 —F

may itself break down when the deuteron is elementary.
In fact, we will see that this does not happen; it is only
the erst two terms in the expansion of k cotb in powers
of k' that become of order R ' for Z&0 and Jt—1/R, the
third and higher terms being smaller by powers of
(Rm ) '. One well-known consequence of (6) is the
relation between a„r„and E.

with 8 the deuteron binding energy and tt the rtp-
reduced mass. The first terms in (1) and (2) are model-
independent and become very large for small 8, while
the second terms called 0(m ') cannot be calculated
without specific information on the rt-p interaction but
are expected to be of the order of magnitude of the
range ns '=1.41F, and will in any case become
negligible for 8~ 0. In actuality E. is three times larger
than m ', so the separation between terms in (1) and
(2) is reasonably clear cut.

If the deuteron is purely composite then Z=O, ' and

1/R = 1/a, +r,/2R' (7)

which is satisfied by (1) and (2) for all Z. It should be
stressed that (7) itself tells us nothing about the
elementarity of the deuteron, since (7) follows directly
from the requirement that (6) give cot8=+ (is.e.,
e"'= co) when k is extrapolated to the deuteron pole
at k=i/R The tru.e token that the deuteron is com-
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by the U. S. Atomic Energy Commission.
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' After deriving these formulas I became aware that they could

also be obtained in the nonrelativistic limit of the Zachariasen
model, as treated by J. S. Dowker, Nuovo Cimento 25, 224 (1962),
by using his Eq. (9) in his Eq. (13), and then passing to the limit
it4R))1. However, Dowker's derivation does not show that for
small binding energy this result is actually model-independent
and hence applicable to the deuteron, and he does not make this
application. {There seems to be a factor of 4 lost from Dowker's
equation for the efFective range, but his equation for k cotb is
correct. )

'The use of Z=O to distinguish composite from elementary
particles has been discussed by many authors, including J. C.
Howard and 3 Jouvet, Nu.ovo Cimento 18, 466 (1960); M. T.

B

Vaughan, R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258
(1961);R. Acharya, Nuovo Cimento 24, 870 (1962); S. Weinberg,
Proceedings of the 1P6Z International Conference on High Energy
Physics at CERE, edited by J. Prentki (CERN, Geneva, 1962),
p. 683; A. Salam, Nuovo Cimento 25, 224 (1962); J. S. Dowker,
ibid 25, 1135 (1962); S.. Weinberg, Phys. Rev. 130, 776 (1963).

'The point that the experimental values (5) of r, and a, are
consistent with Z=O has been made by H. Ezawa, T. Muta, and
H. Umesawa, Progr. Theoret. Phys. (Kyoto) 29, 877 (1963).
However, these authors do not compute r, and a, for Z&0, and
hence miss the point that an elementary deuteron would entail a
large negative n-p effective range.
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posite is that r, is small and positive rather than large into its final exact form'
and negative.

II. RELATIONS BETWEEN S AND THE
P-'n-d COUPLING CONSTANT

(19)

We4 split the total Hamiltonian K into a free-particle
part SCO and an unspeci6ed interaction V:

3('.=3'-p+ V.

We will restrict ourselves throughout to the pieces of
3C, Xo and V referring to the subspace with the quan-
tum numbers of a deuteron at rest, i.e., J~= 1+, X=2,
T=O, S=O, and P=O. The continuum eigenstates of
Kp with these quantum numbers will be called irr):

(20)

(21)

i(ni Vi 8) i

—g for 0&E(rr) &Ep

8«EO

We expect Ep=m '/2p, so (21) is the same as the state-
ment R')&m ' which is reasonably well satis6ed in
reality. For small 8 the integral (19) nearly diverges,
so it can be approximately evaluated by restricting in)
to low-energy e-p states, replacing i(o. i V id) i by g, and
replacing the n integral with an integral over the energy
E of the two-particle state, with

(9)

(10)

the label o; referring to the types of particles present and
to their momenta and spins. In addition there may or
may not be discrete "bare elementary-particle" states
ie), with

(22)dn =p(E)"dE,

where p is the constant
(11)

p =4s k'dk/(E)'I'dE =4a /(2p, ')'I'
(12) (E—=k'/2la) .
(13)

Hence for small B we have

(23)

%e now suppose that B is very small, or more
precisely, that

i (a i V
i d) i

is essentially equal to a con-
stant g (the p-rs-d coupling constant) for E(u) over an

(8) energy range from zero to some value Ep large compared
with B:

1=& I ~&(~I+ (14)

The completeness relation for the eigenstates of Ko
reads

1—Z—g p

~ (E)tisjE

(E+8)'

It is the presence of discrete terms in this sum that
distinguishes an elementary from a composite particle,
both from the point of view of Levinson's theorem, ' and
in our low-energy approach.

The physical one-deuteron state is a normalized
eigenstate of K:

(X,+V) id)= —aid),

«Id) =1.
(15)

(16)

Using the completeness relation (14) lets us write the
normalization condition (16) as

where

(17)

We use Schrodinger's equation (15) to put Kq. (17)

4 The material of this section is largely contained in Sec. V of
S. VVeinberg, Phys. Rev. 130, 776 (1963),and is repeated here for
the reader's convenience.' A,proof of Levinson's theorem using this completeness relation
was given by J. M. Jauch, Helv. Phys. Acta 30, l43 (1957).

We see that g' takes its maximum value' when the
deuteron is composite and has Z=O, while an ele-
mentary deuteron would have 0&Z&1 and a coupling
constant smaller by a factor (1—Z)'~'.

Since Z determines the residue of the one deuteron
pole, it can be measured by studying the eHect of this
pole where it shows up most clearly, that is, in ps-p

scattering at low energy.

III. CALCULATION OF LOW-ENERGY
n-P SCATTERING

Let us 6rst recall the derivation of the Low equation.
The S matrix between general continuum states is

' A relativistic form of this sum-rule was given in articles by
R. Acharya, J. S. Dowker, and S. Weinberg (1962); see Ref. 2.
Relativistic calculations generally give Z ' as a divergent integral,
but it seems reasonable to hope that this is a failure of perturbation
theory, and not an indication that Z is really zero for all particles.
I am grateful to F. Low and S. Mandelstam for discussions of this
point.

'This upper limit on g is of the same sort as discovered by
M. A. Ruderman and S. Gasiorowicz, Nuovo pimento 8, 861
(1958); see also M. A. Rnderrnan, Phys. Rev. 127, 312 (1962).
The negative effective range for Z&0 can be understood as due
to the decrease of the scattering length from its maximum value R,
by reference to the relation (7).
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given by

where
S//. 8——(P e—) 2—22rb(E (P) E—(o/)) T//. ,

Tp-=- &pl T(E-+2~) l~&

I
gl'

/(E) = +p
E+B

i~(E") I'
(E")'/' dE" (32)

E—E"+is

with t (E) satisfying the one-dimensional integral
equation

the operator T(W) being defined by the Lippmann- and p given again by
Schwinger equation

T(W) = V+ V$W Ko)—'T(W). (27) p= 42rk2dk/(E) 1/2dE = 42r/(2-/22)1/2. (23)

The formal solution of Eq. (27) is

T(W) = V+ VLW —K$ 'V. (28)

The second term in (28) can be evalua, ted by summing
over the "in" continuum eigenstates of K, plus the
exact one-deuteron state Id):

&pl vld)& I
v

T// (W)=V// +

&Pl Vl y, in)&n
I

V
I y, in)*

+ dy
W—E(v)

Setting W=E +ie and recalling that

T/2 =(pl Vln, in),

we obtain the Low equation in its exact form:

T// =V/2 + ()

Equation (25) gives the 5-wave phase shift b(E) in
terms of the solution of (32) as

e"'i~ = 1—222rp(E)'/'t(E) . (33)

The procedure for solving equations like (32) is well

known, but for completeness we review it in an
Appendix. The answer is

/(E) = (E+B) 2rp(B E)—
+iirp(E)'/

2 (B)1/22
~ (34)

so in terms of k—= (2/1E)'/2 and R '=—(2/1B)'/2, we find
that cot5 is "exactly" given by the effective-range
formula:

Using (34) in (33) gives

cot5 =i 1/2r—p(E) '/2t (E)

1 (E+B) mp(B E). —
(35)

~p(E)'"- a' 2(B)'"—

(36)k cot5= —1//2, +r,k2/2
~Pv~~v

+ dV (29) with
E(n) —E(y) +2& 2 (B)1/2- —1

a, =28 1+ (37)
Let us now specialize, and suppose that n and P are

22-p states with relative rnomenta k and k' respectively,
the energies k2/2/ti and k"/2/1 being taken of order B or
less. The second term in (29) then becomes
lgl'/(E( 2)+/B) which is of order 1/(B)'" and hence
much larger than the first term Vp . The deuteron pole
may give a large value to the unitarity integral so it
would not be consistent to neglect the third term'
in (29), but we can assume it to be dominated by terms
for which y is itself a low-energy (E(y) &B) 22 Pstate. -

Therefore for small 8 the Low equation becomes

mpg

2 (B)1/2-
e

It now only remains to use Eq. (25), which gives
2rpg'/2(B)'/'=1 —Z, and we finally have the promised
formulas:

(39)a, = I 2(1 —z)/(2 —z)jz
r.= —

I Z/(1 —Z)gR. (40)

lgl2 T2.2. T2k"* It need not be reiterat. ed that our derivation is only
+ d'k '—,— (30) valid in the limit of small binding energy.

E(k)+ B E(k)—E(k")+ic

with E(k) =k2/2/1. The solution can evidently be found
in the form

T1,'1, ——t(E (k)) (31)

' Using the pole term alone would give a nonunitary 5-matrix
except at zero energy, and would give a scattering length
u, =2R(1—Z), which is wrong by a factor 2 —Z. I would like to
thank F. Low for warning me that ignoring the unitarity integral
gives a scattering length too large by a factor 2 in the usual case
of Z=O.

IV. REMARKS

We have found the deuteron to be composite, but this
hardly comes as a surprise. Is there any particle of
high-energy physics whose elementary or comp'osite
character can be unmasked by the methods of this
article P

The requirements for our analysis to be applicable to
a given particle are:
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(i) The particle must be stable; else Z is undefined.
(However, it may be an adequate approximation to
ignore the decay modes of a very narrow resonance. )

(ii) The particle must couple to a two-particle
channel with threshold not too much above the particle-
1Tlass.

(iii) It is crucial that this two-body cha, nnel have
zero orbital angular momentum /, since for /&0 the
factor (E)'/' in the integrands of (24) and (32) would
be 8'+ "~'~, and the integrals could not be approximated
by their low-energy parts.

For E)0 we can calculate o(E) as

o(E)=Imr '(E+ie)/ir = —Imr (E+ie)/~ I t(E) I';

so (A2) gives
(A7)o(E)=p(E)'".

For E~O, r '(E) is real, so o (E) vanishes except for
possible li'functions where r(E) =0. We will first look
for a solution with no zeros, and will come back to the
general case later. Thus o (E) is given by (A7) for all E,
and

(W+8) ee (E)1/2
r '(W) = +p(W+8)' dE

g2 0 (E+8)'(E W)—
In every case where (i) and (ii) are satisfied we find

that (iii) is not, usually because the negative parity of
most mesons forces the two-particle channel to have
t = 1. (For instance, the nucleon couples to the p-wave
pion-nucleon channel. ) One begins to suspect that
Nature is doing her best to keep us from learning
whether the "elementary" particles deserve that title.

(W+8) ~pL( —W)'"—(8)'")'
g2 . 2 (8)1/2

(AS)

Setting W=E+ie gives 6nally

APPENDIX: SOLUTION OF THE INTEGRAL EQUATION t(E) L-(E+ 8)/ 2

We wish to solve the nonlinear integral equation +xp(8 —E)/2(8)i/2+imp(E)i/2j i. (A9)

" (E')'"I t(E') I'
dE'.

E E'+ie—t(1;)=

" (E)'"I t(E) I'
dI"

8"—E

2

W+8
(A2) 0&C&B,

g It is easy to check directly that (A9) does in fact
+p (A1) satisfy (A1).

There may also be solutions for which r(W) has

F;rst defne a funct~o~ r(W) of a corn lex ener Castillejo-Dalitz-Dyson zeros on the negative real axis.

variable yt/' b&
It is easy to see that there can be at most one zero, at
a value 5'= —C with

so that
«(r.)= r (E+i.) . (A3)

The function r(W) is analytic with negative-definite
imaginary part for ImW) 0, so r '(W) is analytic with
positive de6nite imaginary part for ImW&0; it there-
fore has the representation'

.—(W) =—(W+ 8)2 (WyB)

f'(w+c) g'

because r(W) is negative for W( 8, and dec—reases
monotonically for 8(W~O. I—f r(W) does have such
a zero then (A8) is replaced by

;(W)=; (W,)+ (W—W,).-'(W, ) :I(-W)'"-(8)'"7
(A10)

2 (8)1/2o (E)
dE, (A4)

„(E—Wo)'(E —W)
+ (W—Wo)'

where o(E) is real and positive. , and Wo is an arbitrary
subtraction point. We note from (A2) that

7 '(—8)=0 and r ' (—8)=1/g' (AS)

so taking Wo —— 8 lets us write (A—4) as

(W+8)
r '(W) =

g2

+ (W+8)'
o (E)

dE. (A6)
„(E+8)'(E W)—

' A. Herglotz, Her. Verhandl. Sachs. Ges. Wiss. Leipzig. Math-
Phys. 63, 501 (1911);J. A. Shohat and J. D. Tamarkin, The
Problem of J«/IIoments (American MatheInatica1 Society, New York,
1943), Chap. II.

In this case the effective-range expansion of k cotb in
powers of E will have radius of convergence equal to C,
and will therefore be useless at energies E~B&C. We
reject this class of solutions because the eGective-range
approximation (6) gives good agreement with experi-
ment up to energies larger than B.

cVote added in proof The conclus. ion stated in the pre-
print of this article has been challenged by R. Blanken-
becler, M. L. Goldberger, K. Johnson, and S. B. Trei-
man. The very cogent criticisms of this formidable
team (called BGJT below) force me to state more pre-
cisely what I claim to prove, and. how this applies to
the real deuteron.

Our theorem is that the triplet n-p scattering length
and effective range are given exactly by formulas (39)
and (40), in the limit as the deuteron binding energy 8
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Boi do)= —Bo[do) ~ (N1)

vanishes, if Z is held 6xed at any value 0(Z(1.How-
ever, 8 and Z depend on all the parameters of the
Hamiltonian, so it is necessary to clarify what we mean

by 8 —+ 0 with Z fixed. Suppose there to be one bare
elementary deuteron state idp) with unrenormalized

energy —80'.

Hence, we can eliminate Bp and g, from (N4), obtaining

Tp (W) = Tp t'&(W)+I'p(w)l' *(W*)
——1

X — iF'( B)—(W+B)+F( B)—F(—W)
1—Zi

(N10)

We may write its couPling to the continuum free-Particle It is crucial that I' (W) T p&'&(W) and F(W) are en-
states In& in terms of a form factor U» and an unre- tirely independent" of Bp and go, being determined by
normalized. coupling constant go. U and Vp through the equations

(~
I Vl do) =gp~-. (N2)

Then 8 and Z may be regarded as functions of 80 and

gp, or vice versa. We claim that (39) and (40) become
exact if 80 and go are varied in such a rvay that 8 —+ 0
with 6xed Z, the form factor U and interaction Vp

being held. 6xed, throughout.
This theorem could not be completely proved by

using the Low equation (30), since (as poirited out by
BGJT) its solutions can have an unlimited number of
CDD zeros in the unitarity cut, as well as between
E= Band—E=O, and Eq. (30) tells us nothing about
the dependence on 8 and Z of the location and strength
of these zeros. Instead, we shall prove our theorem by
explicitly isolating all effects of the virtual bare deuteron.
To this end, we define an operator Tt'&(W) as what

T(W) would be if we could ignore
i do) in sums over

intermediate states. That is,

T"'(w) = ~+ I'~Lw —&pl 'T"'(w) (N3)

where A—=1—
i dp)(dpi is the projection operator on the

continuum. It is well known" that the T matrix defined

by Eq. (27) can be expressed in terms of Tt'&(W), as

Tp &'&(w)= vp + dyvp Pw —E(y)j-'T &" (w)

I p(w)= Up+ dcrTp &'&(W)LW —E(o)] iU

F(W) = dnU *$W—E(n)]-'I' (W)

Therefore, these functions are to be regarded. as in-
dependent of B and Z (in the sense discussed above),
so that Eq. (N10) displays explicitly the complete
dependence of Tp (W) on B and Z.

So far, everything has been general and exact. Now
let us specialize the transition n —+ P to be an elastic
triplet ts-p scattering k~ k', so that W=E+ss, with
E=E(k) =E(k'). Let us also take B—+ 0 (with fixed Z),
keeping E of order 8 or less. In this limit, the vertex
function I'j, (E+ss) approaches some constant I'p. In
order to compute the behavior of the denominator in
(N10), we note that (N3) gives the exact relation

T&'&(W) = To&(0)
Tp. (W) =Tp."'(W)+ ig I'I'p(w)I'. *(W*)h(w), (N4) +WT"'(0) t W—H $ 'ep 'T&'&(W) (N11)

with vertex functions defmed by

g.~p(w) =(~IT" (w) Id.) (NS)

so that
1.*(o)r.(w)

F(W) =F(0)+W dtr . (N12)
%-E(~)3E(~)

and with propagator
In the limit of small W, the integrand in (N12) will
diverge at E(n) =0, and may therefore be evaluated by
integrating only over the very low-energy rs-p states, for
which we may replace I" (0) and I' (W) by I'o, and dtr

1/2 , then,

(N6)

(N7)

A(w)=PW+Bp —igpisF(W)j ',

lgol'F(w) =-(d.
l
T"'(W) Id.).

E'~'dE
= —s~, iroisW ~,

(W E)E—
by pE dE. In this limitThe deuteron binding energy 8 and renormalization

constant Z are determined by the requirement" that
A(W) have a pole at W'= Bwith residue Z. Thi—s F(W) F(0)~W&iipis
gives Bp and igpi explicitly, as

Igol
'= —(Z/(I —Z))F'(—B),

B.=B+Ig. l'F(-B)
(N8)

'o See, e.g., G. C. Wick, Rev. Mod. Phys. 27, 339 (1955), or Ref.
12.

» S. Weinberg, Phys. Rev. 130, 776 (1963), Sec. &V.

"This is not quite true if we allow the bare elementary deuteron
to show up in states like d0+x++m, which would have to be in-
cluded in a relativistic theory. However these states do not con-
tribute to T&'){8') for 8 ~ 0, since {N8) and {N22) show that go
vanishes like 8'7'4 in this limit. The reason that the virtual deuteron
state can contribute to low-energy rs-p scattering is that the vanish-
ing of

i go i' is more than compensated by a vanishing denominator;
this happens only for states near zero energy.



0 E LJTE RON I S NOT AN ELK M EN TARY PARTI CLE B 677

the phase of 8' being taken between 0 and 2x. The sec-
ond term in (N10) will now be of order B 'I', while the
first merely approaches a constant, and hence may be
ignored. Putting all this together, we find that the
unknown constant Ii'pl' cancels, and

and. self-energy function as

(El T&'&(E+ip)
I
E)=«(E)y(E),

I'.(E+ ) =v(E)~(E),

r '(E-i )=v*{E)y(E),

(N18)

(N19)

(N20)
z rE+BT,

I
+;E I +B I

1—Z 4 2B'&' where

F(E+ip) ='A(E) im p—E'I'I y(E) I'P(E), (N21)

so finally gpss(E)—= (El Z&'& (E) I dp), (N22)

t
E+B) Igol'&(E)=—(dol&"'(E)I~) (N23)E'" cot—b(E) —+

I
I+B'" (N13)

(1—Z 2B»' j '
Since E"&(E) is Hermitian, «(E) and X(E) are real, and
(N4) now gives the (manifestly unitary) result

this result being valid over a range 0(E&B, in the
limit 8~ 0. The eRective range and scattering length
deduced from (N13) agree with our previous formulas
(39) and (40).

It is of course impossible to say with absolute cer-
tainty that the actual value 8= 2.2 MeV is small enough
to allow this theorem to be applied to the real deuteron.
If 8 were 2.2 eV instead of 2.2 MeV we would have
little doubt; a Z value as small as 0.01 would then give
an eRective range of —43 F, and this could hardly be
mistaken for the one or two Fermis expected for
Z=O! However, there is one objective indication that
even 8=2.2 MeV is small enough: The success of the
effective-range approximation (36) over a range of
energies larger than B.

To see the relevance of the empirical success of the
eRective-range approximation, we may try to go one
step beyond the limiting formula (N13). The most
convenient formalism for this purpose is that of the
Heitler reaction-matrix theory. As long as E is below
all inelastic thresholds (and low enough to ignore the
D-wave admixture) the J =1+ T operator will be given

by

To&(E+ip) =E"&(E)
&'lrpE'"4 (E)&'"(E)!E)(E I

&'"(E) (»4)

where
I E) is the 5-wave state with energy E, normalized

to
pEi/P(E IE) $(E E )

and E&'&(E) is the reaction operator corresponding to
T ~'& (E+p p), defined by

J o&(E)= V+VAPPE IIph 'E&'&(E)
~ (N15)

with P denoting "principal value. "The function p(E) is

—s pE'I' cotb(E)

I ~(E) I'I gpl'
«(E)+ (N24)

E+Bo—
I go I'~(E)-

We would normally expect the operator E&'&(E) to
be constant for energies below a few MeV, so that w' e
can take a, y, and X as constants in this energy range.
LRecall that «(E), y(E), and X(E) are independent of
Bp and gp, and hence of B.g With this assumption, FPV)
is given by

F(IV) =& —i~A""Iel'/(1+i~p«IV'") (N23)

We can then find
I g p I

and Bp from (N8) and (N9), and
using these values in (N24) yields

—(E)'I' cotil(E)

(E+B)(Ep+B)p Z ~
(N26)2B'"(E Ep) &1—Z—i

with

(1—Z (Ep= —B 1+2!
I

—1! . (N27)
Z 4p«B'I'

Formula (N26) would give the scattering amplitude
a CDD zero at Eo. This possibility was already en-
countered in the Appendix, and we may repeat the
arguments made there. If

I Ep
I

were of order B or smaller
then the effective-range expansion would fail for energies
comparable to 8, in contradiction with experiment.
! For example, formula (7) would no longer hold. g On
the other hand, if

I Epl))B then for energies of order B
or less (N26) becomes identical with (N13), and we
regain our. formulas (39) and (40) for a, and r, . Of course,
(N27) tells us that

I Epl))B if and only if

(N28)
y (E)—=L1+in pE'I'«(E)) —'

«(E)= (E I
E&'& (E) I E) .

(N16)

Equation (N14) gives the T"&-matrix, vertex functions,

(N17) and the success of the effective-range approximation
tells us that (N28) is satisfied for B=2.2 MeV.

However, as pointed out by BGJT, there might be
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other kinds of CDD zero which can alter some of these
conclusions. For instance, suppose that the I-p system
had a very low-energy resonance or a very shallow
bound state at energy E~ in the absence of virtual one-
deuteron states. Then E"&(E) would have a pole at
E=E&, and might be approximated over the low-energy
region by

—l~. l l~l /8=8+E+2.8, (N37)

with it=—7rplnI'/28'" I.n order to account for the valid-
ity of the eGective-range approximation we must take

I 80 I &)8, and this is evidently only possible if Z is very
small, which of course is the conclusion we are trying
to draw. Incidentally, if

I Bol)&8 then (N36) gives

~' (E)= l~)Q I/(E-E). (N29) so (N33) becomes

(8+E,+2„8)~~1—Z
(N35)

I go I'I@I'

8+Ei+2gB

(8+Ei+2gB) t'1 —Z=8- (N36)
5 z

I Note that this makes dE&" (E)/dE negative-definite,
as is appropriate if the pole is to be regarded as a bound
state of the inelastic channels. f We then find from
(N17), (N22), and (N23) that

~(E)=—l~l'/(E —Ei) ' ~= (Eilk) (N3o).(E)=--~*/(E-E.); ~=- «.I~), (»1)
l (E)=-l~l'/(E —E.). (N32)

In this case, the CDD zero is at E= Bo, since (—N24)
gives here

~pE'I'cotb(E)= lal '
&&fE—Ei—lzol'IPI'/(E+8. )). (»3)

Furthermore, (N21) gives

FPv) = IPI I w —E,+i~pl~i'tPI'j-', (N34)
so

—(E)iI cot5(E) =8'I2 (E+8—)/2g. (N38)

In this case, the efkctive range can take any negative
value it likes if Z is small, while a sizable Z is ruled out
by the success of the e6ective-range approximation.
Of course, these conclusions all depend upon the as-
sumption that Ej is comparable with 8; if we were to
let 8~0 we should And ourselves back in the case
already treated.

We could be even more general, and include several
poles and a nonresonant background term in (N29).
In this case the CDD zero is not at Bo, because we no
longer have

I 7(E) I'= ~(E)X(E), and matters are much
more complicated. We will leave it to the reader to
decide for himself whether it is possible that the e-p
forces could generate such a mess within a few MeV of
zero energy and in just such a way as to preserve the
effective-range formula. In any event, even though we
can never be absolutely certain how shallow a bound
state must be to allow the use of Eqs. (39) and (40),
we are at least now sure that these formulas become
exact in the limit of zero binding energy.

It would perhaps be worth mentioning that a pre-
print by G. Segre has quoted the present article as
"Evidence that the Deuteron is an Elementary Par-
ticle. " Lest the reader feel that I cannot make up my
mind, let me stress that I have never wavered in my
belief that the deuteron is composite.


