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the third component of isospin /3. Usually one also adds
the hypercharge P to this list of particle attributes.
Because of the Gell-Mann —Nishijima relation, the hyper-
charge may be considered redundant, however. All the
quantum numbers mentioned above are supposedly
conserved in strong interaction processes, but, of course,
not in the presence of electromagnetic and weak inter-
actions. Therefore, if it is legitimate to neglect all but
the strong interactions at least as a first approximation,
then it is consistent to use these quantum numbers to
characterize the hadrons. In doing so we introduce the
additional assumption that the corresponding infini-
tesimal generators of the internal symmetry group can
be included in an Abelian set of operators which is
sufhcient to label the basis vectors in the representation
space of the fundamental group G (maximal set of com-
muting observables). In this way we are supplied with
additional restrictions on the commutation relations.
However, they are only approximate and good to the
extent that electromagnetic and weak interactions do
not alter them in a significant way. Keeping in mind
that the three types of interactions considered here
di6'er both in strength and with respect to the symmetry
properties they exhibit, it is alluring to speculate
whether one in general can separate out the contribu-
tions that each kind of interaction gives to the com-
mutators of the theory. It still remains to be shown that

it is a consistent procedure to neglect certain contribu-
tions in an approximation scheme.

Some final remarks regarding our assumptions for the
group 6 are in order. At first sight the assumptions may
seem to be very general in nature and highly plausible
from the point of view of physics. It should be kept in
mind, though„ that these assumptions are quite restric-
tive and one may have to relax some of them if the
program described above fails to work. The necessity for
the fundamental group 6 to contain 5 as a subgroup
may well be questioned. It may also be worthwhile to
consider discrete internal symmetry groups rather than
continuous Lie groups. After all, physically realizable
transformations belonging to the internal symmetry
group are discrete. It seems to be primarily for historical
reasons that continuous internal symmetry groups have
been preferred so far. Finally, we emphasize once more
that much work remains to be done on the problem
of identification of the generators with physical
observables.
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A method for calculating the elastic-scattering amplitude in the 5-matrix theory of strong interactions is
proposed which does not require a partial-wave expansion of the amplitude. Crossing symmetry is satis6ed
by the amplitude, but unitarity is imposed only approximately. Equations are derived for the case of scat-
tering of two spinless particles of unequal mass. The special case where the masses are equal is considered in
detail for the input assumption that the scattering is predominantly 5 wave. Crossing symmetry introduces
higher partial-wave contributions to the amplitude. The amplitude calculated in this way is in good agree-
ment with the input assumption. The amount of violation of unitarity is least near threshold, but is only
on the order of a percent at s=8m'. In spite of this, there are serious problems with low-energy resonances
and bound states. It is concluded that both unitarity and crossing symmetry are important in the production
of resonances and bound states and that the modification of either may lead to difficulties. The total cross
section derived from the approximate amplitude is compared with that obtained using the partial-wave ex-
pansion and keeping only the Swave. The results are in good agreement with each other.

I. INTRODUCTION
" 'N the S-matrix theory of strong interactions, if the
~ ~ Mandelstam representation is taken to embody the
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assumption of analyticity for processes which go from a
two-particle initial state to a two-particle final state,
then the problem reduces to the determination of the
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spectral functions in the representation from the uni-
tarity condition.

This was the original program of calculation suggested
by Mandelstam' for the x-x problem. It was found that
the program couM be simpli6ed by using the Mandel-
stam representation to derive equations for the partial
wave amplitudes. ' If only the lowest partial waves are
considered, these equations should give adequate answers
in the low-energy region, and become appreciably in-
accurate only after. inelastic eBects become important.
Inelastic processes present sufficient difficulties and are
best avoided if possible, so this limitation of the equa-
tions is not serious.

The implications of unitarity for. the partial-wave
amplitudes are not very simple. The discontinuity across
the right-hand cut is simple enough but the left-hand
singularities, which must be there because of crossing
symmetry, are a source of great difFiculty. These singu-

larities introduce coupling between the partial wave
amplitudes. The determination of the discontinuity on
the left-hand cut which specifies this coupling is the
basic problem faced in solving the low-energy pion
scattering equations.

Several methods have been suggested for determining
the discontinuity'4; each has its weak points. " It is

suf6cient to note that they all have a common feature;
they sacri6ce crossing symmetry in order to maintain
unitarity in the physical region of the amplitude.

Two recent investigations of exactly soluble models

indicate that the violation of crossing symmetry can
have important consequences for the low-energy

reglo11
It is the purpose of this paper to investigate the

possibility of an approximation method for the low-

energy region which maintains crossing symmetry. In
order to do this we must avoid the partial-wave expan-
sion and treat the complete amplitude. The starting
point for the method will be the 6xed momentum
transfer dispersion relation, and an approximation will

be made in the unitarity condition which turns the dis-

persion relation into a soluble integral equation.
In the next section the general formulas will be

derived for a neutral scalar model. The solutions in the
lowest approximation will then be discussed for the case
of equal masses in Sec. 3.

2. THE APPROXIMATE EQUATIONS

In this section we will consider the scattering of a
spinless particle of mass m from a spinless particle of

' S. MandelstamPhys. , Rev. 112, 1344 (1958);and 115, 17'41,
1752 (1959).

3 G. Chew and S. Mandelstam, Phys. Rev. 119,46'7 (1960).' J. W. Moffat, Phys. Rev. 121,926 (1961).A. V. Efremov, V. A.
Meshcheryakov, D. V. Shirkov, and H.-V. Tzu, Nucl. Phys. 22,
202 (1961).' C. Lovelace, Nuovo Cimento 21, 303 (1961); 22, 102 (1961).

' D. W. Schlitt, Nuovo Cimento 31, 858 (1964).
7 B. Diu and H. R. Rubinstein, Phys. Letters 8, 203 (1964).

mass M. The fixed momentum transfer dispersion rela-

tion for the elastic scattering amplitude is'

g2 g2

T(s, t) = —+
s—M' s+f M' —2m'—

oo

+— ds' IrnT(s', f)
(M+m)

X +- ~ (1)
s' —s s'+s+t 2M' ——2m'

Unitarity requires that

IrnT(s, f) =
—{Ps—(M+m)') Ls—(M—m)') ) '"

X dQ T*(s,f')T(s,f")+inelastic terms. (2)

The integral is over the angles 0, anti q where

Ls—(M+m)') t s—(M—m)')
(1—cos8), (3a)

Ps —(M+m)') t s—(M—m)')
—(1—cos8), (3b)

Ls—(M+m)') Ls—(M—m)')
]/f (1—cos8'), (3c)

2$

cos8'= cos8 cos8+sin8 sine' cosy.

This equation for ImT is not very useful in its present

form; what is needed is an approximation which makes

the unitarity condition tractable and is accurate in the
low-energy region. Equation (2) can be rewritten

—{Ls—(M+m)')Is —(M—m)')}'"
Irn T(s,t) =-

16ms

where
XK(s,t) i T(s,t) i

', (4)

1 T*(s,t') T(s,f")
K(s,f) =— dQ +inelastic terms. (5)

4~. T*(s,f)T(s, t)

Next, it will be shown that K(s,f) can be approxi-
mated in a simple way for the low-energy region, and
that, given K(s,t), Eq. (1) can be solved for T(s,f).

In the low-energy region we assume that the inelastic

The incident particles have masses M and m and four-momenta

pI and p~ and the scattered particles p~, M and p4, m. The variables
are the usual s= (ps+ps)', t = (pi —ps)', and I= (p~ p4)', which-
are related by s+t+N=2iV2+2m'. The pole terms are included
so that this model corresponds to the neutral scalar model for
pion-nucleon scattering; A =c= 1.
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contribution to E can be neglected and that only the the function
lowest partial waves contribute to l. The partial-wave
expansion is

Lx'(x' —1)j'" (x'—x)
T(s,t) = —16ir P (2l+ 1)ai(s) Pi(cos0) .

1=0

g2 g2

T(s, t) = + +X(t)
s—M' s+t —M' —2m'

D(s, t) . (8)

It follows that

(2s+ t 2M' —2m')—
D(s, t) =A(t)+-

T6z2

Let Xi(s) =ai(s)/ao(s) for /)~1. If we assume that the
X~ are small, substitution of the partial-wave expansion
into the definition of E gives

K(s, t) = 1—3(Xi*+Xi)Ei(cos0)
+31Xi1'Pi(cos0)1 1+3Pi(cos0)j
+9(X,*'+X,-') LPi(cos0) ]'

—S(X~*+X~)P2(cos0)+.. . (7)

This indicates that if the coupling between the partial
waves due to crossing symmetry does not require that
the higher partial waves be too strong then E may be
approximated quite simply in the low-energy region by 1.

To solve the integral equation, obtained by the sub-
stitution of Eq. (4) in Eq. (1), it is convenient to proceed
by defining a function D(s, t) related to T by

Some properties of this function are given in the
appendix. In terms of this function and with the above
assumptions Eq. (9) can be written

1 t' s )
D(s, t) =A(t)+ (s—4m')qb1

64m2x' E4»'i

(4»' s t- — 4m' —t)—(s+t)41 — +(t+4»')4 —

1
. (»)

4» i
The coupling constant is deined as the value of T at
the symmetry point

X = T(4m'/3 4m'/3) = 1/A(4»'/3)

The functional form of A(t) is dete. rmined from crossing
symmetry. Symmetry under the interchange of s and n
has already been imposed but, in the equal mass case,
symmetry under the interchange of $ and t is also ex-
pected. With this additional condition we arrive at
the result

1
D(s, t) =-— y(-', )+ f (s—4»')y(s/4»')

8~2 64m 2~2

+ (t—4m') y(t/4»')+ (u —4m')P(u/4»') ) . (13)

(1s'—(M+m)'11 s' —(M —m)'$
ds ——

s'(2s' —2M' —2»'+ t)

The first question to investigate is whether the ap-
proximation is consistent. In particular, by how much
is unitarity violated, and by how much does K(s, t)
calculated from the new amplitude dier from 1.

The unitarity of the approximation can be checked
by use of the optical theorem. The theorem is obtained
by taking t=0 in Eq. (2). For s less than the lowest

(9) inelastic threshold we have the exact result that

g2 g2

&& K(s', t) + +a(t)
s' —M' s'+ t —M' —2m'

X
s' —s s'+s+t 2M' 2m'— —

1 )s—4»'q'"

s )
d cos01T(s,t)1'. (14)

s—4m' ''
1T(s,0) 1'.

167r s

is a solution of the integral equation. Since the residues ImT(s, 0)=-
of the poles are g', A(t) is given by the condition that

D(M-', t) = 1. (]0) On the other hand, the approximate amplitude, Eq.
(13), satisfies

Once an approximate K(s, t) is given, T(s,t) is specilied
by Eqs. (8), (9), and (10). In the following sections
the consequences of making the approximation that Iml'(s, 0)=-
IV(s, t) = 1 will be investigated.

3. THE EQUAL-MASS CASE

To illustrate some of the properties of the approxi-
mate solution, we consider the case where m=M, and
there is no single-particle pole, so g'=0. Without loss
of generality X(t) can be set equal to one in Eqs. (8),
and (9).

In the case when E=1 it is convenient to introduce

The right-hand side of Eq. (14) can be numerically
integrated when T is the approximate amplitude and the
result can be compared with the right-hand side of
Eq. (15). The result of such a comparison is shown in
Table I for various values of X and s; the values of X are
chosen to maximize the diA'erence.

Some information about the relative importance of
the various partial waves can be obtained in the follow-
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TmLE I. Tests of the consistency of the approximation %=1.
The third column gives the fractional difference between
trJ'dcose! T(s,t) [' and !T(s,0)!'. The fourth column gives the
coeKcient of E~(cose) in the expansion

Z (s,t) = 1—5 (Xs*+Xs)Ps (cose).

s/4m'

1.2

1.5

2.0

4.0

1.76
1.00
0.97

1.76
1.00
0.97

l.76
1.00
0.97
1.76
1.00
0.97

Fractional
diGer ence

0.002
0.003
0.002

0,006
0.008
0.007

0.014
0.021
0.019

0.046
0.068
0.069

First correction
to E(s,t)
—0.002—0.003—0.002
—0.006—0.009—0.009
—0.0l4—0.020—0.019
—0.043—0.052—0.050

- (2t+1)!
T(4m', t) = 32srm Q net-'

(t')'
(19)

ing way. Near threshold we can make an effective-range
expansion of the partial-wave amplitude. If the phase
shift for the 1th partial wave is defined by

/ s 1/2

ut(s) =
i

sinb((s) e""& (16)
ks —4m'

then
(s—4m')'+& cotli ni '+——ri—(s 4m')—+ (17)

If only the 6rst term in this effective-range expansion
is kept, then the amplitude is

T(s,t) = —16s'"

(2l+ 1)(s—4m')' gP[(1+2t/(s —4m'))
XZ (18)

t,=p L1—t(s—4m') t+4,j
Very near threshold this series converges for —4m'&t
&4m'; if) in addition) t&&s—4m' then the 3th I.egendre
polynomial can be approximated by

1X3X5X . .X(2i—1)
L1+2t/(s —4m') J.

)f

After making this approximation and taking s=4m')
we obtain

xX2 A

92X52X 7m(4m2)4C2 / 20C
(21)

Notice that there is a critical value of X for which all
of the O, i become ininite. This value of X is

)t,=4 2/L1+-,'y(-', )] (=13.81).

The magnitude of the ratio of n2 to np is small if ) is
kept away from X,. Since there are other factors which

place limits on the values of t which may be used,
further discussion of this point is left until later.

It is also possible to check the consistency of the
approximation by calculating the 6rst correction to
E(s,t) in Eq. (7) by doing a partial-wave analysis of the
amplitude. The results of such a calculation are also
shown in Table I.

If it is assumed that the amplitude given by Eq. (13)
is reasonably consistent with the approximation made
in deriving it, then it is interesting to see how the
amplitude changes as the coup1ing constant is varied.
Are there values of 'A for which there are bound states?
The answer to this question is a quali6ed "yes."

The bound states will manifest themselves as zeros
of D(s, t) for 0(s&4m'. lt is obvious from the form of

D(s, t) in Eq. (13) that, for a given value of t, g can be
chosen to make D zero at any selected value of s in that
interval. If ) is Gxed at a va, lue which gives a zero of D
and then t is varied, the location of the zero changes.
This behavior is not consistent with the interpretation
of the zero as a bound state since the location of the
zero is the square of the mass of the bound state and
should be independent of t.

A more detailed investigation shows that for small

binding energy the change in position is not very great.
Figure 1 illustrates this by means of a contour chart
of 16sr2LD(s, t) —1/)t+@(t3)/Ssr'); an acceptable bound
state would appear as a vertical straight line in the figure.

It is possible for D to have zeros for other values of s.

From comparison of the two series, it is seen that the
erst three nonzero ni are

no= —7rX/SmC nm=sr)'/$8X15'm(4m')'C'j

A similar power series expansion of the approximate
amplitude can be made; comparison of the two expan-
sions will determine G.i.

By using the expansion (A5) for p(x), we obtain the
expansion of the approximate solution,

4~2& . (—1)")"
T(4m', t) =

n-P 4ncn

16~L(2p—1)!)st»
XQ, (20)

n t(4p —1)!=(4p+ 1)(4m2) 2"

where C=4sr' —) (11-',p(t3)).

Fze. 1. Contour
chart of the function—MH(D(s, t) —) '
+9 (s)/g '0)
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TAnrz IL Location of zeros of D(s,t) as a function
of X; —4m'~&t ~&0.

Value of X/X.

X/X, &0.89

0.89 &X/X, &1.20

Location of zeros

One in complex plane with Res =$ (4m' —I)
and one zero in ReD with s&4m'.

One zero in the ReD with s&4m' and one on
real axis with $(f 4m—') &s&4m' at t =0
which moves into the complex plane as t
is decreased.

X/X, )1.20 No zeros.

With each zero below s=4m' there is a zero of the real
part of D above 4m'. This corresponds to a resonance
and suffers from the same disease as the bound state.

Associated with the movement of the bound state
zeros is the possibility of zeros at complex values of s.
These occur on the line Res= ~s(4m' —I).As I is decreased
the zero moves down the real axis to the symmetry

O.P-

OA)5

0.04

cP

+ 0.03

0.02

0.0l-

I I I I I I

4nF 6rrf 9' lofII l2+ l4III Sm'

S

Fio. 2. Comparison of L2 (1&r')'1 'J'dQ
~
T(s,i) t

s for (1) a calcu-
lation omitting crossing symmetry, (2) a solution of the partial
wave equations keeping only the 5 wave, and (3) the approxima-
tion discussed here with X=1.76K,.

0.0350-

0.0340-
I I I I I I I I I I

-l.o -0.8 -0.6 -0.4 -02 0.0 0.2 0.4 0.6 0. 8 . 1.0

COS8

FIG. 3. Angular distribution for X=1.76K„at g=6m'. The
dashed line is the solution of the partial-wave equations keeping
only the S wave.

An examination of the solutions for values of X chosen
to emphasize the violation of unitarity shows that the
violation is only on the order of a percent even at the
high energy of s=sm'. As seen in Table I, this is true
whether the deviation from unitarity is measured by the
violation of the optical theorem or by the correction
term to E.

The behavior of the solutions v hich contain the
pseudobound states and resonances presents a more
serious problem. It is not altogether clear what mecha-
nism prevents the mass of the bound state from depend-
ing on t in the exact amplitude. It would seem that some
subtle interplay between unitarity and crossing sym-
metry is needed, and. the results presented here raise
questions not only about the approximation used in this
case but also about those approximations where crossing
symmetry is sacrificed.

The difficulty seems particularly serious when the
coupling constant is essentially a subtraction parameter.
In this case a contour chart like Fig. 1 is a convenient
way to picture the situation and it is dificult to imagine

0.60-

point and then out into the complex plane. Table II
summarizes the locations of the zeros of D and the
values of X for which they occur.

4. Drsevssrom oz Rzsvr. xs

YVe conclude this investigation of the approximation
with some comments on the possible significance of the
properties of the solution mentioned in the preceding
section, and with a comparison with other approxima-
tions which can be used for the problem.

First, the approximation does not lead to any violent
departures from unitarity. In terms of the scattering
lengths rxg, the E=2 contribution is negligible (one the
order of a percent or less) provided X is not too close to
X,. A sufhcient requirement in this regard is that there
be no zeros in D.

Q 0.40-
~4
—~ oso-

CV

0.20-

O.lo-

0,00
R

I I I I I

4m' 6' Sm' lOm' l2m' l4nf l6nF

S

Fzo. 4. Comparison of t'2 (1M)'j J'"dQ
( T (s,f) )' for (1) a calcu-

lation omitting crossing symmetry, and (2) the approximation
discussed here with X=0.97),. The solution of the partial-wave
equations is indistinguishable from (2).
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QR600"
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600-
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I-

200-

O.I500
-ID -0$ -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 l.O

Fxo. 5. Angular distribution for X=0.97)„at s=6m'. The
dashed line is the solution of the partial-wave equations keeping
only the S wave.

how a bound state could occur except for a single com-
bination of subtraction constant and bound-state mass.

There are several other approximations with which
the results of the previous section can be compared. One
possibility is to neglect crossing symmetry entirely and
assume that the only interaction between the particles
takes place in an S wave. This is a special case of the
model proposed by Zachariasen. ' A second is that of
Efremov, Tzu, and Shirkov, ' in which a partial-wave
expansion is made and only the S-wave equation is
solved. Crossing symmetry is only approximately
satisfied.

The comparisons are shown graphically in Figs. 2

through 5, for two values of the coupling constant. Both
the total. cross section and the angular distributions are
compared. The various approximations are normalized
to give the same cross section at threshold.

These comparisons show that all three methods give
similar results. The very good agreement between the
method proposed here and the solution of the partial-
wave equations give some evidence that the total cross
section is insensitive to the details of the left-hand
singularities as long as they are roughly what is required
by crossing symmetry.

Finally, we mention one way in which the violation
of unitarity enters when E(s,i) is approximated by
unity. Assume that the amplitude satisfies the Mandel-
stam representation, and calculate the double spectral.
functions. Unitarity requires that the double spectral
functions be zero outside some region in the s-t plane.
The double spectral functions of the approximate ampli-
tude are not zero where unitarity requires it. A fairly
complicated E'(s, i) will be required to make the double
spectral function behave as it should.

In spite of the bad features of the amplitude in this
crude approximation, a more extensive investigation
does seem worthwhile. However, any substantial im-
provement in E(s,t) will require considerable use of
computers in order to obtain the scattering amplitude.

APPENDIX

In Sec. 3 the function g(x) was introduced. Some of
its properties are g&ven below.

4(x) =
t
x'(x' —1)j'"(x'—x)

Qs(L(x —1)/x3'") (A1)
Lx(x—1)]'"

This function is analytic in the complex x plane with a
cut from x= 1 to+ ~, and has Imp(x)) 0 when Imx) 0.
These properties make P(x) a Herglotz function.

In calculating the numerical value of the function,
the following are useful:

—2 ter

@(x)= tanh '(P(x —1)/x]' ')——
Lx(x—1)j'" 2

'

x)1 (A2a)

2 —tan —'(L(1—x)/xg'")
Lx(1—x)j'" 2

0~&x&1 (A2b)

tanh '(t (—x)/1 —x$'");
L-x(1-x)]'"

x(0 (A2c)

For large x,

4(x)+4(1—*)=
Lx(x—1)j'"

1
@(x)=—-in~4x(. (A4)
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For small x,
2ss+1[~ i jsxn

~(*)=Z
(2m+1)!

(A5)


