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To account for the observed multiplet structure and the mass relations among the known elementary
particles, a coupling of internal and space-time properties is considered. Earlier attempts in this direction
have failed. The problem is re-examined from a more general point of view, and it is found that under these
more relaxed conditions a coupling is possible and nontrivial mass relations may be obtained. The coupling
can be described as a "minimal internal coupling,

"which essentially consists of a replacement of the original
generators of the inhomogeneous Lorentz group. The characteristic features of the mass formula are ex-
hibited in a simple model. A number of questions related to the interpretation of such quantities as mass and
energy are raised,

i. INTRODUCTION

'

&INURING
this century the exploitation of symmetry

properties has come to play an ever-increasing
role in many branches of physics. It has been known for
a long time that the invariance under a symmetry
operation for a particular problem often implies rather
severe restrictions on the solutions. However, it was not
until the advent of quantum mechanics that the power
of group-theoretical methods was fully realized, and the
elegant analysis by Wigner and others of the atomic
spectra, based on the three-dimensional rotation group,
cleared the way for more extensive use of group theory
in physics.

In elementary particle physics one lacks a satisfactory
dynamical theory. Even in those cases where the basic
equations are believed to be known, we still do not know
how to solve these equations or how to obtain reliable
approximations. For that reason it has become even
more important in the held of elementary particle
physics to exploit the symmetry properties which have
been found empirically. The initial step along these lines
was taken by Wigner in his detailed study of the irre-
ducible representations of the inhomogeneous Lorentz
group (IHLG). ' The experiments known so far are all
in agreement with relativistic invariance for the dynami-
cal laws which govern physical processes. In this way,
one is led to study the IHLG. In his paper, Wigner goes
further, however, and identihes the in6nitesimal genera-
tors of the group with physical quantities, viz. , momenta
and angular momenta. The irreducible representations
are characterized by two numbers (nt, s) which with the
conventional identihcation of the generators correspond
to the mass and the spin of the elementary system con-
stituting the representation. Therefore, the elementary
particles are in a natural way connected to elementary
representations of the IHLG.

Already in 1936, Cassen and Condon' introduced the
concept of isospin, and since then the isospin formalism
has been used extensively to express charge independ-
ence for the strong nuclear forces. With the number of

different elementary particles rapidly growing and with
access to more experimental information, new selection
rules were found, refiecting the possible existence of
additional symmetries. Great efforts have been made to
6nd a large symmetry group incorporating al} these
fragments of internal symmetries which have been
found empirically. These attempts all have in common
that the internal symmetry properties are taken into
account by introducing internal degress of freedom
which are independent of space and time. Group theo-
retically, this means that the internal s~~metry group
and the IHLG are completely disentangled and appear
as a direct product. For the isospin group this is not at all
unreasonable because all the members of an isomultiplet
have the same spin and the same or very nearly the same
mass so that they may be referred to the same irreducible
representation of the IHLG. Isospin rotations will then
mix states corresponding to the same mass and spin
only. However, those symmetry groups which have been
considered more recently violate very strongly this
equality rule for the masses of the different particles
within a multiplet. A transformation belonging to the
internal symmetry group will then transform a state
belonging to a given irreducible representation of the
IHLG into a state belonging to a different irreducible
representation. For that reason the internal symmetry
group cannot be completely disentangled from the
IHLG, that is, the internal symmetry group and the
IHLG cannot be simply put together in a direct product.

Much attention has recently been paid to the octet
model' which is based on the group SU3. To explain the
large mass splittings within the various SU3 multiplets
it is customary to assume a hierarchy of interactions
with different symmetry properties. Only the strong
interactions are SU3-invariant. The semistrong inter-
actions are assumed to break the SU3 symmetry in such
a way that the existing mass differences are obtained.
By perturbation methods, mass formulas are derived
which in many cases are quite successful. However, the
underlying assumptions seem doubtful, and there is no

' E. P. Wigner, Ann. Math. 40, 149 (1939).' ll. Cassen and E U. Condon, .Phys. Rev SO, 846 (193.6).

3 M. Gell-Mann, California Institute of Technology Synchrotron
Report CTSI-20, 1961 {unpublished); Phys. Rev. 125, 1061'
(1962}.Y. Ne'eman, Nucl. Phys. 26, 222 (1961).
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way of checking the reliability of such computations. At
first sight, it may seem that the octet model does not
relate the internal symmetry group to space and time,
but the eRect of the symmetry-breaking interactions
may well be the same as introducing a coupling between
internal degrees of freedom and space-time, so that the
two approaches are in some sense equivalent. In this
latter approach, one obtains exact mass formulas in
contrast to the approximate ones obtained in symmetry-
breaking models. To introduce the coupling between the
internal symmetry group and the IHLG from the very
beginning also has the distinct advantage of putting the
theory on a sound mathematical basis.

Kith these last remarks in mind, we shall approach
the problem of finding the fundamental symmetry group
G by imposing some rather general conditions on the
group. In particular, we shall require that all physical
transformations, internal as well as external, shall be
comprised in the group G. Further requirements are
essentially based on physical arguments although some
simplifying assumptions are also introduced to make
more definite conclusions possible. It will be seen that
within this general frame one can construct a nontrivial
product of the IHLG and the internal symmetry group
with a coupling between the two groups, which is con-
sistent with nonvanishing mass splittings within the
multiplets. Similar attempts4 under somewhat more re-
strictive assumptions have failed in this respect. They
all' result in a complete decoupling of internal and
external degrees of freedom, which is incompatible with
different masses for the members in one and the same
multiplet.

In the following section, we state the assumptions
which are made regarding the fundamental symmetry
group G.

Section 3 is devoted to the mathematical aspects of
the problem. The results are given in a number of
theorems fo1lowed by some remarks spelling out the
immediate consequences of the theorems. Possible ex-
tensions of the theorems are brieQy discussed. To make
the results independent of any specific model, the general
notion of Lie groups is used.

Section 4 is devoted to a discussion of the physical
implications which follow from the mathematical analy-
sis. Two sets of Lorentz generators are introduced and
interpreted. The question of selecting particle labels is
discussed.

In Sec. 5, we give the mass and spin formulas which
arise naturally in this group-theoretical approach. Some
characteristic features are discussed in an explicit model.

In conclusion, some possible changes in the underlying

4 W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964); M. E.
Mayer, H. J. Schnitzer, E. C. G. Sudarshan, R. Acharya, and
M. Y. Han, Phys. Rev. 136, 8888 I'1964); O. W. Greenberg,
Phys. Rev. 135, B1447 (1964);A. Beskow and U. Ottoson, Nuovo
Cimento 34, 248 (1964).

'See, however, H. Bacry and J. Nuyts, Phys. Letters 12, 156
(&964).

principles are mentioned. Some of the possible exten-
sions Ineet with severe mathematical difhculties, and
little can be said about them at present. In any case,
until it has been shown that the approach presented here
is inconsistent with experimental findings, more am-
bitious programs are not called for.

2. PHYSICAL RESTRICTIONS ON THE GROUP G

Contrary to the conventional approach, we shall
require at the very outset that the fundamental sym-
metry group 6 shall not only explain the observed
multiplet structure among the elementary particles and
resonances but also give rise to nontrivial mass relations
between the members of each multiplet. Therefore, our
first requirement is:

(i) The group G shall explain the multiplet structure
among the elementary particles and give rise to non-
trivial mass formulas.

Since we Cake for granted that any physical theory
must satisfy relativistic invariance, the group t" must
include all the transformations of the IHLG. Thus our
second requirement is:

(ii) The group G shall contain the IHLG as a
subgroup.

Furthermore, in this paper we also make the following
simphfying assumption':

(iii) Every transformation of the group G can be
written as a product of two elements, of which the first
belongs to the IHLG and the second belongs to another
subgroup 5 which wi11 be taken to be the internal
symmetry group.

As a matter of convenience, we shall assume that the
internal symmetry group S is compact. It will be re-
called that for every compact Lie group S the corre-
sponding Lie algebra7 S decomposes into a direct sum
of a finite number of noncommutative simple algebras
S&, S2, , S„and its center $0. Therefore, the case of a
semisimple internal symmetry group is contained within
this more general frame. By retaining the commutative
center of the group we 1eave room for various gauge
groups, however. %e shall return to this question in
Sec. 4. Thus, our next assumption is:

(iv) The internal symmetry group 5 shall be compact.

Besides these rather general assumptions, there pre
others which are more closely related to the physical
identification of the generators of the group 6 with
physical quantities. At this point, we shall refrain from

6 An attempt to relax this condition on the group G has recently
been made by H. Bacry and J. Nuyts (Ref. 5).

7 Yo simplify our notations we use the same symbol for a Lie
group and its corresponding Lie a,lgebra, .
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prlo
P A)lf Z&l CAB ~O (2.1)

[p„,p„j=0,
I M" p~j=sh ip.—g"p ) (2 1')

[MjjV)MKgj Z(gVKM(/3L+gp)IVX ggfKMI&)l gAMJlg) '

The generators of the internal symmetry group 5 are
written 5„5, - -. When the group 5 is assumed semi-
simple, we sometimes express the generators also in the
Cartan basis, "which is commonly written H;, B;,

For the present discussion we disregard the possible existence
of two different lepton numbers, the muonic lepton number L„and
the electronic lepton number L„suggested after the discovery that
there are two kinds of neutrinos.

9 We use the Einstein convention with summation over repeated
indices unless otherwise stated."We do not distinguish between the generators of the group and
the operators representing them."G. Racah, Cern Report 61-8 (unpublished).

making any additional assumptions which would dis-
tinguish the eEects of the three types of interactions
that are normally considered, - namely the strong, the
electromagnetic, and the weak interactions. Therefore,
in a sense, we are really looking for the fundamental
symmetry group 6 in the theory of elementary particles.

If all types of interactions are taken into account,
there are only three internal constants of motion —the
electric charge Q, the baryon number X, and the lepton
number L.' From our discussion so far, it is clear that
we must identify the corresponding operators with
generators of the internal symmetry group S. We post-
pone till Sec.4 a discussion of whether or not they should
be referred to the center of the group. To avoid diffi-
culties in interpretation, we must require that these
operators commute with all the generators of the IHI 6,
because otherwise a measurement of the charge carried
by a particle would yield diRerent results depending on
which reference system the observer is in, etc. Therefore,
as our final assumption, we introduce:

(v) The operators corresponding to charge, baryon
number, and lepton number shall be included among the
generators of the group 5 and they shall commute with
a11 the generators of the IHI.G.

The existence of at least one quantum number which
is strictly conserved in the presence of all types of inter-
action is very essential for the mathematical treatment
of the problem posed here. By assuming the existence of
three such quantum numbers, we conform with physical
reality rather than keeping the weakest possible condi-
tions for the mathematical treatment.

Before entering the mathematical section, we intro-
duce the notation which will be used throughout the
paper (unless otherwise specified). The elements of the
I.ie algebra of the IHI G are denoted L~, L~, . , or
when it is necessary to be more specific, p„and M„„
(p, v = 0, 1, 2, 3).They satisfy the commutation relations'

E, Ep, . The commutation relations are

[S„S.]=C,.'5,
or, alternatively, in the case- that 5 is semisimple,

[H,,Hy) =0,
[E,E ]=u'H;,

[H;,8 j=n,E,
[& ~sj=&-P-+~ (« 0)—

(2.2)

(2.2')

k 0

Cg t'=0 if

Cg.~——0,
LgFH: Cg, =0,
LgII;H: Cg; =0.

Pm/arm

(3 1)

(3.2)

(3.3)

(3 4)

(3.5)

Lemma: The roots o. with 0. 40 span the root space
if H has a component /0 in every simple part. "
L~E L&: C~; n'= 0.By the preceding lemma then

(3.6)

L~E II; and the lemma: C~;&=0, (3.7)

(~' &*)CA-'=—~a= -CA'~, .(3 g)

(3.V)

LgE,H, :

LgE,E,:

(3.10)

—6 Cg;—'=EjC&, ) (3.»)
(e;—8;)CA, '= Xg,„CA '. (3.12)

(3.13)

"The complete proof is given in U. Ottoson, Chalmers Uni-
versity Report (unpublished).

3. MATHEMATICAL RESTRICTIONS ON THE GROUP G

In accordance with the results in the preceding para-
graph, we shall now analyze the case when the Lie group
G is a product of a Lie group L and a compact semi-
simple I.ie group 5. We shall further assume that there
are a sufficient number of operators H in 5 that com-
mute with all the generators of L so that there is at
least one component of these operators in every simple
par t of 5. In particular, we shall study the case with the
weakest assumption, i.e., when there is one 8 which
has components in every simple part of 5. We shall
exploit the full content of the Jacobi identities for such
a product to 6nd out under what circumstances a non-
trivial product can be formed. To clarify the discussion,
we will not write down the Jacobi identities but rather
state from which operators we form the identities and
which relations we can derive from them. In the dis-
cussion, we use n, P, y as indices for the E's that do not
commute with II, and e and 6 for those that do.

The Jacobi identity for the operators I.A, E, Ei gives
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CA +p +P=CA +CApP. (3.14) e =0; and they fulfull the relations

CA P, +'=CA +CA, '. (3.15)

CA.+s'+'= CA '+CAs' (3.16)

LALpEo: CAp~Cp~P Cpp~—CA~P=CD, rCArs . (3.17)

The remaining operator triplets LAH, FI „LAH;FI, ,
LAL~E„LAL~II, and LAL~FI; do not introduce any
further conditions. So, if we define

;CA.+p+p=CA +&App;

CA~~ ' CA, ' CA; '
if & =0.

X~,

(iii) The CA„with n =P &0 are matrix elements in
a representation of the generators LA.

CAa JAa y

CAq JAq &

CA a +a,P—0.+Aa —P y

—~~a, b—&+Ac—8 )

CA, ' ——&'E. A, ,

CAi 6i+A—e ~

n„=p (3.20)

(3.21)

(3.22)

(3.23)

From the relations (3.9) and (3.13)—(3.16) we find that

JA—a JAa q JA—a JAe y JAa+p= JAa +JA py

JAcr~e JAa+ JAe &
and JAe+5 JAe+ JA8 ~

By the additivity in JA we can define J&' such that
Jn~= n;Jn' and Jn, ——e;Jn'. According to (3.8) or (3.20),
CA P can be different from zero only if cr =P and P—n
is a root. From (3.17) we get that CA P form a finite
dimensional matrix representation of the generators LA.
%hen L has no Abelian factor group, which means that
all operators LA can be expressed as commutators, then
the representation is traceless, so that CA has to be
zero for all n such that there are no other roots p with
cr =P . We can write (3.17) as

KA&JBe JAeKBa+Es + 5AAsKBe 8— —
=Pn Kn,CAls~, (3.24)

gs ~'KA sKas=Zn JD'CAs (3 23)

These observations are summarized in the following two
theorems":

Theorem 1

Let the Lie group G be a product of the Lie group L
with infinitesimal generators LA and the compact semi-
simple Lie group S with ininitesimal generators FI; and
E, such that one JI with components in every simple
part of S commutes with all LA.

(i) Then 5 is an invariant subgroup of G.
(ii) The only mixed. structure constants that can be

different from zero are those of the form CA,. CA t', if
cr~=P~ and n—P is a root) CA, ', lf e~=O; ol' CA, if

KA, ——CA, '/e' (no summation),

the structure constants that cannot be proved to be zero
are of the form

Theorem 2

Consider a Lie group I., a finite-dimensional repre-
sentation of I, and a compact semisimple Lie group S
with a selected generator FI . Let the generator FI be
such that there are roots n, P, . of 8 with equal non-
zero m components, and the differences n —p, are
different roots. Suppose that the number of roots is
greater than or equal to the dimension of the representa-
tion of L.Then there is a product 6 of L and S such that
the CA t"s are equal to the matrix elements of the repre-
sentation of LA, and II commutes with all L4.

Remarks

(i) The extension to a noncompact semisimple I.ie
group S is straightforward. The prescription for the II
will be lengthier in this case.

(ii) The generalization to the case with more than one
II is trivial. The dimension of the space of the ~ s will

be smaller in this case.
(iii) As every compact Lie group is a direct product"

of the center So of S and a semisimple group, Theorems 1
and 2 are valid for a general compact Lie group, if we
add the requirement that the generators of So shall com-
mute with all IA t'From th. e requirements of the
theorems it is easily shown that CA ", CA,", and CA,"
(u stands for an index of a generator in 5,) must be
zero. Then the remark follows immediately. )

(iv) When we take the IHLG as L, we have to calcu-
late all the finite-dimensional representations of the
IHLG. An interesting fact is that in the one-, two-,
three-, and four-dimensional representations the trans-
lations are represented trivially.

(v) With the IHLG as L, the generators p„and IJ,
can not simultaneously be represented by Hermitian
operators in a representation of t", because then the
commutator fp„,II;j should be anti-Hermitian. Accord-
ing to (3.23), this requires that the finite-dimensional
representation of IHLG be unitary, but there is no
such representation. '4 %e return to this question below
and show that Remark (v) does not exclude physically
interesting cases.

"L. Pontrjagin, Topological Grougs (Princeton University
Press, Princeton, New Jersey, 1939),Theorem 86.

'4This has been shown independently by Dr. E. C. G. Sudar-
shan (private communication).
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Theorem 3

Let the Lie group G be a product of the Lie group L
with in6nitesima1 generators L~ and a compact semi-
simple Lie group 5 with infinitesimal generators II; and
E, such that at least one H with components in every
simple part of 5 commutes with all L~. Then G is a
direct product of 5 and a group L, locally isomorphic
with L.

Proof. Define

L~=L~ Zi &~'—&&+2 K~

where e =0 as before.
Then

LL„H;]=P„H,]—P, K, ,~,Z, =O,

PL.„Z.)=P„P..] I,.Z.—g, K,—,N. ,F..„=O,
P~A&F81 pA&E53 IAiPb

—Q, Kg,Ni, Zi+, Kgi Q; 8'H—;=0,
and

L~x Laj=
I L~ La) = PLx,Laj 2' Ja'P—~ Hij

+Z Ka .P~,P..j=-LL~,Laj —Q'&a' Z. Kz, i@'.

+2 Ka .(&~.P-.+K~K~ sos+.+K~, Q; ~'H;)
= L~~ Lal —2'(Z. K~ .Ka.~')Hi+2 -(K~ '4 ~-

&~ .Ka .+—Ei N i-.K~Aa . i)P-.
=QD &~an(La —Q; &D'H,+2, Ka,I'-,)

=Pa C~aaLa.

%e have shown that the L~'s commute with the
generators of 5 and have the same structure constants
as the L~'s, and that is all we have to show.

Remarks

(i) The necessary and sufficient condition for the
conclusion of Theorem 3 to hold is that

Cpj =Op Cpj =Op Cgj +j+A—ay

Cg~ ——0, Cg~' ——e'Eg~,

CAa =Pi IA &i IAa p +Ap Np&A —a s

where E~ and J~' ful611 the relation

KAaIaa IAd4a+Pp N paKApKaa p—-
ZD KDacAa

Za oi KA aKaa ZD ID CAa— ~

These conditions are not independent but related by the
Jacobi identities. A smaller set of conditions is therefore
sufFicient. We have given the redundant set above, be-
cause a minimal set can be chosen in diBerent ways.
Then the operators L~=L~ P; J~'Hi++ K~—E
commute with the generators of 5, and the 1~'s have
the same structure constants as the L~'s. These re-
quirements on the structure constants are somewhat

more general than in Theorem 3, where all K~ ——0 for
n outside a certain plane.

(ii) Under theconditionsof Theorem 3 with the IHLG
as I., G has an invariant Abelian subgroup, which is
isomorphic with the four-dimensional translation group.

4. PHYSICAL INTERPRETATION OF THE THEOREMS

The theorems of Sec. 3 strongly limit the type of
coupling of the internal group 5 to the IHLG. We recall
that the sufFicient conditions for these theorems to be
valid are that 5 is compact, and that there exists a
generator II of 5 which has a nonvanishing component
in every simple part of 5 and which, together with the
center Sp, colTlnlutes with the IHLG. In the discussion
which foBows, we shaB caB H a c-type generator, and
the operators II;, which do not commute with the IHLG,
are termed ec-type generators. Theorem 1 tells us which
of the mixed structure constants can be different from
zero. The existence of ec-type generators is seen to be
essential for a nontrivial coupling.

The strictly conserved quantum numbers, namely the
electric charge Q, the baryon number N, and the lepton
number L, shall be identified with c-type generators or
with generators in the center Sp. For historical reasons,
one is tempted to place N in So and Q in the semisimple
part. "We need not be speci6c on this point but only
require that at least one of these strictly conserved
quantities be identified with II so that the conditions
for Theorem 1 are fulfilled.

As long as we assumed the group G to be a direct
product of the IHLG and 5, all the operators II; of 5
were of c type and, as a consequence, they corresponded
to constants of the motion. If one conforms with the
convention of treating the baryon number and the
lepton number separately by means of gauge groups,
then available data do not seem to be consistent with
more than two internal constants of the motion. For
that reason, we limited our attention to semisimple Lie
groups of rank two. With a coupling between the IHLG
and the group 5 the situation is different. Clearly an
nc-type H which has a large commutator with po is so

strongly nonconserved that it may not be possible to
use it as a particle label. Therefore, we are now free to
consider semisimple groups of higher rank as long as we

do not require all the operators H; to commute with the
IHLG. Those rsvp-type generators which have small
commutators can still be used as fairly good quantum
numbers, while those which have large commutators
cannot. They could possibly be used to distinguish
diferent decay modes of resonances.

Theorem 3 completely determines the structure of the
group G. G is simply a direct product of 5 and a group L,
which is locally isomorphic to the IHLG. The group I
"Compare the Gell-Mann —Nishijima relation Q =I3+~ I;

I3+I'gS but not $0, If we put particles with di8erent charge into
the same multiplet, Q obviously has to he in the semisimple part
of S.
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is generated by the operators

L~=L~+4'S„
where

ba'= Kg „bg ——0 bg'= —Jg'.
Theorem 3 does not imply that we have arrived at a
trivial result, however, since the IHLG generated by
I.~ is not a factor in the product but rather has com-
ponents in both factors. The coupling between S and
the IHLG can simply be described as the replacement

I-~ ~ I-~= L~+b~'S p

of the generators of the IHLG. Therefore, in analogy
with the electromagnetic coupling, we might say that
we are uniquely led to a "minimal internal coupling"
which consists of the substitution (4.1). The "free
generators" I.~, which commute with S, are the genera-
tors of a free, i.e., noninteracting system, while the
generators I& give rise to the physical operators such as
momentum, energy, and spin in the presence of inter-
action. In accordance with this interpretation, we also
suggest that the generators I.& shouM be represented by
Hermitian operators, while the physical generators
should not. Actually, it is not possible to have a repre-
sentation of G in which both the generators of the IHLG
and S are Hermitian. This follows from Theorem 3.The
expectation value of the physical operators will then
acquire an imaginary part. This is an interesting feature
and in conformity with general principles of quantum
mechanics. It has long been customary to regard the
mass operator of an unstable particle as a complex
quantity. For other observables such as spin, it is only
recently that such a generalization to non-Hermitian
operators has been suggested. "

The assumption of Hermitian generators L ~ immedi-
ately simplifies the problem of finding the relevant
representations of 6, One only has to take the direct
product of a unitary representation of I. and a unitary
representation of S, and these are well known.

The introduction of a free system or particle in addi-
tion to the real physical system is here forced upon us.
For the free system, the particle labels can be chosen in
the conventional manner. One merely selects a maximal
Abelian set of Hermitian operators from I and from S.
From L, one can choose the free momentum p„and the
free spin. From S one may choose the H; and a set of
polynomia/s. '~ For the free noninteracting particle, one
can thus retain the conventional classi6cation scheme
and associate one or more particles with each point in
the weight diagrams of the various representations of S.
The free particle does not decay when it is transformed
by a "free time translation" exp(got), but it can be
transformed into other particles under a physical time

"See, e.g. , S. C. Frautschi, A'egge Poles and 5-,'lfatrix Theory
(W. A. Benjamin, Inc. , New York, 1963).

"G.E. Baird and I. C. Biedenharn, Proceedings of the Coral
Gables Conference, January 1964, p. 58 (unpublished).

translation exp(ipot), since po does not commute with
the internal quantum numbers. Therefore, the term
"free system" represents a property which has relevance
only when one specifies at the same time under which

group it should transform. By retaining the original
IHLG as the group of physical transformations, the
interaction is introduced. This is in complete analogy
with nonrelativistic systems where one studies, on the
one hand, a free Hamiltonian IIO and, on the other hand,
a physical Hamiltonian H. The eigenfunctions of Bo are
no longer eigenfunctions of the physical Hamiltonian H.
H therefore causes transitions among the free states.
As long as H is Hermitian and has an attractive po-
tential, it is possible to 6nd stationary physical states.
Also, in our case, the free particle ceases to be free when
we make the physical Lorentz transformations. How-
ever, the possibility of 6nding stationary states, i.e.,
eigenfunctions of p, , is not necessarily possible here; in
any case, some eigenfunctions will certainly be only
quasistationary, i.e., decaying.

It is really alluring to speculate whether one might
have the whole S matrix given here, so that no further
assumptions about interactions need be given.

m'= p"p (5.1)

(5.2)

and S has e invariants, where &z is the sum of the rank
of the semisimple part and the number of parameters
in the center So. In analogy with earlier terminology,
we call rH' the square of the "free mass" and@'/nz' the
square of the "free spin. "These numbers are real since
the representation is unitary. Since p„=p„+b„&S„we
get for the square of the physical mass

m'= p p"=m' 2g""b„&p„Sp+gi""b„—l'b„~SOS, . (5.3)

This equation is the mass formula in our purely group-
theoretic approach.

Until recently, attention was concentrated on the
problem of obtaining relations between the mass and
the internal quantum members of a particle. Some even
went so far as to postulate that other external quantum
numbers should be the same within a multiplet. %e are
forced to put all external properties on an equal footing

5. MASS AND SPIN FORMULAS

The possibility of obtaining mass formulas has re-
cently been one of the strongest reasons for considering
internal symmetry groups. %hen the group G was
assumed to be a direct product of S and the IHLG, a
symmetry-breaking mechanism had to be introduced
ad hoc. In our approach, this is not desirable and may
not be necessary. In fact, the spectrum of the mass
operator nz'= p„p&, if it exists at all, is given as soon as
one has an irreducible representation of 6.An irreducible
unitary representation of G is characterized by 2+v
invariants, since the group I. has two invariants
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and postulate spin formulas as well. Of course, these
are obtained from the fourth-order invariant

~2 ~pvt v~ v'X' 'v(p b pS )(p, b, pS )
X(Mx. bx—,pSp)(3f);„. b)—, „pS,) . (5.4)

It is interesting that one may also obtain in this way
a relation between masses and spins via the internal
state. Such connections between the mass and spin of a
particle have been suggested before on quite different
grounds. 7Ve have in mind especially the theory of Regge
poles based on analyticity of the scattering amplitudes"
and the theory of Corben based on generalized rela-
tivistic equations. ' The spin operator $V' mill, in
general, not be Hermitian and not even diagonalizable,
so that the particles can not be eigenstates of this
operator. The spin values of particles then emerge as
expectation values of the spin operator rather than as
eigenvalues.

Returning to the mass formula (5.3), we see that a
necessary condition for this to be nontrivial is that the
constants b„& be different from zero. Now, according to
Theorem 1, this means that at least some of the numbers
E„„J„'have to be different from zero. Then the finite-
dimensional representation of the IHI G introduced in
Theorem 2 must not be a trivial representation of the
translations. According to Remark (iv), the dimension
of the representation has to be at least five. Again,
according to Theorem 1, the root space of the semisimple
part of S must then contain more than four roots
n, P, .

, with equal nonzero m components. This im-

mediately rules out a number. of possible choices for S,
among them SU3. In SU3, the root space is two-dimen-
sional and, irrespective of how we choose the c-type
operator H, we cannot 6nd more than two roots with

equal nonzero m components.
Postponing the choice of a realistic group S, we shall

look at a simple model. In order to make this sufficiently
simple and at the same time retain the essential features,
we shall choose as the group L of Theorem 1 the (1+1)
IHLG instead of the physical (1+3) IHLG. In this
group there is only one space dimension. The generators
of time translation, space translation, and acceleration

Fzo. 2. Weight dia-
gram for the ten-dimen-
sional representation of
SU4.

0 0 0
py= —4 s1118 0 f cosset

0 0 0

t 0
&7= i cos8

0

i cos8
0

i sin8

0
i sin8

0

Since we have found a three-dimensional representation,
in which the translations are represented nontrivially,
we can choose a semisimple group of rather low rank.
The group SU4 fulfills the requirements of Theorem 2
with J. equal to the (1+1)IHLG, and its root diagram
is shown in Fig. 1.%e have chosen the third axis H3 as
H . Then there are three roots u, P, and y with equal
nonzero pw components such that the differences n P, —

E . are different roots. Ke can then construct a product
group G of the (1+1) IHLG and SV4 such that the
C~ 's are equal to the matrix elements of the repre-
sentation of the (1+1)IHLG. By means of the relations
(3.18) and (3.20), we can calculate J~ and K~„and
furthermore JD', and put these quantities into the mass
formula:

are denoted p, , p~, and cV, respectively. The (1+1)
IHLG admits a three-dimensional representation, in
which po, p&, and 1V are represented by the matrices

—i sin8 cos8 0 i cos'8
0 0 0

—i sin'8 0 i sin8 cos8

FIG. 1. Root diagram
for SU4.

m'=m' 2Q, gp "K—~,p„E,+2 Q; g""J„'p.H;
+Q, Qg gp'K„,K. gE,Eg

Z. Z; g"K. ,J,'EE,H;—+H;E.j
+p; p; gp"J„'J„pH;H; . (5.5)

"H. C. Corben, Phys. Rev. 131, 2219 (1963).

As a suitable representation of SU4 we choose the
lowest-dimensional representation that gives a non-
trivial mass formula, and this is the ten-dimensional
representation. Its weight diagram is shown in Fig. 2.

In the ten-dimensional representation all weights are
simple. %e see that the states are divided into three
classes corresponding to different eigenvalues of H . In



INTERNAL AN 0 SPACE —TI ME SYMM ETRIES

the first class there is only one state, here called v, in
another, three states called m, p, 0-, and in the third class,
six states named r, m, pp, y, f, pp. From Eq. (5.5), we find
the following expectation values of the square of the
mass operator:

P 8$ P =PS

(~l ~'l~) =mP —p sin20P„

(&Im'I p) =nzP+i s»20P„
(~

~

~p
[ ~)—m p

(r ~m'~ r)=nz'+2i sin20pp ——,
' sin'20,

(p
~

m'
( i)=m'+sin'20,

( q'
I

m'
I (p) =m' 2i si—n20pp ——', sin'20,

(X ~

m'( x)=no'+i sin20pp,

Q ~

mP
~ P) =eP—p sin20P„

(~ Imp
I ~)=ep.

According to Sec. 4, the states
~
v), , ~

p~) correspond
to free noninteracting particles. If we assume that the
real part of the expectation value corresponds to the
observed. mass, then we see that we have obtained a
mass splitting. Seven particles have the mass r8', two
have the mass N' —-' sin'28 and the tenth has the mass
I'+sin'20. The imaginary parts are all proportional to
pp and these terms are by no means small. Assuming
that the imaginary parts are essentially the inverse
lifetimes, we see that six particles are highly unstable.
Of course, since we use the free-particle basis, there are
also off-diagonal matrix elements in the mass matrix.
In connection with the large imaginary part in the
expectation values, this raises the question whether we
have used. the correct de6nition of mass. One might
think that one should 6rst diagonalize the mass matrix
and then obtain masses for certain particle mixtures. In
that case, we would have a situation which is analogous
to the (E„Zp) particle mixture. The particular states
(Kp&Zp))&2 have definite and different masses and
also lifetimes, while Ko or Ko are not given a de6nite
mass. Now, in general, it is not possible to diagonalize
the mass operator, at least not as long as the operators
I-~ and B'; are Hermitian, but in a speci6c model one
may still have this possibility. Whether or not this is
desirable, we feel that we have to give a clearer de6nition
of the mass of a particle, if such a notion is to be mean-
ingful at all for unstable particles.

The mass formula (5.5), if it can be successfully inter-
preted, applies equally well to bosons and fermions.
Hitherto one has generally assumed that the formulas
should be linear in the mass for fermions and quadratic
for bosons, but there seems to exist neither strong
theoretical nor experimental evidence for this difference.

6. DISCUSSIOÃ

In our previous discussion of the problem of com-
bining internal and space-time symmetries we have

refrained from making any specific choice of internal
symmetry group S. Our starting point was rather some
general requirements on the fundamental symmetry
group G. From those we derived criteria which any
possible candidate for S must ful611. These still leave
room for considerable choice, however, and the ultimate
decision must be founded on more detailed calculations
and a thorough analysis of the identi6cation of the
generators with physical quantities.

From the discussion leading to Theorem 1 it is seen
that the root diagram of S must necessarily contain a
sufhcient number of roots n, P, . with equal nonzero
m-component, that is, 0/n =P =, so that the
corresponding mixed structure constants C~ ~ can be
made to form a 6nite-dimensional representation of the
generators of the IHLG. It is further required that
difference vectors n —P, etc. , all are roots. All these
difference vectors obviously lie in a hyperplane perpen-
dicular to the B axis. Finally, to obtain a nontrivial
mass formula it is necessary that the translation opera-
tors be not represented in a trivial manner in the
6nite-dimensional representation of the IHLG. As noted
ah.eady, this last requirement forces us to consider five-
dimensional or higher dimensional representations of the
IHLG. Therefore, the root space of S must contain a
plane perpendicular to the II axis with at least five
root vectors in it. This immediately rules out SU, (=A,)
or any other semisimple Lie group of rank 2. Among the
groups of rank 3, it is found that SU4 (=Ap ——Dp)
cannot yield any nontrivial mass formula. The groups
0; (=Bp) and Spp (=Cp) have root diagrams which
meet most of our requirements. However, there is a
large number of restrictive relations among the roots
and for that reason it seems unlikely that sufhcient
freedom remains for the mixed structure constants C~ &

so that they can be made to form a representation of
the IHLG with the translation operators represented in
a nontrivial way. A preliminary study rather seems to
favor SUp (=A p) as a realistic choice for S.It is interest-
ing to note that on quite different grounds this group
has lately received considerable attention. " To what
extent 5V6 can account for all known facts in elementary
particle physics is obviouslv still an open question, but
work is in progress to examine its capacity in this
respect.

The initial restrictions on the group G were chosen in
such a way that there would be room for all the known
types of interaction in the theory. Under special circum-
stances it may be meaningful to neglect, say, electro-
magnetic and weak interactions. This is, of course, the
basic assumption underlying most of the work done in
the 6eM of strong interaction physics. Strongly inter-
acting particles, the so-called hadrons, are usually
labeled by baryon number 8, charge Q, isospin I, and

"F. Giirsey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 13,
299 (1964); T. K. Kuo and Tsu Vao, Phys. Rev. Letters 1B, 415
&1964).
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the third component of isospin /3. Usually one also adds
the hypercharge P to this list of particle attributes.
Because of the Gell-Mann —Nishijima relation, the hyper-
charge may be considered redundant, however. All the
quantum numbers mentioned above are supposedly
conserved in strong interaction processes, but, of course,
not in the presence of electromagnetic and weak inter-
actions. Therefore, if it is legitimate to neglect all but
the strong interactions at least as a first approximation,
then it is consistent to use these quantum numbers to
characterize the hadrons. In doing so we introduce the
additional assumption that the corresponding infini-
tesimal generators of the internal symmetry group can
be included in an Abelian set of operators which is
sufhcient to label the basis vectors in the representation
space of the fundamental group G (maximal set of com-
muting observables). In this way we are supplied with
additional restrictions on the commutation relations.
However, they are only approximate and good to the
extent that electromagnetic and weak interactions do
not alter them in a significant way. Keeping in mind
that the three types of interactions considered here
di6'er both in strength and with respect to the symmetry
properties they exhibit, it is alluring to speculate
whether one in general can separate out the contribu-
tions that each kind of interaction gives to the com-
mutators of the theory. It still remains to be shown that

it is a consistent procedure to neglect certain contribu-
tions in an approximation scheme.

Some final remarks regarding our assumptions for the
group 6 are in order. At first sight the assumptions may
seem to be very general in nature and highly plausible
from the point of view of physics. It should be kept in
mind, though„ that these assumptions are quite restric-
tive and one may have to relax some of them if the
program described above fails to work. The necessity for
the fundamental group 6 to contain 5 as a subgroup
may well be questioned. It may also be worthwhile to
consider discrete internal symmetry groups rather than
continuous Lie groups. After all, physically realizable
transformations belonging to the internal symmetry
group are discrete. It seems to be primarily for historical
reasons that continuous internal symmetry groups have
been preferred so far. Finally, we emphasize once more
that much work remains to be done on the problem
of identification of the generators with physical
observables.
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A method for calculating the elastic-scattering amplitude in the 5-matrix theory of strong interactions is
proposed which does not require a partial-wave expansion of the amplitude. Crossing symmetry is satis6ed
by the amplitude, but unitarity is imposed only approximately. Equations are derived for the case of scat-
tering of two spinless particles of unequal mass. The special case where the masses are equal is considered in
detail for the input assumption that the scattering is predominantly 5 wave. Crossing symmetry introduces
higher partial-wave contributions to the amplitude. The amplitude calculated in this way is in good agree-
ment with the input assumption. The amount of violation of unitarity is least near threshold, but is only
on the order of a percent at s=8m'. In spite of this, there are serious problems with low-energy resonances
and bound states. It is concluded that both unitarity and crossing symmetry are important in the production
of resonances and bound states and that the modification of either may lead to difficulties. The total cross
section derived from the approximate amplitude is compared with that obtained using the partial-wave ex-
pansion and keeping only the Swave. The results are in good agreement with each other.

I. INTRODUCTION
" 'N the S-matrix theory of strong interactions, if the
~ ~ Mandelstam representation is taken to embody the
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assumption of analyticity for processes which go from a
two-particle initial state to a two-particle final state,
then the problem reduces to the determination of the
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