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There is by now a good agreement between the distorted-wave approximation and the sharpening of the
peripheral peak by competing processes, although the theory itself has not been correctly derived at high
energy. We show that the main result of the distorted-wave approximation can be derived by applying the
dispersion theory of final-state interactions to the eigenstates of the S matrix. Some assumptions about the
mean values and the variation of the eigen-phase-shifts that fit with scattering experiment have to be made.
The theory does not apply to low angular momenta. It is valid in nuclear physics.

I. INTRODUCTION

T was first indicated by Chew and Low that the ex-
change of a pion in a pion-nucleon inelastic collision
should dominate the cross section for low values of the
momentum transfer between the initial and final
nucleons.! This effect was emphasized as the basis of
phenomenological calculation of high-energy forward
inelastic processes, the so-called peripheral processes,
by Drell and Salzman.?

If the system of final particles, excluding the nucleon
(or more generally the baryon in processes involving
strange particles), has a zero total angular momentum
in its own rest frame and if the exchange particle has
zero spin and mass g, the theory predicts a distribution
in the square of the momentum transfer A? of the form
(A24p2)~2 This form can be significantly modified if
higher values of the spin are involved, as, for instance,
in the production of a p. In that case the peaking pre-
dicted by the theory is much less marked.?

Experimentally, the agreement between theory and
experiment is rather good at very low values of A%
Furthermore, Yang and Treiman have given a test
which relates the angular correlations to the spin of the
exchanged particle, and this test is generally in very
good agreement with the dominant peripheral mecha-
nism.* However, for values of A? larger than a few p?,
the experimental peaks are often much narrower than
the theory predicts.®

An obvious drawback of the theory is that it predicts
in fact inelastic cross sections which, for high energies
and low angular momenta, exceed the limit imposed by
unitarity. However, even if this difficulty is removed by
reducing to a reasonable value the first few partial cross
sections in low angular momenta, the correction is

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.
1G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).
2S. D. Drell and K. Hiida, Phys. Rev. Letters 7, 199 (1961);
F. Salzman and G. Salzman, 3bid. 5, 377 (1960) and Phys. Rev.
121, 1541 (1961).
3This can be attributed, in a perturbative field-theoretic
approach, to the necessity of derivative couplings.
4 Aachen-Birmingham-Bonn-Hamburg-London-Miinchen col-
laboration, Nuovo Cimento 31, 729 (1964).
( 5E.) Ferrari and F. Selleri, Nuovo Cimento Suppl. 24, 453
1962).

much too small to explain the sharpness of the experi-
mental peaks.

It has been suggested by Ferrari and Selleri that one
should not consider the exchanged particle as giving
rise to a pole in A? of the matrix element, but should
compute the peripheral graph as in perturbation theory,
allowing the matrix element at the pion vertex to
depend on A%5 This proposal is, however, defective in
two respects: first, its theoretical basis is not clear, and
second, it leads to a very rapid variation in A? which
cannot be reconciled with our understanding of form
factors.

It has been suggested independently by Durand and
Chiu and by Gottfried and Jackson that the sharpening
of the peak could be due to the existence of other in-
elastic processes, which would compete with the process
considered.® The effect is, in essence, very simple: the
lower the angular momentum, the larger is the cross
section of nonperipheral processes that have to share
with the peripheral process the common amount of 7x?,
and the larger the reduction is. As low angular momenta,
mainly determine the distribution for large A?, the net
effect must be a sharpening of the peripheral peak.

In order to give a quantitative form to their argument
these authors have used the distorted-wave approxima-
tion, which has already had good success in nuclear
physics.” However, this leads to very severe difficulties :
the first is the use of the Schrédinger equation with an
optical potential which, while it can in principle repro-
duce any angular distribution, has no reason to give
good information on the wave functions. Furthermore,
the use of a potential at high energy for low angular
momenta is well known to have no sense. Much worse
is the fact that the essential formula which they use is
derived in the limit where the interaction considered
has a much smaller range than the competing processes:
the cases of interest do not satisfy that limitation.

While these authors have recognized the difficulties,
they have nevertheless applied the formulas of the
distorted-wave approximation to the production of p
mesons in pion-nucleon collisions, with amazing success.

¢ L. Durand and Y. T. Chiu, Phys. Rev. Letters 12, 399 (1964);
K. Gottfried and J. D. Jackson, Nuovo Cimento (to be published).

" See, for instance, M. L. Goldberger and K. M. Watson,
Collision Theory (John Wiley & Sons, Inc., New York, 1964).
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There is no doubt that the effect is present and, further-
more, that the formulas used are essentially correct.

It is the aim of this paper to derive these formulas
with only very general assumptions, which have the
advantage of fitting quite naturally with our present
theoretical and experimental knowledge of high-energy
phenomena.

The essential idea is to apply the now standard dis-
persion theory of final-state interactions not to the
actually measured states but to the eigenstates of the
S matrix. Furthermore, we have to make some hypoth-
esis on the mean values and the energy variation of
these eigen-phase-shifts, which are suggested by the
fact that high-energy collisions give rise mainly to un-
correlated particles and resonances. Our theory is not
restricted to the case in which the final system of
particles excluding the nucleon can be treated as a
particle.

In Sec. IT we recall the final results of the distorted-
wave approximation approach, which is essentially
what has to be proved. In Sec. IIT we introduce the
eigen-phase-shifts together with their essential proper-
ties. In Sec. IV, the theory of final-state interactions is
applied to’the peripheral matrix element between eigen-
states of the S matrix. The main formula of the dis-
torted-wave approximation is derived while some of its
limitations are indicated. In Sec. V, we indicate the
problems met with in the very low angular momenta.
In Sec. VI we extend these considerations to nuclear
physics, where it is stated that our main assumptions
are satisfied, so that the present work could be con-
sidered as a general and simple derivation of the results
of the standard approach, free from its customary
limitations.

III. THE DISTORTED-WAVE APPROXIMATION

The distorted-wave approximation approach is best
expressed in the case in which the process to be studied
is a two-body reaction

a+4 — b+B. (1)

One represents the elastic scattering of particles @ and
A as resulting from some optical potential U, and the
elastic scattering of particles b and B as resulting from
a potential U’. Then it is supposed that the process (1)
takes place through the effect of a third interaction V,
which can be treated in Born approximation. Accord-
ingly the scattering matrix element for process (1) can
be written as

M=,V [D), (2)

where ), for instance, is the incoming wave of
particles ¢ and A interacting through potential U. A
word of caution is in order at this stage: Although it is
always possible to represent the elastic-scattering ampli-
tude of particles @ and 4 by a Schrédinger equation
with an optical potential which varies with energy,
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there is as far as we know no proof that the correspond-
ing wave functions ;" are reliable. Notwithstanding
that difficulty, one writes for ¥, an optical approxima-
tion, valid when U varies slowly on a de Broglie wave-
length of the incoming particle, i.e.,

Y, P =glazg—igi(b,2) | (3)

where b is the impact parameter vector normal to the
z axis which is chosen along the direction of the in-
coming particle. The Schrodinger equation in semi-
classical approximation (| Ve |<Kg™) gives, then,

1 .
¢i(b,z)=——/ U(b+kz')ds . 4)

?

Here £ is the unit vector along the z direction.

When the range of V' is much smaller than the range
of U and U’ it is possible to give a simple expression
to Eq. (2) by using Eq. (4). To do so one notices that
the parameter b can be replaced by the angular momen-
tum /=g¢b and one introduces the Born approximation
B(l) for quj, i.e.,

Bl)={(¢s|V|eoa), ®)

where ¢,;, for instance, is the free-particle wave of a
and 4 in the angular momentum /. Then one gets

T@)=3S;NBMOS:* (1), (6)
where
Sii(l)=e"i¢®™ )

is the matrix element of the S matrix for elastic scatter-
ing.® Equation (6) is the key formula for all applications,
and its success is sometimes very remarkable.” However,
it should be stressed that the present arguments do not
provide any justification for it in the case of a peripheral
interaction at high energy, since

(a) the Schrodinger equation formulation for the
wave functions is not justified, and

(b) the range of a peripheral interaction is very large.
It is therefore important to know whether or not, and
under which conditions, Eq. (6) is correct.

In the present discussion as well as in the following
considerations, we have neglected the spin of the
particles, but it should be obvious that no point of
principle is left out by such a simplification.

1II. EIGEN-PHASE-SHIFTS AND THEIR
PROPERTIES

We shall denote by | @), |8)- - - a complete set of states
which are diagonal in the energy, the total angular
momentum, and the number of particles, i.e., the states
which are commonly used in the interpretation of an
experiment.

The unitarity of S allows us to introduce another

8 N. J. Sopkovitch, Nuovo Cimento 26, 186 (1962).
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complete set of states |a), |8)- - -, which are eigenstates
of S, i.e.,
Slay=e*?=|a), (®)

where §, is a real number, an ‘“eigen-phase-shift.”

Actually, as soon as three-particle states can be
produced, some of the eigenstates of .S are not normal-
izable. We shall ignore this difficulty in the following.
In practice it would amount to writing Stieljes integrals
where we shall write summations.

The states |a) and |a) are related by a unitary
transformation

|@)=2a Usa| ). 9

Moreover, if one uses time-reversal invariance and
chooses for | @) time-reversal-invariant states, the matrix
U will be real, i.e., orthogonal. This property implies in
particular

>a Use?=1. (10)

While the existence of eigen-phase-shifts is acknowl-
edged, their properties have not been investigated.’ In
the case in which only a finite number of states can be
produced—i.e., where the only open channels are two-
body channels—the eigenvalues of S, ¢?%s, and the
matrix elements U,, are piecewise analytic, but not
analytic. In the following, we shall assume that this
property remains true in general.

One can get useful experimental information about
these eigen-phase-shifts by relating them to the elastic
scattering amplitude. According to Egs. (8) and (9),
one has

(d] Sl a>:Za Ugoe*®=, (11)

For energies of a few GeV, when |a) is a two-particle
state ( a pion-nucleon state, for instance), there is good
experimental evidence that the scattering amplitude
is pure imaginary, i.e., that the matrix elements (11) are
real. Moreover, (la|S|la), as a function of the angular
momentum /, is a function that is small (of the order of
0.3) for small / and tends to 1 for large 1.

The comparison of Egs. (10) and (11) shows that
{a|S|a) is generated by adding complex numbers
Uao’e*® whose moduli add up to 1. The simplest hypoth-
esis that fits the experimental data is that most of
the eigen-phase-shifts which communicate with the
elastic channel have a value around 0 or 3. This can
be understood in the following way: the matrix U de-
couples the particles produced in a strong interaction
into states in which there is not much correlation, i.e.,
3.~0. However, many states contain resonances which
have to be kept as such by U. A state made up of one
resonance and uncorrelated particles has essentially for
phase shift the phase shift of the resonance, i.e.,
d~3w. Obviously, these values 0 and ir have to be
taken as they stand for large values of ! for which
generally only one resonance is produced, and have to

?Y. Yamaguchi, Suppl. Progr. Theoret. Phys. (Kyoto) 7, 1
(1959).
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be taken modulo 7 for small /, for which several reso-
nances can be produced.

While we acknowledge the empirical character of
these results, we believe that they provide the simplest
fit of the data together with a promising statistical
simplicity. It should be mentioned in that respect that
the absence of correlation of the particles in the eigen-
states is essentially what is necessary in order to get
an exponential diffraction peak, as has been shown by
Van Hove under slightly different assumptions.?

It should be mentioned that, since the eigen-phase-
shifts vary around fixed values, it can be assumed that
they vary slowly with energy.

IV. FINAL-STATE INTERACTIONS

Let us now consider an inelastic process ¢ — 4. For
more clarity we shall consider the case in which ¢ is a
pion-nucleon state and b a nucleon-p state, neglecting
the spins. We shall split the collision matrix for a given
total angular momentum into two parts: 7',%, which is
the pion pole contribution to @ — &, and the rest of the
T matrix:

T=T,+T,.

When the total angular momentum is large, the cross
section due to 7°is smaller than the one due to T's. Con-
sequently, we shall make the approximation that 7',
satisfies the unitarity condition, i.e., that Sy=71+42:T,
is a unitary operator. This approximation has some
relation with the range hypothesis in the distorted-wave
approach. It is not that the range of T+ is smaller than
the range of T, but that, for large ranges, T+ is smaller
than T,. In the following we shall accordingly write .S
in place of S; and use the results of the preceding section.
The quantity (|&|T|a) is real. The existence of
initial and final-state interaction will tend to modify
it and, in this present case, ultimately to reduce it. How-
ever, the usual treatment of final-state interactions
cannot be directly applied to the case in which there is
absorption in |a) and |5).1! In order to apply it, we shall
first pass to the |a) basis:
BT |e)=UaaUns™b| T a). (12)
Now, whereas (8| T,°|«) is only piecewise analytic as a
function of the total energy, we shall nevertheless apply
the final-state dispersion correction to it. To do so, let
us make explicit its dependence on the total energy E
by writing it as T(E), and introduce 8, (E) = 83(E)
-8, (E). The interaction in the initial and final states

10T.. Van Hove, Nuovo Cimento 25, 392 (1962).

1 A model of multichannel N/D formalism leading to formula
(6) has been recently proposed by E. J. Squires, University of
Edinburgh (unpublished). Unfortunately there is no obvious
justification for the statistical assumptions which have to be made.
This formula has also been used for large I by M. H. Ross and
G. L. Shaw, Phys. Rev. Letters 12, 627 (1964), and by M. Baker
and R. Blankenbecler, Phys. Rev. 128, 415 (1962)
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will modify T'4,°(E) into

Toa(E)= [Om(BEY TN, (13)

where the operator Og,(E,E’) is defined as

Osal B )= (B i)t MU (149)
plm ™ x f(E)(E'— E—i¢)

with
h(E)=ei6(B) singy, (E) (15)
and
(1 fﬁaa(E')dE’> (16)
L)=espl ~ [ ———r
f(E)=exp +) E—E

up to necessary subtractions.

When 65(E) and 8,(E) vary slowly in the neighbor-
hood of 0 and 3w, and when T7°(E) does not vary too
rapidly with energy, Eq. (13) can be simplified into

Toa(E) =P HaOIT,0(E).  (17)

It is to be expected that this simple result would hold
in more general conditions than the conditions which
insure the validity of Eq. (13).

Using the fact that, by its very definition, 7%° has
matrix elements only between |a) and |b), we get from
Egs. (12) and (17):

@I T1]a)= (X Urs'e™) (Lo Uaae®)(b| T2 a). (18)
All the effects of initial- and final-state interactions are
concentrated into the factors in parenthesis. It is easy

to evaluate them for large values of the total angular
momentum, where all phase-shifts are near 0 or iz and

(a|S]ay=1—¢,, (19)
(blS|By=1~e, (20)

where ¢, and presumably ¢, are small and real. Equation
(11) can then be written
(e Sla)= (1—}e)+e*2(3ed) 21
so that
To Udele= (1-}e)temi(e)  (22)
and

|Xe Usde™| = [1—}ea| =[{a] S| a)t2].

2 M. Jacob, G. Mahoux, and R. Omnes, Nuovo Cimento 23,
838 (1962); J. D. Jackson and G. L. Kane, ibid. 23, 444 (1962).
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Therefore, Eq. (18) can be approximated by
@1 T1|a)=[@]S[0)]%p| 2| a)(a| S| 0)* T2, (23)

which is pfecisely the result of the distorted-wave
approximation as shown in Eq. (6).

V. THE CASE OF LOW ANGULAR MOMENTA

The foregoing analysis cannot be applied when the
absorption is large (e, and e, significantly different from
zero) and when (87| a) is larger or of the order of
{(@|T:|a). This is precisely the case for low angular
momenta, where it can even happen that the peripheral
model predicts matrix elements larger than the uni-
tarity limit.

The distorted-wave approximation cannot be applied
to this case, either in the potential form (small angular
momenta at high energy cannot be represented by a
potential), nor in the form of the preceding section. In
principle, one could use a many-channel N /D calcula-
tion, but our understanding of high-energy interactions
Is yet too primitive to carry out such a program in a
practical way.!!

We shall therefore agree that because of the com-
peting channels and the unitarity limit, the peripheral
matrix element must be significantly decreased al-
though there is no reliable theory for this reduction.

VI. CONCLUSIONS

We have shown that under very wide conditions, the
reduction of matrix elements predicted by the dis-
torted-wave approximation can be justified without
appealing to considerations of potentials. The hy-
potheses needed bear a direct relation with already
known experimental results.

It should be stressed at that point that the properties
of the eigen-phase-shifts that we have assumed are pre-
sumably satisfied in nuclear physics at intermediate
energies. In fact, the outcome of most nuclear collisions
are systems of nucleons and excited nuclei which are
not very much correlated, so that the eigen-phase-
shifts can be expected to run around 0 and 17 modulo
m. Therefore, the present approach constitutes another
justification of the distorted-wave approximation in
nuclear physics.
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