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A previous calculation of the leptonic decay of the &+ 0 particle assuming the most general interaction is
extended to the case of a polarized Q. The diBerential rate is given and the angular distribution of the is
calculated for the decay 0 —+ '+e+P. It is found to depend on three parameters which can be experi-
mentally determined.

k, &» = (1/v2) (1A0,0),
h. &'& = (1/%2)(1, i, 0,—0),
1'r, "&= (0,0,1,0) .

0 —+ '+l+f, l= p, e

of unpolarized 0's has been calculated and some results
of the calculation have been reported. It has further-
more been pointed out that more detailed infonriation
about the structure of the interaction can be obtained
from the analysis of the decay of polarized 0's.

It is the purpose of this paper to report the result of
such a calculation.

The starting Hamiltonian is the same as in I

Thus, we have

0.&=H„&0++F„&Q (5)
with

H "'=(1/v2)(1)i,o,o), F &'&=0

~ (2) —P F„&'&= (1/K2) (1, i, 0, 0—),
H."'= (1/Q6)(1, i, 0,—0), F.&'& = (2/3)'~'(0, 0,1,0),
H. i l=(2/3)' '(0,0,1,0), F„& l= —(1 /+ 6)(1,i,o,o). (6)

' 'N a previous paper' (hereafter referred as l) the lep- with the polarization unit four-vectors
& ~ tonic decay

with

O"'=
I 6+Ps lg"'+—

I
f—s +f4 +—fsv' —I—

Mm) k M m

To obtain transition probabilities, after squaring (2), we
must put the products 0„&0„&in a convenient form. With
this aim we use the step operators (in the 0 operator
lower indexes refer to energy and upper indexes refer
to spin)

( Pip„)()"'=
I
fr'+ fs' lg"'——

M m)
(3)

which in our representation turn out to be

+5+00+= (erys —rrsyr),
&mr+ins

F, M and p, m being the four-momentum and the mass,
respectively, of the 0—and of the particle; f,(i= 1—5)
are form factors. , /, v are usual 2-spin operators,
whereas 0„ is a ~-spin operator.

Using the same technique and notation as in I, we

adopt for the 2-spinor the Rarita-Schwinger representa-
tion. ' The orthonormal positive-energy spin state of
polarization g is obtained'4 as a Clebsch-Gordan com-
bination of the positive energy —,-spinors 0+ (spin parallel
and antiparallel, respectively, to the quantization axis)

n=P/l Pl .

Moreover, we will need spin projection operators

S+0+=0++ )

S 0+=0+

which are given by

S~=-', (1aiysy, y n)

and the energy projection operator

(9)

(10)
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with

and

n„~n„~=-,'R„„r(1+q,)p, ,' n'0' (14)

R,'=I.,' ~Id„'viv2+». ,'v2v3+6, 'vav~ (15)

Now, with the help of (8), (10), (12), then going into
the coordinate frame de&ned by n=(0,0,P/~ P~) and
finally going to the rest system of the 0 we obtain

m, m, y being the mass, energy, and momentum of the
; p, cu, k those of the lepton; and &u', k' the energy and

momentum of the neutrino.
Now we note again that the ratio w/m is very close

to 1 so that, in this approximation

(2m)'E,~Gg"(f,+f2)'

I.„„&=H„&H„&++F„&F„&',cV„„&=F„&F„&* H, &H„—&*,

8=H sF 8e+F„sH 5e O„s—F„sH s( —H 5F je

Ei' 0

(2~)'&2—G~'G. '(fi+ f 2)(fi'+ f2'), (22)

f3+f4+ f5 1/ fs f('
R= R2 ——-i + i, (23)

f1+f2 2 ~f1+f2 fl +f2'&

with

The expressions (14), (15), (16) solve completely the
problem of expressing matrix elements involving arbi-
trarily polarized 2-spin states in terms of matrix ele-
ments involving only no)mal —',-spin states. Therefore, and (18) becomes

from this point on, the usual spin-r projection and trace
( / ) ~~ ~, (2 )~& [(F +(2R/

technique can be used, to calculate the matrix elements.
For a completely polarized 0, (14) becomes

0„'0„'=~R„„'(1+7O)Q, )' O'0'

with R„„'given by (15) and

Lyp = Mpp = 2 (8pp Epppg) i v)p= 1& 2
y

X,„'=0,„'=0.

(14')

(17)

p= (&2/&)) = [Gv(f~'+ fg'))/[G~'(f)+ f2)). (25)

The decay rate is given by

d p k)[Ip+(2R/m)I) p(paIo (2Rg/m)I2)) (26)

Introducing (14') in the square matrix element, using
the said techniques, and making the same approximation
as in I (namely, neglecting terms of order p'/m') we
find

I;= 84(F p k k'—)F;—d'k—d'k'. (27)

iMr, i'=(2m. )' Eg(w) F()+ Fg For the electronic decay

0 —+ '+c+r (28)
2R' —

K2(zv) 2R,
+Kg (w) F()+ Fy — p3FU zPF2—

where

neglecting the electron mass and calling 8 the angle be-
tween and the direction of polarization, the angular
distribution is found to be of the form

I 5) ZO

(2m)'K)(w) =—G q" —+1 f,+f;
2K' 5$ S'l

(27r)'Zx'(u)= Gv" ——1
i
f('+f '

2m m k m

m zU ((', w )
(2~)'&2(~) = 2G~'Gv' fr+f2

~

fi'+ fm'

270 mk m&

(19)

with

1 dI'
=a+f) cos8+ c cos'8+ 2 cos'8,

I' d cosa

3 Jg(1—~R)+J2

2 2A(1—-', R.)+3J2

3 2p[J3(1—2Rg)+ J4)
b= ——--

2 2J (1——'R)+3J

(29)

Fp = 2((oa&' —k 3k 3')/cs(o',

Fx= [~(k' y —k3'p3)+~'(k y —k3p3)]/~~', (20)

F2——[k3(k' y —k3'p3)+k, '(k y —k,p, )]/(d(g',
and

f3+f4(~/m)+ f~ f3'+ f4'(w/m)+ f('
R= ) R

f~+ f2(w/m) f~'+ f2'(w/m)

3 Ji(1——,'R)
C= ——

2 2J,(1——;R)+3J,

3 2pJa(1—2R2)

2 2Jg(1——',R)+3J2
where the J s are integrals which have been evaluated
numerically and whose values are

1 5 5

R2——
2 f,+f,(w(m) f+f(w/m)), ', '

Jg= 1.96,
J3=4.11X10 ', 74=5.18X10 '. (31)
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As soon as the experimental data become available, a f's are of the order of unity (which seems not unreason-
best fit of the coefficients u, b, c, d will lead to the evalua- able), then the factor X in (32) is a positive slowly vary-
tion of the ratios R, Rs and p. It is in particular inter- ing function of E and Rs, and (I'b —I'r)/(I'b+I't) de-
esting to look at the forward-backward yields. From pends linearly on p (which is substantially the ratio be-
(29) indeed, one obtains, integrating separately in the tween the vector and the axial-vector coupling constant)
forward and backward directions thus allowing the determination of its sign and of its

order of magnitude.
Many thanks are due to Professor L. Brown for help-

I'b+I't 2 2J,(1—-', R)+3Js fu discussions and for reading the manuscript.
Note added t'ts proof: After the present paper was sub-

If, for instance, one makes the assumption that in the . mitted, a work of J. Jellin about the electronic decay
static limit f,+fs and fi'+ f&' are nonzero and that theof the 0 has appeared in Phys. Rev. 135$, 1203 (1964).
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The residue of the one-photon exchange pole in the amplitude for the scattering of massive particles is
calculated, using only generalized unitarity and the correspondence of particles to representations of the
proper inhomogeneous I.orentz group. It is found that magnetic monopole coupling results in a residue
which contains square-root singularities. Such a nonanalytic term is incompatible with the analyticity as-
sumptions of S-matrix theory, and if it were present, the, photon would appear in the annihilation channel
as an intermediate state in all partial waves instead of only one. This behavior is theoretically implausible
and discourages further experimental search for magnetic monopoles.

~ VER since Dirac advanced the theory of magnetic
- ~ monopoles to explain quantization of electric

charge, ' experimentalists have sought for monopole
particles, but always with negative results. ' We wish to
show here that the existence of such particles contra-
dicts our most elementary notions of the properties of
scattering amplitudes, in particular their simplest
analyticity properties. The argument relies upon (a)
the identification of particles with irreducible repre-
sentations of the connected Lorentz group (i.e., without
parity or time reversal) and (b) the factorization of the
photon pole in a scattering amplitude.

Consider the three-particle vertex at which a particle
of momentum pi and mass MAO emits a photon of
momentum k and is left with momentum ps. The
momentum four-vectors are defined on the complex
manifold for which conservation and mass-shell condi-
tions are satisfied identically, k= pi —

P&, pi'=Ps'=3P,
k'=0. Then P=pi+ps satisfies P'=4' P k=O. We
suppose for simplicity that the massive particle has
spin zero, although the argument becomes applicable

' P. A. M. Dirac, Proc. Roy. Soc. (London) 133, 60 (1931).
'K. M. Purcell, G. B. Collins, T. Fujii, I. Hornbostel, and

F. Turkot, Phys. Rev. 129, 2326 (1963); E. Goto, H. H. Kolm,
and K. W. Ford, Phys. Rev. 132, 387 (1963); E. Amaldi et al, ,
¹ C. 28, 773 (1963);and K. Amaldi eI al. , CERN Report 63—13,
1963 (unpublished). This latter work gives a general survey and
bibliography of the subject.

to general spin by using the appropriate vertex
function. '

It has been shown, using (a) only, ' that a photon leg
on an amplitude corresponds to antisymmetric tensor
indices for which Maxwell's equations in a vacuum are
satisfied. Since the massive particle has spin zero, the
desired amplitude is just such a tensor 3f„„whose most
general form' may be written

M„.=ot(k„P„P„k„)+Pe„„„ik "P~—,

where cr and P are complex constants representing,
respectively, electric and magnetic monopole coupling.
If the massive particle had nonzero spin, higher order
multipole terms would also be present.

Any solution to Maxwell's equations may be written

(2)

where J is determined modulo k and satisfies k J=O.
To 6nd the J corresponding to Eq. (1), contract
Eqs. (1) and (2) with an arbitrary four-vector a and
equate the results, dropping terms proportional to k.

'D. Zwanziger, Proceedings of the SymPosium on the Lorents
Gros', June i@64 (University of Colorado Press, Boulder,
Colorado, to be published).
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