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Angular Correlations in Z, 4 Decays and Determination of
Low-Energy ~ ~-Phase Shifts*
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The study of correlations in IC,4 decays can give unique information on low-energy ~-z scattering. To this
end we introduce a particularly simple set of correlations. We show that the measurement of these correla-
tions at any Axed m-7i- c.m. energy allows one to make a model-independent determination of the difterence
Bp-B& between the S- and P-wave m-7r phase shifts at that energy. Information about the average value of
B0-BI can be obtained from a measurement of the same correlations averaged over the energy spectrum.
Measurement of the average correlations is particularly suited to the testing of any model of low-energy ~-7r
scattering. We discuss in particular two such models: (a) the Chew-Mandelstam effective-range description
of 5-wave scattering and (b) the Brown-Faier o-resonance model for the S wave. If the Chew-Mandelstam
description is adequate, the suggested measurements should yield a value for the S-wave scattering length
jn the I=0 state. If the 0-resonance model is correct, these measurements should yield a value for the mass of
the resonance.

I. INTRODUCTION

'HEORETICAL studies' ' in the past few years of
the decay of a K meson into two pions and a

lepton pair have recently been rewarded by the experi-
mental detection of such events in relatively large
numbers. ' This availability of experimental data has
raised the hopes of extracting information on the low-

energy x-x interaction from such decays.
Several authors have calculated the eRects of the

6nal-state z-m interaction on the characteristics of K,4

decays. ' ' This interaction has two different kinds of
effects: (a) it determines the phases of the various form
factors that appear in the amplitude for the decay; (b) it
determines the dominant behavior of these form factors
as functions of the c.m. energy of the pions through
enhancement eRects. The theoretical understanding of
the first kind of effects is quite firm (Watson-Fermi
theorem); the enhancement effects, however, are not as
well understood. To separate the two kinds of effects, we

introduce a simple system of angular and energy vari-
ables (Sec. II), and define a set of angular correlations
in terms of these variables.

Measurement of these angular correlations at a given
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value of the c.m. energy of the pions can be used to
obtain the difference between the S-wave and I'-wave
m-x scattering phase shifts, 80—bj, at that energy, inde-
pendently of effects of the second kind, as discussed in
Secs. III and IV.'

In a realistic experiment with limited statistics (say
up to 200 to 300 events), it will not be possible to
measure the proposed angular correlations as functions
of the c.m. energy of the pions, but only their values
averaged over the entire energy spectrum. However,
such a measurement would still be highly valuable. First
of all, it would yield an average value of the quantity
80—8&, and secondly, it could be used to test any given
model of low-energy m-m scattering.

In Sec. V we consider the particular case in which
S-wave scattering in the I=O state is described by a
Chew-Mandelstam eRective range formula. The meas-
urement of average angular correlations could then yield
a value of the S-wave, I=0 scattering length. An inde-
pendent determination of the same quantity could be
obtained by a measurement of the spectrum of the c.m.
energy of the pions, as discussed by Ciocchetti. '

We also discuss brieQy (Sec. VII) the model of Brown
and Faier, ~ in which S-wave scattering is assumed to be
dominated by the postulated 0. resonance. Measurement
of average correlations could then be used to determine
the mass of this resonance.

II. KINEMATICS AND CORRELATIONS

Our approach to the kinematics of the reaction
E+—+~+~ e+v is the same as that used in analyzing
resonances. We visualize this reaction as a two-body
decay into a dipion of mass M and a dilepton of mass
3f,„.We then consider the subsequent decay of each of
these two "resonances" in its own center-of-mass system.

~ The usefulness of angular correlations in the determination of
B0—BI was first recognized by E.P. Shabalin, Zh. Eksperim. i Teor.
Fiz. 44, 765 (1963) LEnglish transl. :Soviet Phys. —JETP 17, 517
(1963)j. See also erratum, Zh. Eksperim. i Teor. Fiz. 45, 2085
(1963).
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ptone e-v

FIG. 1. Angular variables and unit vectors used in the kinematical
description of the reaction X+~ 7i-+m e+v.

&'=(p +p-)'
cos8=8.p~/ I p+ I

cosQ=c d;

as=(p yp)s.
cosf =—8 y,/Iy, I;
sing=(cubi) d.

The ranges of the angular variables are 0&&8~& x,
0(f'&~, and —~&@(~..

We consider the following four correlations:

(a) the distribution in cosg or the forward-backward
asymmetry of the x+ in the c.m. system of the pions;

(b) the distribution in sing or the up-down asym-
metry of the positron with respect to the plane formed
by the two pions in the E+ rest system;

(c) the distribution in cosp or the right-left asym-
metry of the positron with respect to the plane formed
by the line of Right of the dipion in the E+ rest system
and the normal to the plane of the pions;

"Our metric is (AB) =ApBp A'B. —

The total decay is described by the following Ave
variables":

(1) R'=—3I ', the effective mass squared of the
dipion system or the square of the c.m. energy of the
pions,

(2) E'=M,„', th—e effective mass squared of the
dilep ton system,

(3) 8, the angle of the m+ in the c.m. system of the
pions with respect to the direction of Qight of the dipion
in the E+ rest system,

(4) f, the angle of the e+ in the c.m. system of the
leptons with respect to the direction of Bight of the
dilepton in the K+ rest system, and

(5) p, the angle between the plane formed by the
pions in the E+ rest system and the corresponding plane
formed by the leptons.

Angles 8 and f' are polar; P is azimuthal. Our choice of
angles is illustrated in Fig. 1.

To specify the above variables more precisely, let p+,
p, p„and p„be the four-momenta of the ~+, ~—,e+,
and v, and let p+ be the three-momentum of the x+ in
the c.m. system of the pions and p, the three-momentum
of the e+ in the c.m. system of the leptons. Further, let
8 be a unit vector along the direction of Right of the
dipion in the E+ rest system; c, a unit vector along the
projection of p+ perpendicular to i; and d, a unit vector
along the projection of lp, perpendicular to 8. (The vec-
tors v, c, and d are shown in Fig. 1.) We then have:

(d) the distribution in R or the effective-mass spec-
trum of the pions.

The term "forward" implies cose &0, "backward"
cos8 &0;"up" implies sing) 0, "down" implies sin@ &0;
"right" implies co&)0, "left" cosg&0.

Each of these correlations is related to a de6nite term
(or terms) in the expression for the angular distribution
of the decay. (See Sec. IV.) Standard correlations, on
the other hand, such as an energy spectrum of a particle
or the distribution in the angle between two particles,
have a more complicated relation to the angular
distribution.

III. MATRIX ELEMENT

If we set the positron mass equal to zero and assume
a local V-3 coupling for the leptons, we can write the
matrix element for the decay E+—& x+~ e+v to 6rst
order in perturbation theory as

(2~)'~'"(px p+ p=—p. —p.)(G/~—)
X I-vy'(1+ps)e3(n+gr

I
~zv+g&&

I
E+). (1)

In this expression, G is the universal Fermi coupling
constant for the weak interactions, Jq ~ is the vector
current of the strongly interacting particles, and Jq" is
the axial current. The rest of the notation is obvious.

From invariance considerations we obtain

(~+~
I
2~v

I
E+)—

=(sh/~ ')e~" px"(p++p )"(p+ p )'-—-
and

(~+~-
I ~."I

z+)
= (f/~x) (p++p )~+ (g/~x) -(p+ p )"—-

where the form factors f, g, and h are, in general, func-
tions of E.', (pxp+), and (pxp ). The factor AERY

' in
Eq. (2a) and the factor 3IIx ' in (2b) have been inserted.
to make f, g, and h dimensionless. Due to the opposite
relative intrinsic parities of the E+ and x+x states, the
matrix element of the vector current between these two
states, Kq. (2a), transforms as an axial vector, whereas
that of the axial current, Eq. (2b), transforms as an
ordinary vector.

Since the singularities in the variables (p~p+) and

(pxp ) are far from the physical region, it is reasonable
to neglect the dependence of f, g, and h on these two
variables. This is equivalent to assuming that the two
pions are emitted only in 1=0,1 relative angular-
momentum states, ""' If we further assume that the
I&I I

= s rule is valid, then, from symmetry considera-
tions, the f term is just the amplitude for the pions to be

"Nguyen Van Hieu, Zh. Eksperim. i Teor. Fiz. 44, 162 (1963)
LEnglish transl. : Soviet Phys. —JETP 17, 113 (1963)j."'Note added en proof Amore detailed di.scussion of the struc-
ture of the E,4 matrix element, including the general dependence
of the form factors on all three variables, has been given in a
recent unpublished paper by C. Kacser, P. Singer, and T. N.
Tl uong.
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emitted in an I=0, l= 0 state, while the g and h terms
give the amplitude for emission in an I= 1, 3= 1 state.

The final-state interaction of the pions manifests itself
in the matrix element (1) in two ways. First, by the
Watson-Fermi theorem, " it determines the phases of

f, g, and h as follows:

U(x2) =(~/2)P2 xz

(1+x&) /2

de($2 X2)1/2(1+x2 2()1/2

~ ( I+:r,2) /2

—x d" &2'(P —x')'"(1+x'—2f)'"

f fe(bp(R2) ge(4&(R2) h he44&(R2) (3) =S I' w—ave-interference sin8 cosp correlation,

where f, g, and h are real. The quantities 8p and 81 ale
the I=0, 3=0, and I=1, /= 1 x —x scattering phase
shifts; they are functions only of the total energy of the
pions in their center-of-mass system. Secondly, the x-vr

interaction gives rise to enhancement effects which are
assumed to determine the dominant R' dependence of

f, g, and h.

IV. ANGULAR DISTRIBUTION

We integrate the decay probability obtained from
expressions (1), (2), and (3) over the variables IP and
cosf to obtain an expression for the angular distribution
in 8 and p as a function of x'= R2/MR2. Details of this
integration are given in Appendix A.

d 1'(x') = [GpzrzM)r'/(32(22r) ') fdxzd cos8d(1){f'A (x')
+g'[B(x')+C(x') cos'8+D(x') sin'8 s)n'gj
+h'E(x') sin'8(1+2 cos'g)

+fg cos(bp —81)S(x') cos8

+fg sin(8p —8))T(X2) sin8 sing

+fh cos(5p 8)) U(x ) s1118 cosp

+gh V(x') cos8 sin8 cosg) . (4)

In this equation the quantities A(x'), B(x'), C(x'),
etc. are well-defined functions of x'. If we let
P = (1—4m '/R')'/', they are given by

A (x') = (P/96) (1—Sx'+Sx'—x' —12x' lnx')
=S-wave R' correlation,

B(x')= (P'/72) [x'+9X'—9x' —x'+ 6x'(1+x') lnx' j
=I'-wave R' correlation,

C(x') =P2A (x') +B(x')
= I'-wave cos'0 correlation,

D(x') = 2B(x')
=I' wave sin'8 sin'P c-orrelation,

F(x') = (P'/192) [xzx' —3X'—16x'+ 16X'+3X"
——,'x"—12x'(1+x') 1nxz)

= I' wave sin'8(1+2 co-st) correlation,

S(x') = (P'/144) [3—20x'+90x' —128x'+ 60x' —5X')
=S—I'-wave interference cosa correlation,

T(X2) —(zr/105)$2[x 14XP+.35X4 35XP+14xP xs

=S P wave interference —sin-8 sing correlation,

and

V(x') = (zr/16) Pzx {4x'[-',(1+x') (1—x) ' —-'(1—x) ']
—[2(1+x') '(1—x) ' —-'(1+x') '(1—x) '
+ (3/7) (1+x')(1—x)'—-'-(1—x) 'j) —Px'T(x')

= I'-wave-vector —axial-vector interference

cos8 sin8 cosP correlation.

)lVofe added irz proof. An earlier version of this paper,
Laurence Radiation Laboratory Report No. UCRL-
11590, incorrectly defined the function T(x') with an
over-all minus sign. ]

We can now indicate the simple connection, men-
tioned in Sec. II, between our correlations and the
angular distribution. An examination of Eq. (4) shows
that the z+ forward-backward asymmetry arises from
the S(x') term; the positron up-down asymmetry from
the T(x') term; the positron right-left asymmetry from
the U(X') term; and the zr-zr effeCtiVe maSS SpeCtrum
from the A(x')& B(x') C(x') D(x'), and E(x') terms.
For fixed values of W= (R')'" the total c.m. energy of
the pions, the correlations are given explicitly by the
following expressions:

(a) Forward-backward asy)nmetry:

d(/VR —XR) G'x'&~4
=fg cos(8p 5)) — [XS(x')j; (5)

dH' 8(2zr)'

(b) Up-down asymmetry:

d(1Vz —/Vz) G'~'Mg'
= fg sin(8p —8)) [xT(x-')$; (6)

dW 8(2zr)'

(c) Right-left asymmetry:

d()VR —1V/) G'x'3I~'
= f7z cos(8p —8,) [xU(x')$; (7)

dW 8(22r)'

(d) Effective-mass spectrum of the pions:

dr(X2) Cz~zm 2

f'A(x')
dW' 8(2zr)'

+g'[B(x')+-'C(x')+-'D(x') )+-h'-4E(x') (8)

t'

]g K M Q7 t ph R 9$ 228 (f9/4) F F N y measuring angular correlations at a fixed value of
Cimento 2, Suppl. 1, 17 (19551. W, one can obtain tan(8p —8,) at that energy from the
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ratio of the up-down to forward-backward asymmetries
without having to know the values of f and g. Further-
more, it is clear from Eqs. (5) through (8) that the
various correlations can, in principle, also be used to
determine f, g, and h at any given value of W.

In view of the poor experimental statistics likely to
be available in the foreseeable future, it is more practical
to look at the angular correlations averaged over 8'. In
this manner one should still be able to get an idea of the
sign and magnitude of the average value of (gs —gi) in
the energy region under consideration.

V. EFFECTIVE RANGE MODEL

Since a direct determination of the phase shifts is
likely to prove difficult, an alternative approach is to
attempt a fit of the experimental data to a given model
for f and g. (To a very good approximation, the con-
tribution of the h term is expected to be negligible, "
and we shall ignore it in this section. In any case, this
contribution does not affect the determination of the
phase shifts, since it gives rise to an angular correlation
different from those correlations used for this purpose. )

For example, one could assume that the low-energy
m-z scattering in the I= 0, l=0 state can be described

by a large scattering length, "and that the scattering
in the I= 1, l= 1 state is dominated by the p resonance.
Since the p singularity is rather distant from the physical
region, one sets g equal to a constant value go. One
assumes that the R' dependence of f is given by the

2.5

2.0—

1.5—

1.0—

0.5—

relativistic Watson enhancement factor":

f" (1/I') sings(R')e'"in'& (9)

where t'=(1—4m '/R')'" as in Sec I.v. The R'de-.
pendence of the phase shift is assumed to be given by
the Chew-Mandelstam effective-range formula":

cotgs=1/(I'gs)+(2/m)in{/(R) /2m](1+P)), (10)

where ao is the m -m scattering length for the I=0, l= 0
state in units of the pion Cornpton wavelength. One
then proceeds to find that value of the parameter ao
which gives the best 6t to the experimental data.

Using this model, we write the angular distribution as,
a function of x'=R'/M. in the form

10 'Gm'M x'f ss
dI'(x') =dx'd cosgdg-

32(2')'

X{Ai(x')+gAs(x') cosg

+qAs(x ) sing sinp+g A4(xs) cossg

+g'As(x')(1+2 sin'8 sin'y) }, (11)

where fs= f(R'=4ns, '), and g= gs/fs. The correlation
coefficients Ai(x'), As(x'), and A, (x') are plotted in
Figs. 2, 3, and 4 for various values of the scattering
length, ao. In plotting these curves, we have normalized
the Watson enhancement factor to unity at R'=4m '.
Thus no significance should be attached in Fig. 2 to the
relative magnitudes of the plots of Ai(x') for the various
values of ao. A similar statement hold for Figs. 3 and 4.

We have also calculated the correlation coeKcients
in the angular distribution averaged over R2:

G'm'-Mx'fs'
dl'=d cosgd&10 '

32(2~)s

X {Ai+gAs cosg+gAs sing sinP+g'A4 cos'8

+g-'As(1+2 sin'8 sin'P)). (12)

The values of A &, A ~, A &, A 4, and A 5 are given in Table I
as functions of the scattering length, ao. Again the
relative magnitudes of A~ for different values of ao

0
0.50 0.40 0.45

x'= R /M K

0.50 0.55 0.60 TABLE I. CoeAicients in the angular distribution for the decay
E+~m+m e+v as functions of the I=O, 1=0, ~-71. scattering
length, ap.

Fio. 2. The correlation coefficient Ai(x') for various values of oo.
All the curves go to zero at x'=1.

Qp A1 Ag

"The extra factor 3Ix 'in the h term PEq. (2a)g as compared
to the f and g terms (Eq. (2b)j ensures that the contribution to
the decay probability of terms involving h is small compared to
that of terms involving only f and g, unless h is much larger than
f or g. A rough estimate of h based on the dominance of nearest-
pole terms and on unitary symmetry considerations shows that
h is probably small compared to f."A large I=0, l =0~ scattering length is suggested by the
results of N. E.Booth, A. Abashian, and K. M. Crowe, Phys. Rev.
Letters 7, 35 (1961).

4.16
2.64
1.67
1.13
0.81
0.61

4.67
3,28
2.22
1,58
1.19
0,94

0
0.73
0.83
0.77
0.69
0.62

1.26
1.26
1.26
1.26
1.26
1.26

0.23
0.23
0.23
0,23
0.23
0.23

"K. M. AVatson, Phys. Rev. 88, 1163 (1952)."6. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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have no significance. The same holds true for A2 and

As. The ratio A,/As depends uniquely on u, , and can
be used to determine this quantity.

For as ——0, we have As fd——x'fg sin(8o —8r)T(x') =0
since sin(5o —Br) =0.

0.5

0.4-

0.3—

VI. RESONANCE MODEL

Another model for describing final-state effects in E,4

decays is that proposed by Brown and Iaier, ~ who

assumed that the I=0, 3=0 x-x scattering is dominated

by a postulated resonance, the 0., with mass about 400
MeV and width about 75 MeV. They used this model to
calculate various spectra for the decay E+—+ x+m e+v

as functions of the resonance parameters.
The existence of such a resonance could be decided

on the basis of the effective-mass spectrum of the pions
and from the peculiar behavior which it would cause in

angular correlations in the vicinity of the resonant

energy. If 8& is indeed small, the up-down asymmetry
of the positron should have a peak at this energy, while

the forward-backward asymmetry of the m+ should go
through zero, since bs would pass through rr/2.
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APPENDIX A. PHASE-SPACE INTEGRATION

0.1—

0
0.50 0.35 0.40 0.45

x aR /MK

0.50 0.55 0.60

Fro. 4. The correlation coefiicient As(x') for various values of ao
All the curves go to zero at x'=1.

V.=(f/~-)R. +(g/~-)O. +('~/~- ) .„.R O K..
The total decay rate in the E+ rest system is given by

We define the following variables:

R=p++p; K=p,+p„;

Q=p+ p 'L=p—-p'—
The square of the matrix element $Eq. (1)) summed

over the lepton polarizations can then be written as

(27r) 45&4'(R+K—pre) (G'/2) T&"V„V),*, (A1)

where

TI'" = (K"K" L"L" K'fJ—"" ie„y—~sK,Ls)

and

In this appendix we present an outline of the phase-
space integration used to obtain Eq. (4).

where

r = LG'/(32(2n. )s3Ix)]I, (A2)

2.0-

1.5-

dp+dp dp~dp„

E+ E E, E„

Xb&4'(R+K pIr) T~"V„V),*.—(A3)

Vfe rewrite I as

I,O-
I=-,' d4Rd4K 6&4&(R+K pic)—

0.5—
dp+dp

5'4'(p++ p —R) V„Vy*
E+ E

0
0.30 0.55 0.40 0.45 0.50

x a R/M~

0.55 0.60
d pad pv

g (4)(p,+p„—It )Tpx .
E, E„

Fzc. 3. The correlation coeHRcient A2(x2) for various values of a0.
All the curves go to zero at x'=1. The integrations over the three 8 functions can be per-
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formed separately.

d4R d4'K 8&4&(R+K—pK)

d3E 'dM, „' d4Rd4E

M '—R') 8(M,„'—R')X t'1 "&/(R+K pK)—8(M

d'R dpK
'

dR'dE'

= 2r dR'dK'(P/MK), (AS)

edP can be expressin the K+ rest system; ca

the integrations overW
res ective rb functions in the p r

. s stem ofX8) in the c.rn. yh e d=(0, 8) v

ns. The unit vectors an v

the variableh'n ' fconvenient to c
I th K.2 P2) 1/2

2 — K2+

=M 4-'P dR0P',A(x') =MK

K R) —M

K2. e f integration isE'. The range o in e= (—1/2M K)dK2.

R ((1/2MK)(MK
V and evaluating

h' "'fB'""tobtain Eq. (4) for e e

x, .
'

hat equation are oB(x2), etc. int a
'

are o
following integrals:

.8&4&( ~+p —R) V„V1*
E+ E

=prP d cos8 V„V1, (A6)

where
P=(1—4222.2/ ')'";

and

g(4)(p yp K)T01
E, E„

'- 'R' dROK'PB(x')=MK

'—' 'R' dRoK'P'E(x') =MK

2
p 0

— ' dR0P' ~)
'4 ' MK dRpP'Rp —R d 0+(& ) MK 2P K 0 0 0

dQ dcos| T (A7)2

I can now be. The integral Iwhere we havee set m, =0.
wl i e'tt n in the form:

1

2 i/25 2 R2) 1/ 2 dR 1P2(K2) I /T(002) =MK ' P'—
2

2 C/2g -6 2(R2)1/2 dR PB(K2)1/U(x')= —MK '—P' R
I=z' dR' d cos0 d

2MK

-"-P (R) "V(x') = —MKd cos)T& . ASdK'PPV„V), 2

Integra iot on over cosf g1ves lP2 K2)1/2
~

2R0(K2)'"—R' dRpX~ MK dRpP'Rp

(T&")———,
' d cos| T&"

01 1K2(220/21 d0d1)'K0K" K'g ")+-—3

7r

dz 2 1/2~ ~p, a (A9)

e ra w
'

ot be evaluated inin termse wic o e
hf lementary fu

luated in termt can be eva usion for U(x2; 1 c
if desired.functions, i


