
FORM FACTORS IN ELECTRON —TRI NUCLEON SCATTERING B43$

discrepancy is due to the Irving-Gunn wave function
becoming too singular near the origin.

In summary, our analysis of electron-trinucleon elas-
tic scattering shows that (i) present theory is inadequate
to use electron-trinucleon scattering as a reliable means
of finding the electric form factor of the neutron; (ii)
the scattering can be interpreted to give an S' state
probability of either zero, or preferably of about 1%,
in contrast to the original interpretation of 4% prob-
ability and in agreement with later estimates'; (iii) the
slope P,v'(0) is not in serious disagreement with the

preliminary result" of Padgett et al. ; (iv) nuclear wave
functions for the trinucleon chosen with plausible shape,
and with parameters adjusted to fit the Coulomb en-

ergy, give good 6ts to the form factor for the dominant
5 state.
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It is shown that B.W. Lee's relation for nonleptonic hyperon decay can be derived from 7-L invariance
and n T=—„and that the vanishing of a (Z+ -+ rts.+) requires the additional assumption of It invariance. The
vanishing of o. (Z —& rts ) cannot be derived from these symmetries, and since there are no others applicable
to weak interactions in SU(3), it must result from weak-interaction dynamics. A comparison is made be-
tween this theory and those of Cabibbo and Coleman, Glashow and Lee. Mathematical aspects of T-I. in-
variance are discussed in an appendix.

I. INTRODUCTION

' 'N the first paper' of this series, a theory of weak
~ - interactions was proposed within the framework of
unitary symmetry. ' Several properties of nonleptonic
hyperon decay, including Lee's relation"

and
n(Z+ ~ tt7r+) =0,

were derived from the AT= 2 rule', T-L, invariance and
R conjugation. Despite its empirical success, this
derivation can be criticized on the grounds that R
conjugation is not a valid symmetry of strong inter-
actions and should not be applied to weak ones. It is
therefore desirable to asia whether the results in (1) and

(2) can be derived without R conjugation.

*Work supported in part by NSF and U. S. Air Force.
' S. P. Rosen, Phys. Rev. Letters 12, 408 (1964).
'M. Gell-Mann, California Institute of Technology Report

No. CTSL-20, 1961 (unpublished); Y. Ne'eman, Nucl. Phys. 26,
222 (1961).

3 B. W. Lee, Phys. Rev. Letters 12, 83 (1964).
4 M. L. Stevenson et at. , Phys. Letters 9, 349 (1964). For a

summary of other data on nonleptonic hyperon decay, see F. S.
Crawford, Proceedings of the International Conference on High-
Energy Nuclear Physics, Genoa, I96Z (CERN Scienti6c Infor-
mation Service, Geneva, Switzerland, 1962), p. 827.' For a discussion of the d, T=,'- rule in nonleptonic decay, see
R. H. Dalitz, International Conference on t undamental Aspects of
Weak Interactions (Brookhaven National Laboratory, Upton,
New York, 1964).' M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).

Associated with this question is another, more
general one. In any theory of elementary particles, the
symmetries of weak interactions are limited by electric
charge conservation. 7 Their number varies from one
theory to another, and so does our ability to derive the
properties of weak decays from them. In global sym-
metry, ' for example, three weak symmetries are avail-
able, and when combined with hT= —„they predict all
the properties of nonleptonic hyperon decay. o By con-
trast, unitary symmetry contains only two weak sym-
metries, namely T-I. invariance and R conjugation. '
Since they are not as rich in predictions as the global
symmetry ones, we must ask to what extent do they
account for nonleptonic-hyperon decay.

The usefulness of this question arises in the following
way. If a given property can be derived from symmetry
principles, it may not cast much light on the dynamics
of weak interactions. If, however, it is not derivable
from symmetry principles, it must be a consequence of
dynamics, and hence it provides a definitive test for
dynamical models. A case in point is the vanishing of
cr(& —+rt7r ). As shown below, this result does not

' S. P. Rosen, Phys. Rev. 135, 81041 (1964).
s A. Pais, Phys. Rev. 110, 574, 1480 (1958); 112, 624 (1958).' S. P. Rosen, Phys. Rev. Letters 9, 186 (1962).' The conservation of electric charge can be expressed in the

form (Ref. 7), ttQ=—ttFr+nFz This relation is invariant only
under (F'r ~ F's, Q ~ Q), and (Q, F'r Ys)~(—Q, —F'r, —FL).
The former corresponds to T-I transformations and the latter to
2 conjugation.
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follow either from T-L invariance or from E. conjuga-
tion. Therefore, the prediction4

n(Z ——+ r'm )=0- (3)
is an essential criterion for the success of a dynamical
model of weak decays.

To a lesser degree, the same may be said about
n (Z+ ~ m.+). We shall see later that Eq. (2) is 'deriv-
able only with the aid of E. conjugation. This derivation
is subject to the criticism made in the first paragraph,
and so its validity is rather doubtful. It is still possible,
however, that the dynamics are such as to make E
conjugation an effective symmetry of weak interactions. '

As indicated in our opening remarks, T-L invariance

may be the only valid symmetry of weak interactions.
The T-L transformation was originally defined as an
interchange of isotopic spin and L-spin quantum
numbers, ' and as such it can be generated by any one of
a large number of SU(3) transformations. " These
transformations all permute a unitary multiplet in the
same way, but each one associates a different set of
phases with the permutation. Since weak interactions
are not invariant under the full SU(3) group, differences
of phase may lead to different physical consequences.
Therefore, when we make statements about the con-
sequences of T-L invariance, we must state precisely
which form is being used.

Throughout the analysis we shall assume time-
reversal invariance. When Anal state interactions are
neglected, this assumption leads to "crossing" relations
between the matrix elements (YlBir& and &Bl Yir*&.

They are very useful in deriving the consequences of
weak symmetries, but must be used with some care. It
turns out that the crossing relations engendered by
derivative coupling in the effective Harniltonian are
different from those engendered by nonderivative
coupling. As a result, a given symmetry will not have
the same consequences in one coupling scheme as it does
in the other; however, this difficulty can be overcome
by appropriate use of parity.

Our discussion is divided into five parts. We first
analyze the crossing relations implied by time reversal
invariance (Sec. 2) and then derive Lee's relation from
T-L invariance and DT= 2 (Sec. 3). To show that this
symmetry alone has no other observable consequences,
we analyze in Sec. 4 the structure of the effective Hamil-
tonian. Next we determine the consequences of E
conjugation (Sec. 5). In the final section, we compare
our theory with those of other writers. Mathematical
aspects of the T-L transformation are examined in an
appendix.

2. TIME-REVERSAL INVARIANCE AND
CROSSING RELATIONS

The most general, relativistically covariant Hamil-
tonian for

"S. P. Rosen (unpublished). See Appendix below.

includes both derivative and nonderivative coupling of
the pion field. If F and 8 are approximated as free
particles on the mass shell, the derivative coupling can
be reduced to a nonderivative form by means of the
Dirac equation. It follows that the effective Hamiltonian
need include only one type of coupling.

In the nonderivative coupling scheme, the effective
Hamiltonian is

ga=g~ ) t"~=g'~ ~ (6)

Because the pion is pseudoscalar, Eqs. (5) and (6) lead
to "crossing" relations

&Yl~-&..=+&~I Y-*),.
(YI&-&.-=-(~l Y-*&,-,

(7)

where pc denotes the parity conserving (E-wave pion)
amplitude and pv the parity violating (S-wave pion)
amplitude. Notice that (7) must be treated not as a
precise equality, but rather as a "functional" equality':
that is, the left-hand side is a function of the dynamical
variables (mass, momentum and spin) of Y, 8, and vr,

and apart from the indicated sign, the right-hand side
is the same function with the variables of Y, 8, vr,

replaced by those of 8, Y, x*, respectively.
A similar analysis of the derivative coupling scheme

leads to different crossing relations":

&Yl~-),.=+&~I Y-*&,.
&YII -&,.=+(~l Y-*)„.

To understand the difference between (7) and (8), we
first note that the four coupling constants, g„g„,g„g,
(the last two refer to vector and axial vector inter-
actions, respectively), are taken to be independent of
the masses of Y and 8, and are therefore symmetric
under the interchp, nge my ~ m~. Next the scalar and
pseudoscalar coupling constants which arise when
derivative coupling is reduced to nonderivative form,
are given by:

g.'= (mr m~)g. , —
g„'= (mr+my)g. .

g,
' is antisymmetric under m& ~m&, while g„' remains

symmetric. It is precisely this antisymrnetry that
removes the negative sign in (7) and yields the crossing
relations of (8).

Now consider the decay modes ™~Aw
— and

A~ per If R conj. ugation is a valid symmetry, then

(10)
"A. Pais, Phys. Rev. 122, 317 (1961).

~='CY(g.+g."»j-+'C~( g.*+g-.*~.)»-, (»
where g, and g„are the scalar and pseudoscalar coupling
constants respectively. Time reversal invariance and
the neglect of final-state interactions imply that g, and
g„are real:



UN ITARY 8YM IVIETRY AN 0 KEAK INTERACTIONS. I I I

From (7) and (10), we find'"' The n.ost general form of an octet-type Hamiltonian

&=--l~=),.=-&~lp=)...
&=--I~--).-=+&~Ip=)...

which implies'

1s

IIivr, =&Ds'+ pDss,

where, from time-reversal invariance, the coefficients n
and p are real. Now, under any T Ltr-ansformation, "

(12) D,3 ~ g'&D,', (17)
If we use (8) instead of (7), then"

&=--l~--&=-&~l p=&

for both pc and pv amplitudes, and hence

(13)

where the phase factor y varies from one transformation
to another. Because of the reality of n and P, there are
only two choices of q, n, p, such that IIivz, is symmetric
with respect to (15), (17):

cth. =+cts ~ (14) p=0, n=P, (18a)

Thus, the two types of coupling have different physical
consequences, even though the same symmetries are
used.

It also follows from this argument that if the ob-
served relation4'4 a~= —n-. is to be derived from R
invariance, we must use nonderivative coupling in the
effective Hamiltonian. If, however, R invariance were
replaced by invariance under the product RP of R
conjugation and parity, then derivative coupling
LEq. (8)j, would yield the desired result. In other
words, by modifying the symmetry principle, we can
derive the same result from one coupling scheme as we
derived from the other.

This example illustrates a general rule:

If a given result follows from an invariance principle I
and explicit use of nonderivative coupling Lor equi-
valently, the crossing relation in (7)j, then it also
follows from IP and derivative coupling LEq. (8)j.

&Z+Inm+&=(Z
I

s.-&, (19)

2(z I=. ~'&+~~&z'l~~')+~&~I p~ )
=&2&Z

—
I
-'~—), (20)

&Z-
I

=-K')—43&A I
=--K+)=&Z+

I
pK'& —v3&h I px

—), (21)

for both pc and pv amplitudes. %e eliminate the un-
observable matrix elements" &Z I ~) and reduce
(19)—(21) to one equation. Lee's relation then follows
from (8) and the predictions of BT=-,':

(18b)

Accordingly, we need consider only two forms of T-L
invariance, one corresponding to (18a) and the other
to (18b).

Before the consequences of (18a) and (18b) are com-
pared, it will be convenient to show how Lee's relation
LEq. (1)) may be derived. Our method depends upon
three relations.

Consequently, it does not matter which coupling scheme
we use; for convenience, however, we choose the
derivative form, and hence the crossing relations of (8).

~2&z'I p-') =&z-l.=&-&z'I - ),
2&ZoI~ ')=&a-in -&+&Z+in +).

(22)

3. 7-L INVARIANCE AND LEE'S RELATION

In general, the SU(3) transformation properties of
nonleptonic decays are very complicated, even when
they satisfy the dT= —,

' rule. They can, however, be
greatly simplified by means of the transformation':

(T,Ts,Yr) ~ (I., Ls, Yr), —
(E,Es, Yrc) ~ (E, Es, Yx) . '—

It has been shown elsewhere' that if the nonleptonic
decay Hamiltonian H~& satisfies AT =

~ and is
symmetric with respect to (15), then it must transform
according to the eight-dimensional representation of
SU(3). Since by definition& all T Ltransformations"-
give rise to (15), this result holds for all forms of TL-
invariance.

"We use a sign convention such that (s+)~=—s+, (s-')*=so;
see Ref. (11).' L. Bertanza, V. Brisson, P. Connolly, E. Hart, I. Mittra,
G. Moneti, R. Rau, N. Samios, I. Skillicorn et a/. , Phys. Rev.
Letters 9, 229 (1962).

Our problem now is to relate (19)—(21) to the
possibilities for II~r, in (18).For the T Ltransformation-
corresponding to (18a), we choose T-L(1), where"

T-L(1): (&)~ (p, s (Z' —~3~') —=
——(V3Zs+A ) Z+ —E' —e, —Z ) )

(8)—= (Z+Z'Z A pePZ ) (23)

and for (18b) we choose T-I-(2)":

T-L(2) (8)—& (—p -'(Z' —%38) .
——,'(%3Zs+h); Z+,=-',n, —Z-). , (24)

The corresponding transformations for pseudoscalar
mesons are obtained by substituting

(8) (~+~'~—
g E+ E' —E' E)—

in (23) and (24).
The first point to notice is that (19) follows from

T-L(2) invariance but not from T-I.(1). To show this,

"The occurrence of unobservable matrix elements cannot be
avoided in any- theory constructed from baryon, antibaryon, and
meson octets.
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we consider the matrix element for "'—+eE.' The
combination of T-L(1) and (8) leads to a trivial
identity for this matrix element; however, T-L(2) and

(8) imply that
(26)

From (26) and the AT=-.,' rule, we obtain

(-'i pE —)=(=—irsE—). (27)

Equation (19) now follows by applying T-L(2) and (8)
to (27).

Similarly, Eq. (20) is a consequence of T-L(2) rather
than T-L(1). According to the AT= ', rule—

(~ I= ~')-~2(~'I='~')= —v2(~ I-"'~ )
&Z- [=--~)—VZ&Zo

i
=-o~)=0.

If we apply T-L(1) to the left-hand side of (28),
eliminate the g meson, and use

&A (
p~-) = —v2(A )

~~') (29)

we obtain an equation which differs from (20) only in
the sign of (Z

~

's. ). T-L(2), however, yields (20)
precisely.

By contrast, Eq. (21) can be derived from T-L(1)
and from T-L(2). We apply either of these symmetries
to

and then use (8)" together with

(31)

Equations (29)—(31) are consequences of the AT= —,
'

rule.
It is now clear that if we wish to derive Lee's relation

(1) for pc and pv amplitudes simultaneously, we must
assume T-L(2) invariance and not T-L, (1).If, however,
we consider the two types of amplitude separately, then
there exists an alternative derivation. To see why, we

note that T-L(2) invariance requires Hzz, to be odd
under the permutation of indices" 2 and 3 [see (16),
(18b)].Another way of making Hzz, odd is to leave the

pc part T-L(2) invariant but to make the pv part
invariant under the product T-L(1)XF, where F
denotes the parity transformation. The arguments
leading to (19)—(21) in this alternative scheme are
essentially the same as above.

One other modification can be made in the arguments
above, namely the use of the crossing relations (7)
instead of those in (8). Lee's relation is then derived
either from invariance under T-L(2) XP, or by making
the pc part of H~r, T-L(2) invariant and the pv part
T-L(1) invariant. Equations (19)—(21) are still valid
for pc amplitudes, but the corresponding equations for
pv amplitudes involve some differences of sign.

"Use of this permutation has also been made by B. Sakita,
Phys. Rev. Letters 12, 379 (1964); and by Y. Hara, ibid. 12, 378
(1964).

(Ds-) ss+ (s.D)ss,

(Fs.)ss+ (m F)ss,

[10], —[10*],&,

[10]sss—[10*]s's.

[2&]ss~+[2)]s'~,

(32)

where the [10], [10*],and [27] terms are defined by
Okubo '~ and

(AB)p Ag Bp"——
[X]p 7r = [X]p"„7rf

(33)

D and P refer to the usual R symmetric and R-anti-
symmetric octet couplings respectively. '

Each term in (32) is an admixture of parity conserv-

ing and parity violating interactions. Because we assume
derivative coupling and time reversal invariance, the
pc and pv parts of H~l, have the same general form and
their space-time dependence can be suppressed. Notice
also that the second half of each term in (32) is the
Hermitian conjugate of the first.

According to AT= —,', there are four independent
amplitudes for observable decays (one each for . and
A decay, and two for Q decay; each amplitude is, of
course, an admixture of pc and pv parts). Since there
are five terms in (32), the octet-transformation property
of H» leads, by itself, to no observable consequences
other than those of hT= —,'."The only effect of T-L(1)
invariance is to equate the coefiicients of the two [10]
terms, and hence to reduce the number of independent
terms to four: again there are no observable conse-
quences. On the other hand, T-L(2) removes the [27]
term and makes the coefficient of the [10]terms equal
and opposite. Thus there will be three independent
terms and hence, only one new relation, namely Lee' s
[see Eq. (1)], for observable decays. It is easy to see
that the same conclusion holds for the alternative
derivation of (1) (see Sec. 3).

The number of independent terms is further reduced
if we assume EP invariance in addition to T-L(2). The
surviving ones are two pc terms (one from D and the
other from [10])and one pv term, which arises from

"S. Okubo, Progr. Theoret. Phys. (Kyoto) 28, 24 (1962).
"B.W. Lee and S.L. Glashow (unpublished, 1964).

4. THE EFFECTIVE HAMILTONIAN

To show that T-I. invariance alone has no further
consequences, we must examine the structure of H~l, .

As pointed out in Sec. 3, H~l, transforms according
to the eight-dimensional representation of SU(3). A
convenient way of constructing it is to combine baryons
and antibaryons into various multiplets and then to
combine each of these with the meson octet m„&. Al-
together there will be eight independent terms. In three
of them, the ~-field always occurs with an index 3, and
since this index refers to a E-meson, these terms do not
contribute to observable decays. The five remaining
terms are
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F-type coupling. We therefore expect one more relation
among pc amplitudes and two more among pv ampli-
tudes. They are investigated in the next section.

S. R INVARIANCE AND THE PROPERTIES
OF X+ —& ne+

We now consider the effects of adding RP invariance
to the symmetries used in Sec. 3. Under R conjugation,
baryons transform according to the rule":

(J3)~ (Z- —Z" Z+ —cV —=-- =-' n —p). (34)

The corresponding rule for pseudoscalar mesons is given
by (25) and (34). It is easy to see that if RP is applied
to (19), then"

(35)(Z+~m+), =0.
In other words, the asymmetry parameter for Z+ —+ em+
must vanish [see Eq. (2)$.

As already shown in Sec. 2, RP invariance implies
up= —u-. via Eq. (11). Combining (11) and (1), we
find

which implies that no and nz are roughly equal in
magnitude, but opposite in sign."

Notice that the roles of pc and pv amplitudes in (11),
(35), and (36) are not unique. They can be interchanged
merely by introducing an overall change of sign. '9 in
(34). Hence we cannot draw a firm conclusion about the
angular momentum of the pion in Z+ —+ ex+.

Equations (35) and (36) comprise the additional
relations referred to at the end of the previous section.
Since we have now exhausted the predictions of T-L(2)
and RP invariance, and since there are no more weak
symmetries available in SU(3), we cannot derive4

u(Z ——+ ms=) =0 (3)

from symmetry principles. It must therefore be a
dynamical effect.

I

6. SUMMARY AND DISCUSSION

We have shown that B.W. Lee's relation among the
amplitudes for nonleptonic hyperon decay [see Eq.
(1)j can be derived without using R conjugation. It
follows from (i) time reversal invariance, (ii) the
AT=s rule, (iii) T-L(2) invariance [see (24), (25)j,
(iv) derivative-type crossing relations [see (8)j.On the
other hand, the vanishing of u(Z+ ~ r44r+) can be
derived only if another condition, (v) RP invariance is
added to the list.

An alternative derivation is obtained by replacing
(iii) and (iv) with (iii) T-L(2) invariance for pc inter-
actions, T-L(1) invariance for pv interactions [see
(23)$, (iv)' nonderivative crossing relations [see Eq.

"For operators, 8 'DpR= —D„" (see Ref. 1, footnote 12); for
state vectors, R

~
Dp) =X

~
D„'), where )i is an undertermined phase

factor. In (34), we take ii= —1.

(7)$. Again, u(Z+ ~ris-+) will vanish only if R con-
jugation is used. The assignment of crossing relations
in (iv) and (iv)' is not essential; if it is changed, how-
ever, the conditions (iii) and (iii)' must be modified
(see the final paragraphs of Secs. 2 and 3).

The only other consequences of (i)—(v) are contained
in Eqs. (11) and (35). Since there are no more weak
symmetries in SU(3), the vanishing of u(Z ~ris. )
must result from the dynamics of weak interactions.

We may compare our method for deriving Lee' s
relation with that of Coleman, Glashow, and Lee."
Theirs also does not require R invariance, but depends
instead upon octets of scalar and pseudoscalar spurions
with definite-charge conjugation properties. Now the
component of the spurion octet which enters into
nonleptonic-decay transforms like a E' meson, and its
charge conjugate like a E'. Since E' and X' are the
Dss and Dss components of an octet, and since T-L(1)
invariance requires the Hamiltonian to be even under
2~3 [see (16) and (18a)j, it follows that the use of a
spurion with even charge conjugation parity" is equi-
valent to assuming T-L(1) invariance. Similarly a
spurion with odd charge conjugation parity is equi-
valent to T-L(2) invariance. Thus the method of
Coleman, Glashow, and Lee" is completely equivalent
to ours.

There is one difference of approach that is worth
noting. By using spurion octets, Coleman, Glashow, and
Lee' assume that the nonleptonic decay Hamiltonian
itself transforms as a member of an octet; from this
they can deduce the AT= —', rule. In our approach we
assume AT = —, and combine it with T-L invariance to
deduce the octet transformation property of the
Hamiltonian. ~

Our last point concerns the Cabibbo theory. " As
noted in a previous paper, " it leads to a nonleptonic
decay Hamiltonian that is T-L(1) invariant. Conse-
queritly, it predicts Lee s relation for parity-violating
amplitudes, but not for parity-conserving ones. ' "

APPENDIX: THE T-L TRANSFORMATION

In this appendix, we examine those SU(3) trans-
formations that interchange isotopic spin and L-spin
[see Eq. (15)). We show that they are distinguished
from one another not by the way in which they permute
a unitary multiplet, but rather by the phases they
associate with the permutation. As special cases, we
determine the T-I (1) and T-L(2) transformations of
Eqs. (23), (24).

We begin our analysis by classifying ari arbitrary
octet with respect to T, E, and L spins. The isospin

'0S. Coleman, S. L. Glashow, and B. W. Lee, Ann. Phys.
(N. Y.) (to be published}; see also S. Coleman and S.L. Glashow,
Phys. Rev. 134, 8671 (1964)."Qur assignment of charge conjugation parity may differ from
that of other writers (Gell-Mann, Refs. 2 and 6; Coleman,
Glashow, and Lee, Ref. 20) because of the way in which we
identify mesons with components of an octet (see Ref. 11).

ss N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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TABLE I. Isotopic spin classification of an octet. sides of (A3) with D„&, and use the Jacobi identity

0 0

T3 —+ increasing

1—D2' —(D22 —Dj'), D12
V2

V3
D 3

W2

D2', Dp
D3', —Ds'

2+-Di2, Z'- (1/K2) (D22 —Di'), Z———D2',
Ao- —(W3/V2)D, ',

p~Di 1Z~Dg ' Z ~ D3 Z ~Dg
(AS)

The required result follows from Tables I—III.
We now use Table I to identify baryons with the

components of the octet:

classification enables us to identify ea,ch baryon (and
each meson) with a definite component of the octet,
phase included: we find, for example, that Z+ D1 and
Z —D2'. Using this identification, we can then
determine their IC-spin and L-spin properties, again
with the correct phases.

Our method is based upon certain sets of commuta-
tion relations. In unitary spin space, the components
D„I' of a traceless tensor operator satisfy"

5(1, +1)= w —(Si=tiS,) .
v2

(A6)

Their E- and L-spin properties now follow from (A5)
and Tables II and III. To obtain the corresponding
properties of pseudoscalar mesons, we use the sub-
stitution of Eq. (25).

Equation (A2) demands that the spherical com-
ponents of an isovector be related to its Cartesian
components by"

(A1) For 7r mesons, this implies

where Bs is an infinitesimal generator of SU(3). In
isospace the components of a spherical tensor 5(k,q)
satisfy24 and hence"

~~ = w—(~iai~2)
V2

[T,S(k,q)]= [k(k+1)—q(q&1)]'"5(k, q&1),
[T3,S(k,q)]=q5(k, q), (A2)

[Yp,S(k,q)]= Yr 5(k,q),

where V&. is the hypercharge quantum number. By
identifying isospin and hypercha, rge with certain
generators of SU(3)," we can use (A1) and (A2) to
identify each D„I" with an S(k,q). The results are dis-
played in Table I. Notice that the numerical factors in
the T3 ——0 terms a,rise from the norma, lization of the
D @26

The E- and L-spin classifications are determined in
exactly the same way, "and are displayed in Tables II
and III. It should be noted that these classifications are
not entirely independent of one another. In particular,
they must be consistent with such commuta, tion
relations as"

[T',L ]=E+. (A3)

To show that they are, we take the commutator of both

"S.Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962)."D. M. Brink and G. R. Satchler, Angzdar 3Iomeetum (Claren-
don Press, Oxford, England, 1962).

"See Ref. 7, Kq. (11).
'6 The normalization of D I',

(D,t",D& ) =-81" b,~ (p, Wv),
=-,'8 B,p (y=v),
=. —s 6 =~, ~=I, «)i,

is determined by the traceless condition Dp&=0.
'7 See Ref. 7, Eqs. (9) and (11).This point has also been dis-

cussed by P. Jassallette, Nuovo Cimento 32, 136 (1964).J. J. de-
Swart, Rev. Mod. Phys. 35, 916 (1963).

(A7)

Another point about (A2) is its consistency with the
Condon and Shortley" phase convention for spherical
harmonics. It allows us to use standard Clebsch-Gorda, n
coefficients" for the addition of isospin. The same is
true for E spin and L spin.

A comparison of Tables I and III indicates that
transformations which interchange isospin and L spin
must intercha, nge the indices 2 and 3. To analyze such
transformations we work in the three-dimensional space
from which SU(3) is generated.

In this space, cogredient vectors
r
X1

X=— X2

TABLE II. E-spin classification of an octet.

0,

E3 —& increasing

1
D32 {D33 D22) D23

V2

v3
Dll

V2

D3' D2'

DP —D13

"E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1959), p. 52.



UNITARY SYMMETRY AND WEAK INTERACTIONS. III a 437

Yawl, z III. L-spin classi6cation of an octet.

Ls —+ increasing

1—Dp, —(Dz' —Da') D3'
v2

V3
D 2

v2

DP DP
D3 D 1

transform like"

and contragredient ones

The simplest choices of n, P, y consistent with y=0, 7r

[see Eq. (18)]are:

(i) q =0: a=P=y=~,
(ii) q =m". n=y=0, P=7r,

and the corresponding transformation matrices are

0 0 1 0 0
Ug= 0 0 —1, Us= 0 0 —1 . (A15)

0 —1 0. .0 1 0,

U~ engenders the T-L(1) transformation [see Eq. (23)]
via (AS), (AS)—(A10), and Us engenders T-L(2) [see

(A&) Eq. (24)].
With an appropriate representation of the generators

of SU(3)," it can be shown that

like"

Te 0 0
U= 0 0.0 e'& 0 i

where, from the unimodular condition,

n+P+y= (2n+1)s.

(A11)

(A12)

and e is a positive integer. There are infinitely many
choices of n, P, y consistent with (A12), and hence there
are infinitely many transformations which engender
Eq. (1S). It is also obvious that they differ from one
another only in the rnatter of phase.

In general, the phase angle q of Eq. (17) is given by

(A13)

"R. E, Behrends, J. Dreitlein, C. Fronsdal, and 3. W. Lee,
Rev. Mod. Phys. 54, 1 (1962).

The matrix U is unitary and unimodular. One way of
extending a given transformation to higher repre-
sentations of SU(3) is to note that the basis of any
representation can be constructed from products of
I's and X's: for example"

(A10)

Another is to express U in terms of the generators of
SU(3) and then use commutators such as those in (A1).

The most general transformation that interchanges
the indices 2 and 3 is

U, = exp[—i~(-;I'x+ Z', )],
Us ——exp[ —i7rEs],

Eg+iE2 ——Ep.
(A16)

We note that U& is precisely the Weyl reQection lV& as
defined by Macfarlane, Sudarshan, and Dullemond. "
The other two Weyl rejections interchange 1, 2, and
3, 1, respectively, and by analogy with (A16) they can
be expressed as

II &= exp[ is (s I'z+Tg)],
Ws ——exp[ —im (s I'r, +Lg)].

(A17)

It also appears that U2 is a special case of a more
general transformation discussed by d'Espagnat and
Prentki. "

Pote addedim Proof. In Cabibbo's theory, "weak inter-
actions are engendered by a Hamiltonian:

II=JtJ
J= cosHDP+ sin8DP .

(A18)

The terms giving rise to nonleptonic decays, namely
sino cos9(DPDs'+DPDs') are invariant under T-L(1),
but not under T-I.(2).

Finally, we note that Eq. (AS) can be used to derive
the rule for R conjugation given in Eq. (34).

30A. J. Macfarlane, E. C. G. Sudarshan, and C. Dullemond,
Nuovo Cimento 30, 845 (j.964).

3' B. d'Espagnat and J. Prentki, Nuovo Cimento 24, 49'j
(1962).


