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CERN group" measured scattering in carbon to the
ground state and 6rst few excited states, and compared
directly with electron scattering results. The previous
University of Washington experiment' was, like the
present one, the summed elastic plus inelastic scattering
in carbon. Most of the data was at momentum transfers
below 200 MeU/c, and agreement with the low-
resolution sum rule was obtained.

The present experiment is marginally able to dis-
tinguish some interesting features of nuclear models in
light nuclei. Improved muon beams at high intensity

' A. Citron, C. Delorme, D. Fries, L. Goldjahl, J. Heitze,
G. E. Michaelis, C. Richard, and E. Overas, Phys. Letters 1, 175
(1962).

"G.E. Masek, L. D. Heggie, Y. B. Rim, and R. W. Williams,
Phys. Rev. 122, 937 (1961).

accelerators should make possible some analysis of the
energy and nature of the scattered particle, thereby
placing the muon in a position more nearly competitive
with the electron as a probe of medium and long-range
nuclear structure. However, short-range correlations
will require a better tool than the sum rule.
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A Wigner representation is used for expressing the thermal average occurring in the Van Hove formalism
for slow-neutron scattering from macroscop c systems. For quadratic and lower-degree potentials, results
in closed form may be obtained, and in general, an asymptotic series expansion in powers of k is still possible
for the incoherent part of the di6'erential cross section for quasiclassical systems. The lead term of this
asymptotic expansion results in an expression relating the cross section to a four-dimensional Fourier in-
version of the classical space-time distribution G, '(r, t), and hence to the classical motions of the atoms in the
scattering system. Correction terms of 0(h') have been obtained explicitly and found to be small for systems
at ordinary temperatures. It is shown that (at least to order h') the results obey the constraint of detailed
balance and satisfy the Placzek moments. It is also shown that because of the contact nature of the Fermi
pseudopotential, the exact classical limit (h—+0) for any system is the ideal-gas result. In principle, the
results can be extended to all orders of 5 . No similar asymptotic expansion appears to exist, however, for
the coherent cross section. The analysis is then used for deriving other existing prescriptions and for examin-
ing their implications and range of validity.

I. INTRODUCTION

A GENERAL approach to neutron scattering by
arbitrarv systems of atoms has been presented by

Van Hove, ' based on the Fermi pseudopotential ap-
proximation. ~ In this approach, the differential scatter-
ing cross section is expressed as a four-dimensional
Fourier transform of a space-time correlation function
G(r, t). Such a formulation appears, then, as a natural
time-dependent generalization of the Zernike-Prins
"static approximation, '" in which the difterential
scattering cross section is given in terms of the well-
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known pair distribution function g(r). In fact, the latter
function is equal to the nondiagonal component of G(r, l)
evaluated at t= 0. (Actually, the Van Hove approach is
directly applicable to describing system response to any
external probe. However, since the major application of
the method has been in the Geld of neutron scattering,
we shall discuss it in that context. Translation to other
problems is, in most cases, immediate. )

Accurate calculations of G(r, l) are possible only for
systems where the Inany-particle Hamiltonian may be
replaced bv a sum of single-particle Hamiltonians. This
is the case for dilute gases and simple crystals, for which
the predicted angular and energy distributions of the
scattered neutrons are, indeed, in good agreement with

experiment. For dense Quids, on the other hand, the
complexity of the atomic dynamics is much greater than
in the above mentioned cases, and a calculation of G(r, t),
by reduction of the problem to a soluble one-body,
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problem, necessitates highly simplifying assumptions in
the specific dynamical models used.

There is, however, an alternative approach to the
analysis of neutron scattering experiments based on the
physical interpretation of the space-time correlation
function G(r, t) in the limit h —+ 0. In this limit, G(r, t)
represents the conditional probability density that given
an atom at the origin at time 1=0 there will be an atom
(the same or another) at position r at time t. We shall
denote the function by G'(r, t).

The plausibility of this approach is then subject to the
existence of a relationship between this classical G'(r, t)
and the differential scattering cross section. Establishing
such a connection, however, is not as simple as might
at 6rst be assumed. Various semiempirical prescriptions
have been proposed to this end. The most intuitive of
them results simply from replacing G(r, t) in the Van
Hove formalism by the function G'(r, t). This, as ob-
served by Vineyard, 4 corresponds to a development in
which the neutron is treated quantum mechanically
and the scatterer classically. It has the unsatisfactory
features that recoil effects are inadequately treated in
that the average energy loss is set equal to zero, and
that, as observed by Schofield, ' it violates the con-
straint of detailed balance. Schoield has suggested a
recipe to remedy these defects in which he sets G'(r, t)
equal to G(r, t+iPt't/2), where P=1(knT, instead of
G(r, t) and asserts its validity to first order in t't.

(kit ——Boltzmann constant, T= absolute temperature. )
This assertion is not entirely correct, however, as

may be seen from the fact that the prescription fails to
yield the exact results for the ideal monatomic gas, for
which the cross section is, in terms of the significant
variables Ap and c (dp, e=momentum and energy
transfer, xespectively), actually independent of k.

All of this is discussed in a previous paper, ' where a
connection is made between G'(r, t) and the differential
scattering cross section, correct to lowest order in A, by
utilizing a Wigner representation ""for the thermal
average occurring in the expression for G(r, t) The.
Wigner representation, which we review elsewhere, '
results in the replacement of the conventional quantum
average by a phase-space average, over a signer dis-
tribution, of the "Weyl" equivalent" of the operator
present in the thermal average. The purpose of the
present paper is to extend the results obtained in Ref. 6.

4 G. H. Vineyard, Phys. Rev. 110, 999 (1958).' P. Schofield, Phys. Rev. Letters 4, 239 (1960).' R. Aamodt, K. M. Case, M. Rosenbaum, and P. F. Zweifel,
Phys. Rev. 126, 1165 (1962).

7 E. Wigner, Phys. Rev. 40, 749 (1932).
s (a) StNCkes im Statistical Mechanics, edited by J. DeBoer and

G. E. Uhlenbeck (North-Holland Publishing Company Amster-
dam, 1962). (b) H. J. Groenewold, Physics 12, 40 (1946).
(c) J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

M. Rosenbaum, thesis, The University of Michigan, Ann
Arbor, 1963 (unpublished); M. Rosenbaum and P. F. Zweifel (to
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'0H. Weyl, The Theory of GrouPs and Quantum Mechanics
(Dover Publications, New York, 1950).

In particular, it is shown that for the incoherent cross
section, this "Weyl equivalent" admits an asymptotic
series expansion in powers of A where the 6rst contribut-
ing correction to the leading term is of order h4 for
randomly oriented systems. By combining this expan-
sion with an expansion "of the Wigner distribution in
powers of A', valid for ordinary temperatures, we obtain
explicit corrections of order A' to the "quasiclassical"
approximation which we derive in Ref. 6. The approach
here is particularly convenient in that it shows sys-
tematically how, in principle, higher-order corrections
could be calculated.

It is further noted that because of the presence of an
essential singularity in G(r, t) the above indicated pro-
cedure may not be applied to the coherent component
of the cross section, the exceptions being the cases of
harmonic and lower degree potentials. This limitation
is not considered too strong, however, because the
interference scattering is quite insensitive to target
dynamics.

The analysis is also used for deriving other existing
prescriptions and to exainine critically their implications
and range of validity. Finally, numerical computations
are presented in which the cross sections for some simple
systems, as calculated by the Vineyard prescription,
are compared with the results of this work. "

II. DENSITY FLUCTUATION CORRELATION
FUNCTION IN THE WIGNER

REPRESENTATION

In the Van Hove formalism, the differential cross
section for scattering of slow neutrons by nuclei in an
arbitrary macroscopic aggregate is expressed as the
product of a function which depends only on the prop-
erties of the individual particles of the system with a
spectral function which depends only on the dynamics
of the scattering system. ' The latter, usually denoted by
S(hp, e) is defined as the time Fourier inverse of the
density fiuctuation correlation function x(&p,t)' ":
y(Ap, t)=1V ' Q Tr pexp ——Ap. R;

z
Xexp —Ap R;(t)

It

(For the sake of simplicity we consider only monatomic
and monoisotopic systems. ) Here, p is the von Neu-
mann" density matrix defined explicitly by

s

(2)
g v=1

u H. S. Green, J. Chem. Phys. ]9, 955 (1951)."M. Rosenbaum and P. F. Zweifel, in Brookhaven National
Laboratory Report BNL-719, p. 276, 1962 (unpublished)."D. Pines, The Many-Body Problem (W. A. Benjamin, Inc. ,
New York, 1961).

'4 J. von Neumann, Mathematical 'Foundations of Quantum
iVechaslcs (Princeton University Press, Princeton, 1955).
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property

exp[hrH A] exp[(i/h)Ap q,]
=exp[(i/h)Ap q, (hr)]. (11)

where
( 1)n

T(r)=e '~ P rn[hH A,A].er"
n=l

(14)

In these cases, the expression for p„may be obtained
in closed form and the calculation of x(Ap, hr) is
straightforward.

A. Asymptotic Exyansion of g(Ap, hr)

Except for the special cases mentioned previously, a
solution in closed form of Eq. (9) is impossible for the
following reasons:

(1) The operator exp[2TH sin(2 hA)] acting on

exp[(i/h)Ap q,] yields an infinite series; and
(2) p„(p,q) cannot be obtained in closed form

although, as mentioned previously, for a "quasiclassical"
system a series expansion in powers of A" is possible. A
similar expansion in powers of It for the rest of the
integrand in Eq. (9) is not possible, however, because
it contains an essential singularity at the point b=0.

All of these considerations lead us to attempt, then,
an asymptotic expansion'" for Q„(p,q, r). The term
exp[ —(i/h)Ay q] is retained i22 toto. To determine the
form of this asymptotic expansion, we note that

Equation (14) may be integrated formally, leading to
the integral equation

I'(T) = 1+ T(r') I'(r')dr'

which is readily solved by Picard's process of successive
approximations, yielding

T(.„)dr„, (,=,). (15)

Observing, however, that each term in the sum in
Eq. (15), when operating on exp[(i/h)Ap q], generates
an infinite series in powers of It, of which the lowest is
I|p, we can write

Q„(p,q, r) =exp[r(hH„A+A)] exp[(i/h) Ap q;]
= f(r) [1+hF1(r)+ h'F2(r)+ ], (16)

where

where

exp[2rH„sin(-', hA)] =exp[r(hH„A+A)], (12a)
and

f(r) =exp[hrH„A] exp[(i/h)Ap. q,] (17)

and
exp[r(hH„A+A)] =e"'H""e'"I'(r)

BI'(r)/Br= Y(r)I'(T), I'(r=0) =1,

(13)

( 1)n th)2n+1
2 P ~ ~

(V,V V„)(V,.V,)2 (12b)
n=i(2n+1)!(2J

Moreover, making use of the identity (A1) and Eqs.
(A2) and (A3) as proven in Appendix A, we get

f(0) =Q„(y,q,0)= exp[(i/h)Ap q;]
F„(0)=0, for 22) 0. (18)

The terms in the expansion (16) may be evaluated by
substituting this equation into the expression

(BQ„/Bt)(y,q, t) = (2/h)H„sin(-, 'hA)Q„(p, q, t) (19)

which describes the time evolution of the%eyl equiva-
lent of a Heisenberg operator, thus obtaining

f(r) [hF1(T)+h'F2(T)+ ] f(T)hH, „A[—1+hF1(T)+ .]
( 1 )m(h) 2m+1H A2m+1

4 (2m+1)!
where

F.= BP./Br.

(f(r)[1+hF1(r)+h'F2(r)+ ])=0, ( 0)

Grouping terms with equal powers of A, by explicitly taking into account that

h'm+'H A. 'm+'—[f(r)F„(r)]=h'm+'(V V V„)(V, V )2™{F„(r)e xp[ (i/h) Ap q+(ir/M)Ay y;
—(ihr'/2M)Ap. V, V (ih'r'/6M2). (p—V,)(Ap Vp, .V)+ . .])=0(h' +') (21)

yields the following set of differential equations for the first three terms in the expansion (16):

F,(r) H„AFp(r) =0, —
I'2(r) —H AP1(r) =0,

F2(r) —H„AF2(r) —(1/24)(ir/M)'(Ay ~2,.)'(Ap ~p,.V) =0.
'7 An approach somewhat akin to the asymptotic expansion of the WEB method.

(22)
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The solutions to these equations, with the initial conditions given by Eqs. (18), are

Fi(r) =F2(r) =0
F3(r) = —(ir4/96M')(hp V.„)'(.hp V „V).

(23)

Hence, Eq. (16) may be expressed as

0 (p,q, r) =exp[(i/h)hy q;(hr)][1—(ir'h'/96M')(hp V,,.)'(hp. V,,V)+0(h4)],

and inserting this result into Eq. (9) yields

X(hp, hr) =X ' p (exp[—(z/It)hp q~] exp[—,'hy. V„,]exp[(i/h)hp q, (Itr)]

(24)

X[I—(i&ar'/96)(hp. Ve)'(hy VQ, V)+0(&')])rw i (25)

where ( )zs denotes the phase-space average over p„.
Equation (25) is the desired asymptotic expansion. As
shown below, the contribution of 0(h') from the term con-
taining F3(r) vanishes for randomly oriented systems.
Retaining only the leading term in the asymptotic
expansion, which still contains A, and using the h term
of p„gives what we call the "quasiclassical" approxima-
tion. ' The first correction is of 0(h') and comes from the
h' term of p . The next term is of 0(k'); one contribution
comes from the h4 term in p„,. another comes from Iia

and Ii4. However, we consider only terms as high as A".

Note that Eq. (25) still contains an essential singu-

larity which, for the diagonal component of x, is only

apparent since in this case i = j; the term e( ' ")'i' ~~ is
canceled out by the first term resulting from a power
series expansion of q, (hr). It can be shown that only in
this case is it possible to have a power series expansion
for x. Hence, the following discussion will be restricted
to direct scattering.

B. Randomly Oriented Systems

If in the term involving F3(r) of Eq. (25) we write

hp. V;=p I
hp

I (~/~&i),
where

p—=hI q/lhIIlq I,
then

(exp[—(i/A)hy q;] exp[-,'hp V„,]F3 exp[(i/b)hy q, (h )])rw

iv4 O'V i 7. irhp'
ti'Ihpl' exp —hp p; exp —+0(h). (26)

963f' Bq,' M pg 2M

Moreover, for a randomly oriented system, x(hp, hr) can depend only on the magnitude of hp. Consequently,

x(hp, & )=x(lhyl, ~ )—=(/ ) x(lhyl, & )«..
It follows readily from this that the first term on the right of (26) vanishes, and (25) yields

X,(hp, kr) = (exp[—(i/lt)hp q;] exp[-', hp Vi,,]exp[(i/h)hp q, (hr)])rs+0(h') .

Introducing now the expansion

(27)

(28)p„=fN'(1+ O'A 2+ h4A4+ )

of the Wigner distribution function into Eq. (27) results in

X,(hp, hr) = (exp[—(i/h) hp q;] exp[2 hp V„,.]exp[(i/h) hy q, (hr)])& z
+It'(exp[ —(i /h) hp q, ]A2 exp[2hp V„,.]exp[(i/A)hp q, (hr)])zan+0(h'). (29)

Here the phase-space average is performed with respect
to the classical joint canonical distribution function

f~', and exp[-',-hp V ~,. lq, (t) is the vector position of the

jth particle at time t, subject to an impulse at )=0 of
the force

F;,=-'„.hyb(t) .

The above result is extremely useful because the
corrections of order A' to the "quasiclassical" limit come
only from p„. Note that this derivation is quite self-
consistent in that corrections of 0(h4) and higher could
be obtained in principle by straightforward extension
of the manipulations carried out so far. The analysis
becomes laborious, but at least the procedure is well
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de6ned. However, if correction terms of 0(h') to our
approximation are important (as is the case for systems
near absolute zero"), this approach is likely to be poor
anyway. Also, note that by partial integration of the
first term in (29), expPi2Dp V„,.]can be made to operate
on f~' As. will be seen below, this results in a particu-
larly convenient form for relating the quasiclassical

approximation to the classical singlet particle space-
time correlation function.

C. Corrections of O(h') to the "Quasiclassical"
Approximation

As previously observed, the second term in Eq. (29)
gives quantum-mechanical corrections to our "quasi-
classical" approximation and contains all powers of A,
the lowest being of 0(h'). Note, however, that retaining
terms of order higher than It' is senseless, since these
terms were neglected in the expansions of both Q„and
p„. Thus, expanding q, (hr) in this term in a Maclaurin

series and ignoring terms beyond 0(h) yields

h'(exp[ —(i/h)hy q;]A2 exp[~Ay Vi,,]exp[(i/h)hy ib(hr)])rc=exp[irkp'/2M](h'A2 exp[(ir/M)dp p, ])rc—(ih'r'/2M) exp[irhP'/2M]((dp V+V)A2 exp[(ir/M)ky p;])re+0(h ) .
Again, for a randomly oriented system, the term of 0(h') vanishes and

h'(exp[ —(i/h)hp q;]A2 exp[2hy. V„,]exp[(i/h)hy q, (hr)])ro
=exp[irhp'/2M](h'A ~ exp[(ir/M) Ay p;])r an+0(h'),

=exp[irAp'/2M]((1+ h'A 2+ ) exp[(ir/M) d y p;])&c—exp[i7 Ap'/2M](exp[(ir/M) hp p;])re+0(h'),

=exp[irDp'/2M] fi(p;,q, ) exp[(ir/M) Ay p;]d'P;d'q, exp[ir—Ap'/2M](exp[(ir/M) hp y, ])ran+0(h4), (30)

where
( p ) 3/2

fi(y q)=l —I
exp

(2~M)

pp, 2- - h2p2 (pp.2

ni(q, )+ I

—1 I(E—1) n2'(q;, r+q )V' 'Q(r)d'r+
2M 24M (3M

is the singlet specific distribution function evaluated in Ref. 11.
Substituting this formula into (30) and performing the indicated operations yields

h'(exp[ —(i/h)hp q;]A2exp[~hp V„,]exp[(i/h)hp q&(hr)])rc

p )hrhp~'= —-(&—1)I
I

exp
2 (6M j -2M

exp
r2+P2-

2MP
n2(q;, r+ q;) 7„'y(r)d'rd'q;+0(h'), (31)

where the classical specific doublet density distribution function m2' has been replaced to erst approximation by
the actual doublet density distribution function e2 after noting that

nm= n2'+0(h') .
It is conventional to rewrite this quantity according to"

where
(V—1)n2(q, , r+q, )d'rd'q, = (E 1)n(q, )n2(q, I

r+q;)d'—rd'q, ,

(X—1)n2(q;I r+q;)d'r

(32)

is the probability of finding a second unspecified particle in d'r about r given that the jth particle is in q, and
n(q, )d q, is the probability of finding the jth particle in d q, about q;. In a fluid, n2 can depend only on

I
r+ q;—q; I

= r
and Eq. (32) simpli6es to

(iV—1)n2(r)d'rd'q; =n(q, )g(r)d'rd'q;, (33)

where g(r) is just the familiar radial distribution function obtained experimentally from x-ray scattering. Sub-
stituting this expression into (31) and integrating over q; results in

h'(exp[ —(i /)hh yq;]A2 exp[—,hp V~,]exp[(i/h)hp q, (hr)5)ro

p hrDpy' irAp' — r'-Ap'--
I

«p ——exp — — a(r) V,'y(r) d ryo(h ) . (34)
2 6M I 2M 2illlp

'8 T. R. Hill, Statistkal mechanics (McGraw-Hill Book Company, Inc. , New York, 1~56).
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Thus, the density fluctuation correlation function is given as

X,(hy, hr) =(expL —(i/h)hp q,) exp[—,'Dp p'„,) expL(i/h)hp q, (hr)))Te

p hrhp ' irAp'
exp

2 6' 2M
exp

r'Ap'
g(r) V„'y(r)d'r+0(h4) . (35)

D. Placzek Moments"

A consistency check on the above results is provided by the so-called Placzek moments defined by

dn

(e.)-=(—z)" X.(Ap, h ) I.=o.
dr"

Substitution of Eq. (35) into this expression yields

(,,),=X,(Ay, o)
and

pt~p' p z

(e,)„=—(—i)"+'h" 'exp ——exp dp p; exp ——hp q;
8M 2' I2

1 -" ' 1 i ~ p (hAp
X —y; V„—VV &~ —p,'Ap exp —Ay q ——(—i)"~ — g(r)V 'p(r)dsr

M M h re 2 (6M

(36)

pAp2-

dt's.

— z'p 2 Apz—
Xexp — r exp — r — —— +0(h'), for rz& 1 . (37)

8M dr" 2 2MP p

The 6rst few moments may be evaluated by tedious but straightforward application of these equations, and
are given by

(e.)o=1

(e,)g
——Ap'/2M,

2 3 O'P Ap4
(e,).= —Ap' —+ (V„,'-U)re+0(h') +

3M 2P 24M 4M'

d4 6' h'6'
(..),= (&)+ + (V U) +0(h'),

M' 8M' 6M'

2 gp4
Ap'(K)+ +0(h'),

33' 4M'

(38)

4Ap4 Ap' Aps h' Ap' h' Ap'
(")4= —(&')+—(&)+ +— (I VUl')+ — (V'U) +o(h').

5M' 3f' 16M' 3 3f' 3 M'

(K here denotes the kinetic energy of the scattering
atom). Equations (38) are indeed correct to 0(h'), as
may be seen by comparison with Placzek's results. "

E. Time-Displaced Pair Distribution
Formulation

In order to obtain further information from Eq. (35)
on the atomic motions of the scattering system, one may
resort to specific dynamical models leading to a soluble
Hamiltonian. From these models, values for the angular
and energy distribution of the scattered neutrons can
be predicted, and these predictions are then subjected
to experimental test.

However, as indicated in Sec. I, there is an alternate
approach which does not require any assumptions at

"G. Plsczek, Phys. Rev. 86, 377 (1952).

dt e "'~"X (Ap t)

2'/2
dt exp —(Ap r—et) G, (r,t). (39)

h

this point on the dynamics of the scattering system. It
is based on the physical interpretation of the classical
limit (h —+0) of Van Hove's space-time correlation
function G, (r, t), and the possibility of establishing a
relationship, if only approximate, between the direct
scattering cross section and this "classical" G, '(r, t).

One such relationship was suggested by Vineyard, '
who proposed that the classical limit of the direct
scattering differential cross section could be obtained
by substituting G, '(r, t) for G,(r,t) in

~.(Ap, e)
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That this approximation is unsatisfactory may be seen
from the fact that in obtaining G, '(r, t) by setting h=0
in G,(r,t) zero momentum transfer is implied (since
24= hp/h and 24 is kept finite). ' This may be best illus-
trated by considering an ideal gas for which

(43)lim S,(hp, e) WS, '(hp, e) .
A 0

Additional evidence of the inacceptability of Vine-
yard's approximation is provided by observing that the
symmetry conditionG, (r,t) = fMp/2&t(t —iph)]'~2

XexpL —Mr'p/2t(t —iph) j (40) G, '(r, t) =G.'(—r, t)— (44)
and

implies that the scattering function calculated from
G, '(r, t) will obey the relationS.(hy, e) = expl —

I
expl—

E 2 i ~ 8M i E2~hp2i

Me2P
Xexp—

2hp2

S'(hp )=S'(—hp, —), (4S)

(41) thus violating (as shown by Schofield') the constraint

S,(hp, e) =ee'S, (—hp, —e), (46)
Although in this case the cross section is entirely classical
(in terms of the significant variables hp and e), the
Fourier transform of G, '(r, t) obtained by taking the
limit h —&0 in Eq. (40) yields

S4'(hype) = (pM/22rhp')' ' exp( —Me'p/2hp'j; (42)

as well as the Placzek moments. Nonetheless, an im-
proved prescription which relates the cross section to
G, '(r, t) and does not suffer from the above mentioned
difhculties may be obtained. To this end, we integrate
(35) by parts to obtain

Php2- iphp,
X,(hy, hr) = exp ——exp —hp q;(hr) —q, —

8M A 2M y g

P )hrhP ~
' irhP' -— r'h- P'

~
exp —exp — — g(r)'7, 'p(r)d'r+O(h') . (47)

2k 6M i 2M 2MP
Furthermore,

i ( iPh q- - i /iPh~-
exp ——hp

~ q, + p; )
=exp ——hp. q, ~

h ~ 2M i h (2i
ip'h P4h2 P2h2

X &+ hy ~„V— —(hp &„V)'— (y &.)(hy &;V)+O(h')
8M 128M' 483P

and substituting this expression into (4/) results in

Php'- i iPh~-
X,(hp, hr) =exp — exp —hp q (hr) —q,

8M h 2 i ro

PhP' iP'h i f 2P)
+exp — hy Ve, Vexp —

~
r ~hy p;

8M 8M M5 2 i

Php' (P2& P'h'-i
t

iP&'+—I, (hy V„V)'exp —
I

r ——(hy p;
8M i 8if6M2 ' MI

PhP2 P'h' -i ( 2P—exp — — (p.&.)(hp &;V) exp —
l

—hy p-
8M 48M' M ~ 2 - ra

(48)

P (hrhP~' irhP'
)

exp —exp
2(6M i 2M

r'hp'
g(r) ~,2y(r)d'r+O(h') . (49)

By the same argument used to justify Eq. (27), it can be shown that for a randomly oriented system the second
term on the right of (49) and terms of O(h ) will vanish. The third, fourth, and fifth terms can be combined into one
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the relationolved are connected ysince the mean values invo ve

(~ ~„V( )r&=-(v„'V)r~ (50)

th em to the identity1 in Green's t eoremwhich readily follows from app y' g

Thus,

dqdp&„(e '~&„V)=— e eH +-dpdq(V, V Vze dpdq(e-~~V„'V) .

mphPgp2-
exp —dX,(kp, k )=exp ——(sxp—

, d to time translationa al invarianceMoreover, ue o

a(~ ) ~'lit ) )
("

( )& '4'( )d' +O(h') (52
2& 2MP .kP 8) (12M

(
~ ~exp —hp q, (

hr-exp —Ap q, (hr) —q, ~

= — hr—'I iPll)

)rc
'

bles, Eq. (52) becomesle transformation of varia es,and after a snnp e r

(53)

hphp~'I,'(Ap, hr)+ i

—+
~

expX,
~ Ap, hr+

~

= exp
2

2+p2
g(r)~„'y(r)d'r +O(h'), (54)

x'sp p, )= exp —ap Lq;(h )—q;3 )(

~ ~~ ~

h

nt and disappears, as~ g ~ y ~ o p
en ex anding q.(hr) in a Maclanrin seriind ated prev ously, when expan n

dr e 'g Dp) hr+e-e'"S(hp, e) =— dr
2X

QQ

(55)

(56)

yields

a QQ1 Z

ex — — dr exp —Ap r$,(hp, e) = exp —exp

MP ~pP
1— +—

~

d7 e '" G'(r) rh)

M,8e'
g~V.(r) p'„'y(r) d'r+0(h') . (57)

2A 'ex
2

&', ess f the condition of detai e a
. Th first term in th pbetween S,(hp, ~) and G, ' r, t . e

nder '0 who speculate t a ih t it might be correct because i wg 3o
differs from the Vineyard p

y i
rd rescription y

—86 'j8M].exp[Pe/2 j exp[

ade between the directcorn arisonisma e e w
~ ~

th Vi d tio,cal 1 tdb t
ticularly

1tial scattering cross section or s
df th fi tt

for high incident energy, arge

ev. 120, 1093 (1960).A. S'olander, Phys. Rev. 120,"K.S. Singwi and . joa
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For su%ciently high temperatures the second term in (57) is negligible and may be expressed in terms of the
deviation of the free energy from its classical value. Accordingly, we get the following alternate result:

pe pAp' p pM ) '~' e'Mp Ap'p 3E8e'
S,(hp, s) = exp —exp ——S,'(Ap, e)+— —

~

(F F,)—1— +— exp — +0(h4) . (SS)
2 SM 6 2m-hp'l Ap' SM 2hp'

Detailed Balance and Placzek 3lomertts B.ecause of the symmetry condition LEq. (44)] on G, '(r, t), expL —Pe/2]
&(S,(hp, e) in (57) is invariant Lat least to O(h )]when interchanging the initial and final states of the neutron, i.e. ,

exp) —Pe/2]S, (hp, e) =exp+a/2]S, (—Ap, —~) . (59)

Consequently, the condition (46) and its corollary, the principle of detailed balance, are satisfied. Furthermore,
as previously indicated, Eq. (57) was derived essentially by adding a given quantity to the first term in (35) and
subtracting the same quantity from the second term. Therefore, Eqs. (57) and (58) will also satisfy the Placzek
moments LEqs. (38)] to O(h').

F. Other Prescriptions

In the light of the above analysis, it is possible to critically examine various other "prescriptions. "
(1) Schofield s prescription From. the observation that the time correlation function F(r, t), defined by

i —
f ilth

F(r,t)=
~

d&p exp &—p —r x,
~ &p, hr+

2~hi 2

is real and that its double Fourier transform satisfies the condition (46), Schofield' suggested that this function
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FIG. 1. Differential scattering cross section versus outgoing
neutron energy for neutrons of incident energy 5X10 ' eV scat-
tered at 90' by an ideal gas of mass 18 at 295'K.

FIG. 2. Differential scattering cross section versus outgoing
neutron energy for neutrons of incident energy 0.1 eV scattered
at 90 by an ideal gas of mass 18 at 295'K.
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be made equal to G, '(x, t). This leads to an expression for S,(~y, e) which, with the exception of the factor
exp[ —t'hp'/8M), is equal to the first term in (57). Therefore, this approximation will be valid only for small
momentum transfers and heavy scatterers.

(Z) Letting S,(hy, e) =5,'[», e—(hp'/2M)). " Since (57) is an asymptotic expansion, clearly it will not be
unique. In fact, if instead of integrating

(exp[—(i/h)hp q;] exp[2hp &n;] exp[(i/h)» qt(hr)]bc (61)

by parts in (35), q;(hr) is formally expanded in a Taylor series and is operated on by exp[2hp ~„,.), it can be
shown that

exp[-', hp Vo,.) exp[(i/h)hp q;(hr)) =exp[(i/h)hp q;(hr)) exp[i(hp)'r/2M)
&&exP[—(ih'rs/12M')(» Ve)(AP Ve V))[1+J(rsq, hP)), (62)

where J(r,q, hp) is of O(h'). In this case, the thermal average (61) becomes

(exp[ (i/—h)hp q;) exp[2hp p„,]exp[(i/h)hy q, (hr)])rc

ihp'r i i ihPrr
=exp — exp ——hy. q; exp hy q;—{hr) — exp

2M Pc A pg 12M' 2M

X exp ——~p q; exp —Ap q; Av. 5p p~ ~p p, .V 0 A'

ihp'r- i — i
=exp exp ——hy. q„. exp hy q, (h—r)

2M h I zg

and

ih'r'hp'

36M'

'hp'r-~ -r'hp'-
exp — exp

— 2M 2Mt'
a(r) &'4(r)d'r+o(h') (63)

( hp''l (hP '( p y'" .M- Mpt' hp ~'—
S.(»e)=S'I hy e-

2Ml '12 E2~Mhp') hp' hp'k

g exp
Pe e'Mt'

exp —exp
2hp'

g(r)V 'P(r)d'r+O(h4). (64)

Although Eq. (64) is also correct to (h ) and satisfies the Placzek moments to this order, it differs from Eq. (57)
in that, because of the way the terms are grouped, it does not satisfy the condition (46). This makes (57) preferable.

(3) y' ~ime Approximatioe Based o.n the fact that Schofield. 's prescription does not satisfy the zeroth placze!
moment, it was suggested by EgelstafP' and Schofield" that, for an isotropic system, z,(»,t) may be obtained from
x, '(hp, t) by rep»cing t' by p'= t—ihtt'. In order to establish connection between this recipe and the quasiclassical
approximation, note that for a randoinly oriented system, x, '(hp, t) is real and is given by

' '(» t) = x '(I»I t) =(exp[(ihp/h)(z, (t)—s;)]&

hP
—

( 1)n hp
cos s&f —

g& = — — ~] g, 2n&&
ra =o (2e)! h

(65)

where s; is the component of q; along the direction of hp, and Ap is chosen along the s axis. Hence, the formal
expansion in powers of hp',

r2 p ht'hp)2 r2hp2- " (hp2 aQ (t)
ln X,'(hy, t)+ —+—

I
exp-

p g 12M 3 2Mp .=ok h2 I! (66)

"M. Welkin, in Proceedings of the Symposium on Isselastic
Energy Agency, Vienna, 1960), p. 3.

~2 P. A. EgelstaR, in Proceedings of the Symposium on Inelastic
Energy Agency, Vienna, j.960), p. 25.

'3P. Schofield, in Proceedings of the Symposium on Inelastic
Energy Agency, Vienna, 1960), p. 39.

Scattersug of Neutrous su Solids aud Liquids (International Atomic

Scatteriug of Neutrous iu Solids aud Liquids (International Atomic

Scattering of Neutrons in 5olids and Liquids (International Atomic
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is justIfie . e coe c'fi d. Th fficients C (t) may be evaluate d from, 65, bv noting that

yielding

Rnd,

C„ t =A-'"
d(gp2) n

p (hptLp~2 r Dp
1n x, '(dp, t)+I +

P 8 12M

c,(t) =o

ay'=0
(67)

~6 $2 t/' 2

c,(t) = —— — —t'+ —
I

(v", v
2 MP 36PM' 4

(68)

for the 6rst two terms. Consequently, q.E . ,54, becomes

2 -
P2q h4 ( P2q2

h'I r'+ —
I

—
I

r-'+ —
I
(~;&)rc»X.I ~p, h+ I= —-

I, 4]

ol

'+—
I ~ ) +o("4') +o(~p') (w)

360M' 4 ) as as, I

1nx, (t) p, hr) =— - —' —(l' ' ) +o("4') +o(~)')
2h'PM 36M 360M' &asas;&

2 y4(+.2 P')~~+ (70)
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The coefficient of Ap» on the right of the above equation is, except for correction terms of O(I4't'), indeed equal
to the coefficient of Ap» in the series expansion in powers of Ap» of lnX, p(l » l,y).

Note, however, that the above argument does not constitute a proof of the validity of the y approximation.
This would require showing a one to one correspondence Lat least to terms of O(h2)] between the coefficients of
all powers of Ap» in the series for lnX, (l » l,t) and 1nX, '(

I » l,y). Such a proof is lacking and even if the y' approxi-
mation were valid it would be at best correct to the same order as the first term in Eq. (54). These facts make
Eq. (54) a superior choice.

(4) The Classical Limit of S,(hp, ») In.order to investigate the limiting behavior of 8,(»,») as t'4 ~ 0, it is con-
venient to expand X,'(», hr) in Eq. (55) in a power series in hr. Thus,

ZT ikT2 ZT

x.'(ep, p ) = (exp —ep. p; — ap pe e V exp —ap p;
M yt.- 2M -M zg

ih2T3 ZT A2T4 ZT

(p &»)(» &» I') exp —» pj — (» &», I')2 exp —».pJ +O(&2) (»)
6M2 M Z t, SM2 -~ — re

Performing the indicated thermal averages gives

T»te) p2 142T4tt pI,'(», t'tr) = exp — —+ —exp
2MP 72PM2

Substituting this result into Eq. (57) yields

r2Ap2-

g(r) ~ (tp(r)d»r+O(A4) . (72)

( Mp i'" p
— — pdp'-

S,(»,») =I, I
exp —exp-

I2 ~pi
P.V»2

exp
2hp2

where

X 1+
M Ap2P~- t»P2

H4(E) ——
I H2(E) —

I g(r) ~ '(tp(r) d»r 1O(I4'), (73)
2php2 4k 8M ) 36M

g = (4/~/gp2) 4~2 If»(jV) = E2—1, ~4(E)=@4—6/2+ 3

From Eq. (74) it immediately follows that

(74)

& ~p &'" p
—-pt-p'

»m 5'.(»,4) =I, I
exp —exp-

i2»rhp»J —2 - SM-

PM»2
exp

2d p'
(75)

That is, the exact classical limit of any system, dined
in this way, is the ideal-gas result. This is physically
understandable since classically the neutron-nuclear
collision is instantaneous; thus the neutron never
samples the potential which binds the scattering system
(since the Fermi pseudopotential is a contact potential).
In fact, since the quantum mechanical corrections in

(73) contain the factor p, the idealization to a mon-
atomic gas is not far from reality at sufFiciently high
temperatures. The rapidity of convergence to this
asymptotic behavior is determined by the factor
(M/PtP. P2)II4(E), and therefore increases with increasing
momentum transfers.

APPENDIX A

In this appendix we prove the identity"

where A, 8 are arbitrary operators independent of n~

and I'(n) is defined by the differential equation

pl (&) ( 1)ex&pe

B
—aA p I 8,A]„eaAI'(n) (A2)

Bn ~& n.'

and the initial condition

I'(42=0) =1. (A3)

Multiplying both sides of (A4) by e Ae B, and noting
that

To this end, we differentiate (A1) with respect to
n to get

Ae e Al'(42) =e"BAe'"I'((2)+e e A(BI'/Bn). (A4)

&a (A+B) —(xaB(xaAIe((2)

'4 R. K. Osborn (private communication).

(A1) - (—1)"
e—aBAeaB= g [8A]a,

n=O gt
(A5)
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where

ltB,A)„=LB,LB,A)„,)
or

I'=exp{——'n'PB, A)}I'(n=o) = exp( —-,'n'I B,A)},
and

$B,A)s A, ——

readily yields Eq. (A2). Q. E. D.
For the case that 2 and 8 each commute with the

commutator PA, B), Eq. (A2) simpli6es to

ci I'ir)n = —n/B, A) I'

i.e.,
e'"+ =e s exp(s/A B)}.
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Polarization of Protons Elastically Scattered by Oxygen*

R. A. BLUEt AND W. HAEBERLI
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Measurements of the polarization of protons elastically scattered by oxygen have been made between 2 and
12 MeV by double scattering using gas targets. Scattering by helium at 46' was used as the polarization
analyzer for most of the work. In addition, four angular distributions of the cross section were measured
between 2.5 and 3.8 MeV. The experimental results show that away from the known sharp resonances at 2.66
and 3.47 MeV the polarization changes slowly with energy between 2 and 5 MeV. At 3 MeV the polarization
is negative at forward angles and posiiive at back angles, the observed extrema being —0.14&0.02 at 45' and
0.43~0.03 at 115'. At higher energies the pronounced resonance structure causes rapid fluctuations of the
polarization with energy. Angular distributions of the polarization were measured at eleven energies away from
sharp resonances. At 10.7 MeV the observed extrema in the polarization are —0.88~0.04 at 50', 0.92~0.04
at 65'. and —0.83+0.03 at 133'.A phase shift analysis of the polarization and cross section was made be-
tween 2 and 5 MeV and at four energies between 5 and 7 MeV. The phase shifts obtained differ from those of
Salisbury and Richards by less than 10 deg. The measured angular distributions of the polarization between
8 and 12 MeV are also compared with the predictions of the optical model. New results of the polarization for
P-n scattering and p-C scattering between 2 and 4 MeV are also reported.

1. INTRODUCTION
'
PREVIOUS studies of the elastic scattering of protons

by oxygen consisted primarily of measurements of
the differential cross section as a function of energy. '—'
At Wisconsin excitation curves of the cross section have
been measured for several angles. Eppling' made meas-
urements up to 4.6 MeV, Salisbury et a/. ' from 4.2 to
8.6 MeV, and Hardie et a/. ' from 8.5 to 13 MeV. In
addition, Hardie measured angular distributions at
thirteen energies between 4.8 and 13 MeV. Phase-shift
analyses of cross-section data have been reported be-

~ Work supported by the U. S. Atomic Energy Commission.
$ Present address: Ohio State University, Columbus, Ohio.
' R. A. Laubenstein and M. J. Laubenstein, Phys. Rev. 84, 18

(1951).
F. J. Eppling, PhD thesis, University of Wisconsin, 1953

(unpublished); and private communication.
3 S. R. Salisbury, G. Hardie, L. Oppliger, and R. Dangle, Phys.

Rev. 126, 2143 (1962).
4 G. Hardie, R. L. Dangle, and L. D. Oppliger, Phys. Rev. 129,

353 (1963).' R. W. Harris, G. C. Phillips, and C. Miller Jones, Nucl. Phys.
$8, 259 (1962).

tween 2.5 and 5.2 MeV by Harris et a/. ' and between 2
and 7.6 MeV by Salisbury and Richards. '

The polarization can, in principle, be calculated from
the phase shifts, but these calculations are seldom
reliable since the polarization and the cross section de-
pend on the phase shifts in different ways. For this
reason measurements of the polarization provide an
independent test of the validity of the phase shifts
obtained by fitting cross-section data and can be used
in conjunction with cross-section data for a more accu-
rate determination of the phase shifts. Indeed, at higher
energies where there are more parameters to be de-
termined, cross-section data alone is not sufEcient to
determine the phase shifts unambiguously.

Previous measurements of the polarization for proton-
oxygen scattering are not very extensive. Early meas-
urements by Sorokin et a/ 'near 2.7 MeV a.nd Al-Jeboori

6 S. R. Salisbury and H. T. Richards, Phys. Rev. 126, 2147
(1962).

7 P. V. Sorokin, A. K. Val'ter, B.V. Gavrilovskil, K. V. Karad-
zhev, V. I. Man'ko, and A. Ya. Taranov, Zh. Eksperim. i Teor.
Piz. 33, 606 (1957) LEnglish transl. : Soviet Phys. —JETP 6, 466
(1958)j.


