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The reduced density operator for a driven electromagnetic field mode relaxing to a bath of oscillators
is formally found in closed form. In the limit of weak coupling, the density operator which maximizes the
entropy subject to the constraints of a given average energy and average electric and magnetic field remains
invariant under interaction with the bath. The quantum characteristic function is found in the weak-coupling
case and agrees with previous results. The method may be generalized to many modes relaxing to a bath of

oscillators.

I. INTRODUCTION

N the quantum theory of relaxation or dissipation
one considers a single system such as a single spin
coupled weakly to an ensemble of lossless systems called
a bath. The bath might be made up of all the other spins
in the specimen, for example. Only a small amount of
energy is transferred from the single spin to a single
bath system but since the bath has a large number of
systems, there can be a finite net transfer of energy
from the spin to the bath. Of course, the model is not
valid for infinite times since the energy will ultimately
return to the spin. An extreme example consists of only
two spins weakly coupled which obviously would make a
poor model for an attenuator.

Similar models apply to radiation damping of an
atom. The atom radiates or relaxes to its ground state
by coupling its energy weakly into a continuum of
normal modes of a radiation field in free space. In the
usual density operator formulation of such problems,—1
perturbation theory is used by necessity due to the
complexity of the model.

Lax has given a systematic method of improving
the results by a self-consistent approximation which be-
comes more complex with each stage of improvement.
In the present paper we consider a simple model of a
single system (e.g., a single mode of a radiation field)
coupled linearly to a bath of oscillators. Such a model
might represent loss in a cavity'>® or dissipation by
phonons in a solid. One virtue of the model is that the
reduced density operator which describes the statistical
properties of the radiation field mode may be obtained
exactly in closed form in terms of several time de-

1 N. Bloemberger, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948).

2R. K. Wangsness and F. Bloch, Phys. Rev. 89, 278 (1953).

3R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

4 F. Bloch, Phys. Rev. 102, 104 (1956).

§ F. Bloch, Phys. Rev. 105, 1206 (1957).

6 A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957).

7 K. Tomita, Progr. Theoret. Phys. (Kyoto) 19, 541 (1958).

8 K. Tomita, Progr. Theoret. Phys. (Kyoto) 20, 743 (1958).

9 P. S. Hubbard, Phys. Rev. 109, 1153 (1958).

1 p.'S. Hubbard, Rev. Mod. Phys. 33, 249 (1961).

11 M. Lax, Bull. Am. Phys. Soc. 9, 82 (1964).

12, R. Senitzky, Phys. Rev. 119, 670 (1960); 124, 642 (1961);
131, 2827 (1963). .

3§, P. Gordon, L. R. Walker, and W. H. Lpulsell, Phys. Rev.
130, 806 (1963) and references contained therein.

pendent patameters. In order to obtain these parame-
ters, approximations must be made. Such an exact
solution is of value in comparing various approximate
methods for more complicated systems.

"The linear coupling assumed implies that the coupling
is weak so that the exact solutions are exact only in so
far as the model is exact.

The model also assumes a driving term so that steady
state conditions can be obtained. The quantum charac-
teristic function is found for weak coupling from which
all statistical properties of the cavity mode may be
found. It is in agreement with previous results.® Tt
might be noted as a general comment that it is easier to
find quantum expectation values in the Heisenberg
picture as in Ref. 13 than it is to use the density matrix
formulation in the Schrédinger picture.

In the theory of relaxation one is usually interested in
the statistical properties of the system which is relaxing
and not in the behavior of the bath.!* If we let @ repre-
sent the dynamical variables of the system under study
and b represent all the bath variables, the ensemble
average of a function of the system variables, f(a), is

given by
(f(@)="Tr[p(a,b,t) f(a)], ¢y

where p(a,b,t) is the density operator and all quantities
are given in the Schrodinger picture. The trace is taken
with respect to the a and & variables. Since f is a func-
tion of ¢ only, we may define®4 a reduced density
operator by means of

R(a,t)="Trsp(a,b,t) 2)

in which we take the trace over the bath vériables.
Then (1) becomes

(f(@))=Tr[R(a,0) f(a)]. 3

The immediate goal of the present work is to evaluate
R(a,t) for the model in which the density operator
satisfies the equation of motion

i (9p/ %) (a,b,8) = [H (a,b,8),0(a,b,1)], 4)
where I is the Hamiltonian and p is subject to the usual
“R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. (N. Y.),

24, 118 (1963). These authors consider problems similar to the one
contained here and use Feynman’s space-time formulation.
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conditions that
p()=p'(®),

Trp(f)=1. ®)

The method we shall use seems simpler for the particular
model we shall consider than that used by Feynman and
Vernon.! In principle, the present method could be
adapted to fermions although this appears tedious.

II. THE MODEL

The Hamiltonian for an electromagnetic field mode
weakly coupled linearly to a bath of oscillators may be
taken as!®

N N
H=n{wate+ ¥ wbitbi+ 3 ki*b;t(a+g*at)

=1 j=1

+(at+g0) ﬁ ehibe(Datte*(Da). (6)

In this Hamiltonian, the @, af, 4; and ;' are boson
annihilation and creation operators which satisfy the
usual commutation rules

[05,0:7 =051, [b;b:]=[b10:1]1=0, (N
[a,b;]1=[a,b;']1="[a",b;]=[a",b;']=0.

The first term in the Hamiltonian is the energy of the
field mode of frequency  in the absence of interaction
and the term 7%w;b;1; gives the uncoupled energy of the
7th bath mode (loss oscillator) of frequency w; which is
summed over the N (~10%) bath modes. One assumes
that the bath modes are continuously distributed with
a density g(w;) over the frequency spectrum about the
frequency w.

The terms involving «; and «;* give the coupling be-
tween the field and the bath oscillators. These coupling
coefficients are assumed small compared with the fre-
quency w=~wj;. This is a necessary assumption unless we
are prepared to consider nonlinear interactions involving
cubic and higher order terms in H.

The ¢ and ¢* appearing in (6) are parameters of order
unity. Their presence allows for either dipole-dipole type
coupling or for the field to be coupled to electric dipole
moments of the loss oscillators. We shall show later that
their presence is not important under the weak coupling
approximation.

The last two terms in (6) involving e(?) and e*(¢)
allow for the presence of a driving term for the field
mode so that a steady state may be reached.

18 We shall show that under the assumption of weak coupling the
terms involving ¢ and ¢* will play a very minor role on our results
since they involve high-frequency terms which will average to zero
for times of interest. They would become important for stronger
coupling but in that case cubic terms should be added to the
Hamiltonian.
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III. THE DENSITY OPERATOR. ENTROPY

The density operator describes the statistical prop-
erties of the system at time ¢ in terms of its properties at
t=0. Accordingly, in order to solve (4) we must specify
the initial value of the density operator. We assume that
for ¢<0, the field and loss oscillators are uncoupled and
there are no driving terms. The loss oscillators are as-
sumed to be in thermal equilibrium with a Maxwell-
Boltzmann distribution at temperature 7" so the density
operator for the bath at {=0 is given by

p(0)=IT [1—exp(—X;)] exp[—2;0,1;],

EH [1—exp(—2;)] exp[——zk Aibitdi], (8)

where
Nj=hw;/kT. 9

It is well-known that we may derive this density
operator if we maximize the entropy of the bath .Sy,
defined by

Sr=—k Tr[p2(0) Inp.(0)], (10)

where % is Boltzmann’s constant, subject to the con-
straints that

Trpz(0)=1 (11)

and the only knowledge we have about the bath, viz.,
its average energy or temperature

(Hp)=Tr{pL(0)H.}, (12)

Hp=3 Twib;'b;. (13)

This procedure suggests'®1” how to choose the density
operator p,(0) which describes an ensemble of field
modes in the cavity at /=0 subject to the available
information. The entropy of the field is given by

where

Sa=—k Tr[p.(0) Inp,(0)]. (14)
If we maximize this subject to the constraints
Trp.(0)=1, (15)
<Ha>=TrEPa(O)Ha]7 (16)
where
H,=hod'a an
and the additional constraints
(#)=Trlpa(0)p], (18)
(9)="Tr[pa(0)g], (19)

where g and p are the electric and magnetic fields in the
cavity defined by

g= (h/2w)"*(a'+a),
p=1(fiw/2)"*(a" —a)
16 J. P. Gordon, in Proceedings of the Third International Con-

ference on Quantum Electronics (Columbia University P,
York, 1963), p. 55. y Press, New

1 E. T. Jaynes, Phys. Rev. 106, 620 (1957); 108, 171 (1957).

(20)
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we find by the usual method of Lagrange multipliers

that
pa(0)=(1—e™) exp[—\ (@' ~w*) (a—w)], (21)
where
(Ho)=h{[1/ (e —1) ]+ |w|?} (22)
and ’ 1/2 *
(b= (o) 22 (¥ — ), -

(= (heo/2)* (w*+w).

Physically, we see that the constraints (18) and (19)
allow for the presence of a signal or state of excitation of
the electric and magnetic fields in the cavity mode at
t=0 while the constraint (16) allows for the presence of
signal energy, fiw|w|?, in (22) in addition to noise energy
given by the first term in (22). One sees that if w=w*
=0, (21) reduces to the Boltzmann distribution with
A="lw/kT, with T, the ensemble cavity temperature.
We shall accordingly assume throughout that the
ensemble of cavity modes is initially described by (21).
The density operator at ¢=0 before the systems are
coupled is given by the simple product

p (a,b,O) =T H T5
Xexp[—A(af—w*) (a—w)—D" Apbitby], (24)

where
—— 1—— —\

N (25)

ri=1—e¢i.
We may combine the exponentials since the ¢ and af
commute with the &; and &, by (7).

The solution of the density operator equation is most

easily accomplished if we put all operators in normal
form.!8 We therefore have for (24)

p((l,b,o) =T H TjN{EXp[:— T (df_w*) (d““if))
i
=2 mibithi]},  (26)
P
where the normal ordering operator N means that the

daggered operators stand to the left of the undaggered
operators when the expression on which IV operates is

0 0 gx- 0
™ 179 3 8 d\|0 0 0 —g*c*
Y :§<52?555§?55> ®« 0 0 0
0 —-g*%* 0 0
[w 0 k- —qFK*.
+- (atabtb) e
R gt Q 0
gk — K 0 —Q

8 W. H. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill Book Company, Inc., New York, 1964),
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expanded in a power series. In practice, the variables
in this expression behave as ¢ numbers until after the
final ordering step is performed. A bar is used to indicate
this explicitly. The operator p(a,b,0) above is in normal
form by definition and this may be indicated with a
small superscript #. Thus,

p(d,b,0)=p(n) (aab’O) . (27)

Next we proceed to solve the density operator equa-
tion (4) subject to the initial condition (26). We note
first that A in (6) is automatically in normal form since
in each term in the sum all annihilation operators are to
the right of all creation operators. Assume for the time
being that p(#) has been put into normal form also. We
then have from (4)

i (9p™/9t) = HWpm — pi [ () | (28)

Although the left side and each of the factors 2™ and
p‘™ are separately in normal form, the result on the
right is not in normal form. We may use a well-known
result from quantum mechanics'® to put the right side
in normal form, viz., the commutation relations

La,f™(a,a")]=0f/dat (292)
[a‘f’f(n) (a;aﬁ)]: - af(")/aa, (29b)

where @ and o' are annihilation and creation operators,
respectively. (These commutators are actually valid
whether the function f is in normal form or not.) Ac-
cordingly, we see that if ™ is in normal form, af™ is
not, but by (29a), we have

af® = f®at(3f%/dat) (30)

and the right side is now in normal form. Similarly, we
have by (29b)

fmat=at ™4 (3f™/a). (31)

We may use (30) and (31) in order to put the right
side of (28) into normal form. The terms involving ¢
and ¢* will require two applications of (30) and (31).
Once (28) is in normal form, we may treat all operators
as ¢ numbers as noted before and it may be written in
matrix form as

R. Kubo, J. Phys. Soc. Japan, 17, 1100 (1962); F. Coester and H. Kiimmel, Nucl. Phys. 17, 477 (1960).

(9/0at)

v |

a/abt

9/9b |

d/dat) d/dat

d/da d/0a

5/ 36t pM+[e*()) —e(t) 0 0] o/35 ™. (32)
4/0b | 9/9b

Chap. 3.
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A word should be said about the matrix notation. In the
two “square” 4X4 matrices in (32), the “11, 12, 21,
and 22” elements are all 1)X1. The dimensions of the
€13, 14, 23, and 24" are 1 XN, the “31, 32, 41, and 42”
are N X1 while the “33, 34, 43, and 44’ elements are
NXN. Q@ is diagonal with elements wj;, and «- has
elements «; as does -k. The dots indicate the directions
of operation. The row and column vectors have di-
mensionality (1,1,N,N) for the four respective elements.
In the future similar resolutions will be made and their
dimensionalities should be clear from the context. It
should also be noted that the vector space used in (32)
is different from that of p™ so that the p “matrix”
commutes with the matrices involved in (32).

The next problem involves the solution of (32). With
an obvious change in notation, we see that (32) is of the
form

dp™ a a a d
; =[—AM—+§¢M{,—+N1——];><">, 33)
ot o¢:  O%; o¢; o¢

where we use the repeated index summation convention
on ¢ and j. All quadratic Hamiltonians will lead to a
density operator equation of this type. In the particular
case involved here A;;=A;? the trace of M is zero,
M ;;=0, and N; is a function of 2.

In order to solve (33) it is convenient to introduce the
Fourier transform of p™ (a',a,bt,b,)=p™ (¢,8). If we let

a=wot i:yo , _5:' = xi‘*"‘:yi ) 34)
at=x0—1iy0, bjt=x;—1y;,
we have
+-c0 ~+c0
o™ (xo,yo,xj,yj,t)=/ .. / etlaozotBoyotarzitBiyl
daodﬂo N da dB i
%P (35)

X F(aoxﬁ(haj)ﬂht)T H ’

w =1 47

where we again use the summation convention in the
exponential. The inverse relation is

+-00 —+o0
F(ao,ﬁo,aj,ﬁj,t)zf .. / e ilaozotBoyotarzitBiyil
-0 00

dxodyo N dx,-dy,-
Xp (x(’)y()}xjyyj)t)— H

T =l T

. (36)

The transform is introduced since the transform of
(33) is easier to solve than (33) directly. Furthermore,
the transform allows us to take the trace over the bath
variables and thereby obtain the reduced density
operator in an almost trivial way. We may see this as
follows.

Consider a function f(c,c™) where [c,c']=1, [c,c]

B 207

=[¢',¢"]=0 whose trace is desired. It is given by

Trfle,ch) =2 (n| f(c,ch) | )
n=0
= 3 @) mom. ()
We may write 6. as
d2c'c’ nc' Fme—le'1?
e [ [T
w(nlm)uz

where d%'=|c’'|d|¢'|d¢ and ¢’ = |¢’|eie. If we put (38)
into (37), note that (m!)"?|m)=ct™|0), (x| (1!)12=(0] c"
where |0) is the vacuum state; we may carry out the
sums over # and 7 and obtain

&
Trf(c,cT)=//—Ce“‘°'12<0|e"”f(c,c’f)ec'*”[O). (39)

If fis next put in normal form, it may be written as

fleeh)=f™(e,ch)= kZl Jracthe! (40)
and by means of (29), we see that
e 10 e (c,ch)e” T | 0)= f (/,c'*).  (41)
Thus,¥
reseer= [ [ Cows. w
o) T

If we let ¢=x+1iy and ¢’*=x—17y we see that the
Fourier transform of f™ (¢,¢’*) is [compare with (36)]

0 dxdy
Pad)= [ [esemimen™
o T

When we compare (42) and (43) it is clear that we may
take the trace of f by letting @ and =0 in its Fourier
transform. That is,

Trf(c,c)=F(0,0). (44)

Therefore, in our particular case, the reduced density
matrix is

dz;dy;
R (x07y07t) = Ut p(n) (xO;yo:xiyyjyt)H )
7

™

(45)

so that the Fourier transform of the reduced density
matrix is

dxody
@Yo (46)

F(ao,BO,O,O,t)=//e‘“"‘“””"’y“)R(”)(xoyyo,l’)

™

¥ R. J. Glauber, Phys. Rev. 131, 2766 (1963); J. R. Klauder,
Ann. Phys. (N. Y.) 11, 123 (1960).
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and .
R (xo,y ,;)=_ //ei(aoxo+ﬂoyo)
0 o |
XF(ao,ﬁo,0,0,l)[laodﬁo. (47)

We therefore proceed to solve for the Fourier transform
of (33) and take the trace over the bath variables by
letting the a; and B; corresponding to these variables go
to zero.

Rather than change from the af, @, b;f, and b;
complex variables to the real variables xo, yo, %5, y; We
may symbolically write the Fourier transform of p® as

K60 = [erste (49)
where we have ordered the variables as
{= [dirsd,l;ifyl;j] ) (49)

o=[00*00,0;%0;]
and
go=3(w—1B0), o;=3(a;—1B;), (50)
oo*=5(artiB0), o*=3%(a;+1B;).

If we put (48) into (33) we obtain (using matrix
notation)

IF
i/ei‘"f =/[—0‘iAij0'j+i]Vj¢Tj]
at
Xe""’fF—l—iﬁ'iM,-jcfje""'{F. (51)

The last term may be integrated by parts with the

integrated portion vanishing and we have

¢(6F/6t) (0',):) = [— 0','A ij(rj—!— iNjO’j'—TI'M:IF (G',t)
- ((')F/é)(ri)M,-,vcf,-.

(52)

But TrM =0 in our case. This equation may be solved
easily if we let

F(ot) =exp[—o:Pi;(N)o;—ic,0;()+R()]. (53)

When we equate equal powers of o, we see that P, Q and
R satisfy

(0P/3)—i(PM+M!P)=—iA, (54a)
(30/0)—iQM=iN (), (54b)
OR/=+4iTrM =0, (54¢)

since A;;=A;;* and P,;=P;;. Mt is the transpose of M.
Formal exact solutions of (54) may be written down
immediately if needed in terms of P(0), Q(0), and R(0).
These initial values must be obtained from the Fourier
transform of p™ (&,d,b;,b;0) given in (26). One finds
easily from (36) that (with obvious change in notation)

ES

ao*oo ortor

T L )

F(U?O)z expl:— *’L'w*oo*“‘iW(ro:l (55)

W. H. LOUISELL AND L. R. WALKER

so that
0O 1 0 0

PO)=3|7* 0 0 O0/|; QO)=[w* w 0 0]
O 0 o0 L
0O 0 Lt 0

(56)

and R(0)=0. L' is diagonal with the jth element given
by 7;. The dimensionality of the matrices is the same as
those in (32).

We take the trace over the bath variables by letting
the o;* and o; corresponding to the bath vanish in (53).
We then have

u v\ /oo
F(00*,00,0,0,) =exp— (cro*ao)(l )( )

7 ago

—azwﬁwv,(W>

ao
where we have let

Pn(t) Plg(t)

Po=[
Poi(f) Pas(2)
The dimensions of the P;; matrices are: Pyy is a 2)X2,
Piais a 2X2N, Py is a 2N X2, and Py is a 2N X2N.
Q1 and Q. are vectors with N+1 columns. When the

bath ¢’s vanish only Py; and Q, remain. We have there-
fore let

];Q@=mm)ewn.6&

u(®) (1)
1) @

The reduced density matrix is given by the transform
of (57) according to (47) and we find the result

R™ (g,a%) = A12N {expA~'[ — (v+1) (a'—3) (G—w)
+u(a—w)+r(at—2)2]},

A= (v+0)2—4ur (61)

which is the desired answer in closed form. It contains
six complex time-dependent parameters #, v, [, 7, 3, and
w. We shall show later that these are related by

u@=r*(1); 2()=1(); zO=w*@1). (62)

To obtain these parameters we must resort to ap-
proximate techniques but the gross statistical properties
for the field mode are given by the dependence of R
on ¢ and &' rather than the parameters. Under the as-
sumption of weak coupling, we shall show that

u(f) =r*()=0.
In that case R™ reduces to
R® (g, )22y N (— 5 (@' —w*) (a—w)},  (63)

where

Pu(t)=|: ]; 0:1)=[=() w(]. (59)

(60)
where

y(O=v()+1O=20()



DENSITY-OPERATOR THEORY OF RELAXATION

and we see by comparing with (21) that the form of the
reduced density operator for the field which maximizes
the entropy subject to a given average energy and
electric and magnetic field remains invariant when
interacting with the bath even in the presence of a
driving term. We shall show that y(z) is related to the
average energy in the field at time ¢ while w(f) and
w*(t) are related to the average field. The exact con-
nection is provided by the characteristic function which
will be derived in the next section.

It is straightforward to show that the trace of the
reduced density operator (60) or (63) equals unity as it
must. The entropy given by (63) is easily seen to be

S(#)=k[y Iny— (y—1) In(y—1)] (64)

and depends only on y and not on w and w*, the field in
the cavity. It is also independent of the driving term as
we shall see.

It may occasionally be important to know the matrix
elements of R(#) in (63) in the representation in which
a'a is diagonal. They are given by

(n|R(t)|m)y= (yy—n 1) n("‘f)"“"(ﬂ)llz

+1 y m!

Xexp(— |1;| 2>Ln”'* "( _y(|;0_|21)) (65)

if m>n, and

ym+1 y n!

|w]?

ITZ)L’"W—m(_y(y—l)) 0

if n>m, where L,*(x) is the generalized Laguerre
polynomial. Again it may be noted that these are exact
in terms of the parameters y, w, and w* if the coupling
is weak. For simplicity, the derivation is omitted
although it is straightforward.

Xexp( —

IV. THE QUANTUM CHARACTERISTIC FUNCTION

From (20) we see that either  or ¢ may be expressed
as da+-6%at so the characteristic function!®18 defined by

C(u)=Tr{R () expiu[da+ds*at]}, (67)

where u is a parameter, is a moment-generating function
for all moments of p or ¢. If we introduce the operators

d and dt defined by
d=a—w(l), di=al—w*(f), (68)

which satisfy the same commutation relations as a and
at, since w and w* are ¢ numbers, we may write (67) as
C(w)=y" expip[dw () +8*w* (1) ]

X Tr{exp[In(1—y1)dtd] expiu[ 5d+6*dt ]} . (69)
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where we have used (63). The trace is evaluated in
Appendix I and the result is!?

C (w)=exp{in[dw () +8*w*(0)]
=282 [2y()—11}. (70)
With the proper choice of 8 [ compare (20)], we see that

the average electric and magnetic fields in the cavity
with weak coupling to the bath are given by

(p()=09C,/3 (i) | umo=1(ir/2)*[w* () —w (1) ],
(g®)= (1) 20)*[w* () +w ()]

while the average energy in the w mode is
K+ D=3[{p )Y +wXgO)V I +hely(®)—3]. (72)

The first term is the average coherent or signal energy
while %iwy (¢) is the noise energy and %w/2 is the familiar
zero-point energy. We see that the detailed statistical
properties are determined by the parameters y(t), w(f),
and w*(f).

V. THE WIGNER-WEISSKOPF APPROXIMATION

(71)

The exact formal solutions in matrix form of (54a)
and (54b) are not useful. We must therefore resort to an
approximate solution of the Wigner-Weisskopf type.?
For simplicity we shall carry out this procedure only for
(54b) and merely give the result for (54a) which is more
tedious.

If we decompose Q according to (58) and similarly
decompose M as

Mun My w 0 Q 0
() ()
My Mo 0 —w 0 —Q

K _q*K*, 'K* — 'q*K*
Mu:(q:c- —k*- ); Mﬂ:(-glc — K ); 3)
and decompose N (¢) as

N@®)=N:1(0)0); N:()=[e*®)—e@®] (79)
we see that (54b) becomes

1(8Q1/88)+ 01 M 11402 M 3= —N1(2), (75)

1(3Q2/ 0t)+ Q1M 15+ QoM 25=0.

If we take the Laplace transform of these equations and
designate the transform of all quantities by a bar, we
have

Q1 ([is+ My J+Qo(s)Moy=—N1(s)+0Q:(0), (76a)
Q2()[is+M 221+ Q1 (s)M12=0 (76b)
since 02(0)=0 and Q:(0)=[w*w] according to (56).

Since M1; and My, are diagonal, we may solve (76b) for

2y, Weisskopf and E. Wigner, Z. Physik 63, 54 (1930); G.
Killen, Handbuch der Physik, edited by S. Fligge (Springer-
Verlag, Berlin, 1958), Vol. 5, p. 274.
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Q:(s) and put it into (76a) with the result
Ql(s){'i5+M11—M12[1/(i3+M22)]M21}

=—N1(s)+Q:(0). (77)
If we use the notation of (59), let
[x;]2 ls]?
K=% ———|¢PT —,
S—iw; i Stiw;
(78)
0={IZ[K:'|2[ —+— ] .
S—iwj s—i—zwj
Equations (77) become
[s—t0+KJ2(s)+0w(s)=w*+ie*(s), (79)
0*2(s)+ (s+iw+K*)w(s)=w—ié(s)
from which we see immediately that
(D) =w*(f).
We may solve (79) for w(s) with the result
w—1&(s)+{0* [ w*+ie*(s) ]/ (s—iw+K)}
w(s)= (80)

stiwtK*—[ |0/ (s—iw+K)]

1 ]

W. H. LOUISELL AND L. R.

WALKER

The Wigner-Weisskopf approximation here consists in
neglecting the term in the numerator multiplying O*
since it is of order |«|? in the coupling compared with
w—1&(s). Also the term |O|2is of order |«|*and may be
neglected in the denominator. The inverse transform of
the remaining terms in (80) is

1 i Lzt — 15
o= [T ETETEEL,
2w J e—i 20+ K*(3)

where ¢ >0 is real and the integration is in the complex
z plane. We may let z=e+4y and (81) becomes

1 0 ,et,Tyt — 15 + d
w<z>=~/ TR ADM )
271 J oy yFo—ie—iK*(e+1y)
Since?
1
lim = P—+1iwd(a) (83)

“g—je a

where P means the Cauchy principal part, (82) becomes
as e—0

e v w—ié(iy)Jdy

w(l)=—

. . (84)

2mi /—w yto—P 3| M1/ (i) = [gIP[1/ (y—w) Ty —ir e |2L0(r+wi) — g8 (y—w,) ]

We have assumed small coupling so as a zeroth ap- shows that

proximation the denominator has a simple pole at et (1—e )
o(f)=1(f)=2 ' (88)

y=—w. We assume
> k5] 20 (w— w)<<w
d (85)
P3|k (wi—w)<Ko.
We see that the terms proportional to |¢|2 have very
little effect on (84). We may therefore define a fre-
quency shift Aw and attenuation parameter v as
Aw=—P 5 |i;]%/ (@—)
1
(86)
=2 % |51 (0,—w)
7
so that

w () e ietAa) t=(v112)
&
—i / e(t—)eiwrawr—rmay | (87)
0

The coupling causes a small frequency shift, Aw, as well
as damping. The relaxation time for the system is y~1.
The terms due to | ¢|?are smaller still when the coupling
is weak.

A similar although more tedious procedure for (54a)

21— | 2[1—exp(—kw/kT)]

with %#(f)=7*(¢) of order x? smaller than v and /.
We may define an effective temperature, 7', for the
ensemble of cavity w modes by

1
y:
1—exp(—#w/kT )
exp(—?) 1—exp(—v?)
1—exp(—\)  1—exp(—fiw/kT)

At t=0, T, is determined by the signal and noise energy
initially in the cavity. After a time long compared with
the relaxation time, the effective cavity temperature
approaches thermal equilibrium with the bath, 7', — T'.
If at t=0 the cavity and bath temperatures are equal
(\="%w/kT), the system is always in thermodynamic
equilibrium with the bath and T,= T for all time since y
is independent of time.
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APPENDIX I
We evaluate here the trace occurring in (69). Let
A(e)=exp{eIn(1—y~1)did} exp{iu[od-+o6*dt]}, (Al)

where e is a parameter. Although there are several
methods for evaluating the trace of A with e=1, we
shall evaluate it by putting A into normal form.

We note that when =0,

A(0) = exp{iu[ 6d+06*d1 ]} = exp (iud*dt)
Xexp(iubd) exp(—*[3]%/2),

where we have used the special case of the Baker-
Hausdorff theorem?8:?

(A2)

¢A+B = pA,Bp—}[4,B]

(A3)

provided [4,[4,B]]=[B,[4,B]]=0. The latter form
of writing A(0) is in normal form.

We find from (A1) that
IA™ /Je=In(1—y~1)didA™

C=In(1—y1)di[AM™d4- (0AM/3dT)], (A4)

where we assumed A(™ is in normal form and we used
(30). We may now assume a solution of the form

A™M=N{e%}, (A.5a)
where

G=+{(4(e—1)did+B()d+C()d+D(e)}. (A.5b)
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If we compared (A.5) and (A.2), we see that
A40)=1, B(0)=1ud,
C(0)=1ius*, D(0)=—131u2|6|2. (A.6)

If we now substitute (A.5) into (A.4) and equate
equal powers of d, df, we find that

a4 In( ) @« In(1 ne
—=In(1—yN4; —=h(1—y1)C;
de de

aB dD

—=0; —=0.

de de

The solutions of these equations which satisfy (A.6) are
readily obtained, from which we see that (A.5) becomes
when e=1

A(1)=N{exp[—y 'dd+iudd
+ipd*(1—yNdi—3u2[8|2]}. (A7)

We now may easily take the trace of A(1). According
to (4.2) we have

1 00
TrA(1)=— / / d®d’ exp[—y~!|d |*+iusd’
T

+ius*(1—y=)d"*] exp(—34*[8]?)
=y exp[ —u?|8|2(y—1)] exp(—3u*[5]%)
=y exp[—3u*|6[2(2y—1)],
which is the required result for (70).

(A8)



