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The behavior of superdense ("neutron") stars at absolute zero has been studied. It is shown that, with
certain assumptions about the equation of state, the mass and radius of such a star approach constants in
an oscillatory fashion as the star's central density increases. The assumptions about the equation of state
are: dP/dp&0 everywhere, and for sufFiciently high-density p, the pressure divided by the density P/p
approaches a constant. These assumptions are physically reasonable, especially if one assumes a real speed
of sound which is 6nite, but always less than the speed of light. The results of the paper show that there
exists for such stars an infinite series of ranges of the central density, in which ranges dM/dps alternates in
sign, where 3f is the total star mass and po is the central density. This indicates alternate local stability and
instability; however, the total binding energy is positive for po greater than ~10"g/cm', so that instability
against large-scale deformation exists. A striking feature of the results of this paper is that their qualitative
nature does not depend on whether or not the general relativistic form of the equations is used. The exact
quantitative results do, of course, depend on the form of the equations, as well as on the exact equation of
state used.

1. INTRODUCTION

HE properties of stars of extremely high density
(on the order of nuclear mass densities or higher)

were first investigated by Landau' and by Oppenheimer,
Serber, and Volkoff. ' ' There has recently been renewed
interest in such superdense stars, partly as a matter of
principle4' and partly because of astronomical obser-
vations indicating possible existence of such objects. '
To investigate such stars, one needs an equation of
'state. Various equations of state have been proposed
for such high densities, ' ' and calculations using these
equations of state have been performed, but there is no
agreement as to which equation is most appropriate.
It therefore behooves us to investigate such properties
of superdense stars which are relatively insensitive
to the choice of equation of state. An initial investi-
gation into such properties has been conducted by
Misner and Zapolsky, "who show that, if a polytropic
equation of state is assumed for high densities, there
is a maximum mass which can exist for cold static
equilibrium, and that dynamically stable stars can
exist with masses below this maximum. The present
paper extends this result and shows that, under certain
simple assumptions concerning the equation of state,

the mass and radius of a superdense star approach
constant values in an oscillatory fashion as the central
density is increased. This shows that there exists an
infinite series of ranges of the central density in which
ranges dM/dps alternates in sign, where M is the total
star mass and po is its central density. Thus, there is
alternate local stability and instability of the star;
however, the total binding energy becomes positive at
ps 10" g/cm' and remains so for larger pe so that the
star is unstable against large-scale deformation above
this point.

Many of the results of this paper have been derived
by Wheeler by alternate methods. "Also given in this
reference" is a detailed analysis of the problems of
stability for superdense stars and of baryon conserva-
tion, which are beyond the scope of the present paper.

dsss = e"c'dt' e"dr —r'(de—'+ sin'ed&') (2.1)

we get the hydrostatic equations'

2. HYDROSTATIC EQUATIONS FOR THE
COLD STAR IN EQUILIBRIUM

We consider first the equations derived from general
relativity. If we use a metric in the Schwarzschild form,
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dI' G(I'c '+p) (M+47rr'Pc ')
(2 -')

«(r—2GMc—')

dM/dr = 4rrr'p, (2.3)

where P is the pressure, p is the density, r is the radius,
M is the mass inside the radius r, and 6 is the gravi-
tational constant. The equation of state is

~=~(p). (2.4)

We take the temperature to be at absolute zero, as
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noted before. %e de6ne new variables as

m=c 'GM,

S=c 'GE',

D= c-'Gp,

(2.5a)

(2.5b)

(2.5c)

we get

4map
m= r'— LDo+5 (Do)]

55'(Do)

XLoDo+5(Do)]r'+O(r'), (2.15)

then Eqs. (2.2)—(2.4) become

dS (D+S) (m+4orr'5)

D=Do (2or/5 (Do))LDo+5(Do)]

X$-',D +o5(Do)]r'+O(r'), (2.16)

dm/dr = 47rD r',

r(r —2m)
(2.6)

(2.7)

S= S (Do) —2orLDo+S(Do)]

X!:oDo+5(Do)]"+O("), (2 17)

5=5(D).

The boundary conditions are

r= 0: m=0, a=DO,

r=R: D=D(=Gpc ').

(2.8)

(2.9)

(2.10)

where 5'(D)= ds/dD—. If Eq. (2.13) is used instead of
Eq. (2.6), we must neglect 5(Do) compared with Do

3. TRANSFORMATIONS OF THE EQUATIONS;
IDEAL CASE

If we combine Eqs. (2.6) and (2.8) we get

R is the radius of the star; the outer edge of the star
may be assumed to have density p (the density of iron,
say). D is very small.

%e assume the following facts about the equation
of state: Ke define

dD d5

dr dD

(D+5) (m+4 r'5)

r(r 2m)—
(3.1)

ds/dD) 0,

lim S/D=k, 0&k&1.
D~oo

(2.11)

(2.12)

k )D+Sq

1+k& DS' ig(D) = (3.2)

Here k is a constant, necessarily positive; it must also
be at most unity, since the speed of sound cannot
exceed the speed of light. If we have P n& (ro= baryon
number density), then k=y —1. A further assumption
is given at the end of Sec. 3.

Equations (2.11) and (2.12) are very plausible
physically. If dS/dD&0 anywhere, we have an imagi-
nary speed of sound, so that sound waves are not
propagated at all. If 5 —+nD~, P/1, as D ~oo, the
speed of sound will be proportional to D'& '&~'. If P) 1,
the speed of sound becomes infinite as D —+~, which
contradicts relativity; and if P&1, the speed of sound
goes to zero as D~~. This seems very unlikely,
although conceivably it could happen.

1f we neglect S compared to D, 4mr'5 compared to
m, and 2m compared to r in the right-hand side of Eq.
(2.6), we obtain the nonrelativistic equation of hydro-
static pressure balance:

ds/dr = —Dm/r' (2.13)

@le can also use an equation intermediate between Eqs.
(2.6) and (2.13):

ds/dr = —(D+S)m/r'. (2.14)

k(D) =S(D)/D.

Equation (2.14) now becomes

We define

then

d1

(1+k)Dg(D)m

5k)
f(D) =k/5';—
lim f(D)=1

and Eq. (2.13) becomes

dD 1Df(D)m

dr k r'

Then Eq. (3.1) becomes

dD (1+k)Dg(D)[m+4vrroDh(D)]

dr k k I r(r —2m)

g (D) has been chosen so that

lim g(D) =1.

(3 3)

(3.4)

(3.5)

(3 6)

(3 7)

(3.8)

(3.9)

The results we obtain will actually be independent of
which form is used; we will work with Eq. (2.14) )or
(2.13)] and will then extend the results to Eq. (2.6).

We shall need some of the terms in the expansions
of m, D, and 5 for small r. From Eqs. (2.6)—(2.9),

We now temporarily introduce a very special case,
here called the "ideal" case. In this case we assume an
"ideal" equation of state

(3.10)
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v=m r,
a =47rr Ds/3 nt.

Then Eq. (2.7) becomes

(r/3) (dv/dr) = v (o —-',),

(3.11)

(3.12)

(3 13)

and the alternate forms of the pressure equations, Eqs.
(3.4), (3.6), and (3.9), become, respectively,

everywhere. This yieMs f= 1, g= 1, k= k. It now

becomes apparent that we can transform the equations
so as to remove the explicit r dependence. The most
convenient way to do this is to introduce the variables

I

Vg

3
I

rrr~r

FIG. i. Qualitative
sketch of phase plane
trajectory for ideal
equation of state.
Convergent focal be-
havior is apparent.
The focus has been
6xed at 0.=3, v=~.

f do

3 &

(1+k) v (1+3ka.)

3k(1—2v)
(3.14)

1
2r do 1+k)

=0 1 0'

3dr 3k i
(3.15)

Ref. 4 and is monotonic except for a small region near
p=10's g/cm' (D~7X10 'r cm ') Inspection of this
equation indicates that both f and g are very large for
small D and decrease monotonically except for a small
region near D= 7X10 "cm ' (see above), approaching
unity from the upward side for large D. We assume this
qualitative behavior for f and g (descent to unity,
monotonic for large enough D) to hold for all possible
equations of state.

rdo (1
——=o 1—o—I—
3 dr &3k

(3.16)

If now
(3.17)r = ae*~'

where a is a suitably chosen standard length, the
operator srd/dr becomes simply d/dx.

We now see that the transformations (3.11), (3.12),
and (3.17) aid in simplifying the equations. Let us

apply them to the exact equations, Eqs. (2.7) and

(3.4), (3.6), or (3.9). We get, respectively,

4. PHASE PLANE ANALYSIS;
APPROXIMATE EQUATIONS

dv/dx= v(a —-', ),
We now work with Eqs. (3.18) and (3.20). Consider

(3 18) first the ideal case, with f= g = 1. Then Eq. (3.20) or
(3.21) may be written

do 1+k 1+3ok (D)
=0 1 0' vg D ~ 3 19

dS 3k 1—2v

do 1+k
=0 1 0 vg (D)

ds 3k
(3.20)

do—=a 1 o vf(D)— ——
dx 3k

with
D=3vo (4sra') —'e—"ts. (3.22)

For the ideal case, these equations reduce to Eqs.
(3.13)—(3.16).

Near r=0 (g= —~) we have for the exact case

v = -'7rDoa'e'*"+0 (3.23)

o.= 1—4z a'(1+k) (15k) 'Dog(Do)

XLI+ 3k (Do)je"ts+ ' ' '
~ (3 24)

We drop the 3k(Do) if we use the intermediate equation,
and further replace 1+k by 1 if we use the usual
hydrostatic equation.

We need some information about the nature of f,
g, and k as functions of D. A possible k(D) is given in

do/dos= a (1—o —7 v), (4.1)

( )
dv v(o —-', )

Equations (3.23) and (3.24) can be used to obtain
boundary conditions:

x= —ao: v=0
0=1

do'/dv= —ski.

(4 3)

We may now use the phase plane analysis of nonlinear
mechanics. " We take the v —o. plane to be our phase
plane. We 6nd the critical points —points at which
do./dv is indeterminate —and determine their nature.
There are three critical points: o-=0, v=0 is a saddle
point; 0 = 1, v=0 is a saddle point; o-= —', v= —X ' is a
stable focus. The trajectory of interest begins at the

"For example, see S. Lefschetz, Dsjerentsat Eqnatsons: Geo
metric Theory (Interscience Publishers, Inc., New York, 1957),
Chap. IX; N. Minorsky, lVontsnear Osctttatsons (D. Van Nostrand
Bt Company, Princeton, New Jersey, 1962), Chap. 1.

where X= (1+k) (3k) ' or (3k) ', respectively. Combina-
tion of Eqs. (3.18) and (4.1) yields

do o.(1—o —liv)
4.2
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critical point 0 = 1, v =0 with negative slope and moves
toward the focus at o-=-'„v= —3P ', eventually spiralling
towards the focus. The phase plane plot of this trajec-
tory is shown in Fig. 1.The arrows point in the direction
of increasing x. At the point 0=1, v=0, x= —~; x
increases from this value, at a rate determined by Do,
and would reach +~ at 0= pi, v= ppX ' except for the
fact that the trajectory stops when D=D. The x value
when this happens is related to the final radius E. We
might expect the stopping point to be very close to the
focus, so the rough final values are

Fro. 2. Qualitative
sketch of phase-plane
trajectory for actual
equation of state for
low-central density.
Trajectory converges
rapidly to neighbor-
hood of origin.

1r
\

1

\

\

1
l
1

t
I

1 I
I

V=-23X—'. (4.4)

From Eqs. (3.11) and (3.12), with r=R and. D=D,
we get

m(R) =2R/3X,

4mR'D= 2/3X.

(4.5a)

(4.5b)

Thus, the star's radius is given asymptotically by

R= (6n.U)) '" (4.6)

and the star's asymptotic mass is

~(R)= 2(3X)-'(6~@))-'». (4.7)

These values are approximate and hold only for the
ideal case, so they will deviate considerably from values
calculated with exact equations of state.

We can obtain the behavior of a. and v near the focus
by writing

I

small value

so that
D= (6n-Xa') 'e "' (4.14)

into the oscillatory terms, we get corrected values for
R and m(R). We now note an important feature: as Dp
changes, e changes, and the correction terms oscillate.
It becomes apparent, then, that R and m(R) oscillate
as Do changes. For this behavior to be apparent, Do
must be high enough that when the edge of the star
is reached, the trajectory has begun to spiral around
the focus.

We may get some idea of the behavior of A and e

with Dp by putting o = ~„v= Ppk ' in Eq. (3.22). This
gives

0 =0' 1 (4 8) x= ——', lnD+const. (4.15)

and assuming 0. and p small. We Gnd

v=Ae —"sin)-p'(+7)x+ pj
and

(4 9)

(4.10)

We now treat the whole trajectory as a spiral, so that
we can use Eqs. (4.10) and (4.11) everywhere, and can
take 0=1., v=0 at D=Do. This yields, after some
computation

(ip+7)x+ p= (~i+7) ln(Dp/D) —sin '(4i/7). (4.16a)

m(R) 2 a )'» (Q7)=—+A —
~

sin ln—+c ~,
Ri 2 a

(4.12)

4~R'D XA ) a q'»- (g7) R
=ip+

(

—
I

—sin ln—+p I

3nz(R) 4 'ERl 2 a )
(v'7)

+(g7) cos ln—+p . (4.13)

The oscillatory terms are small and so we can solve
these equations for R and m(R) by successive approxi-
mation. If we take Eq. (4.6) for R and substitute it

n=-'XAe-~IP{ —sinLp'(/7)x+ Pj
+(V'7) cosLl(V'7)x+ pj} (411)

where A and e are determined by the previous trajec-
tory and are functions of Do. For large x, 0, and p are
small. If we return to the original variables and put
r=E., D=D, we have

It is now clear that the oscillation in R and m(R) with
Dp has a constant period T=S /gir7 if lnDp is taken
to be the variable. This behavior actually is not pre-
cisely met because Eqs. (4.10) and (4.11) do not hold
for the entire trajectory.

We also And for this simpliled model that

A = 8L(3+7)X)-'Dp-'~4. (4.16b)

Our argument is incomplete, because we have not
shown that the trajectory with the actual equation of
state —instead of the ideal one given by Eq. (3.10)—
behaves as we have shown. When we investigate the
case using the exact equation of state, we find important
di6erences; however, we still obtain the oscillatory
dependence of R and m(R) on Dp.

We first note that, at x= —pp (r=0), Eqs. (3.23) and
(3.24) yield v=0, o =1, and, dp/dv= —pPXg(Dp), where
X= (1+k)(3k) '. Thus, the trajectory in the v-p phase
plane begins much the same as before. However, since
g)1, we note that the new slope is less (i.e., more
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FIG. 3. Qualitative
sketch of phase-plane
trajectory for actual
equation of state for
high-central density.
Trajectory spirals, as
in ideal case, and then
develops a "tail."

negative) than the slope in the ideal case. Thus, the
new curve plunges more steeply from v=0, a.= 1 than
before.

In particular, for small and intermediate D, g(D)
is very large. The last term in Eq. (3.20) will com-
pletely dominate, so that this equation becomes

do/dx= —Xovg(D). (4.17)

Thus, 0 decreases at a very rapid rate. From Eq.
(3.18), we see that v increases until 0=is and then
decreases. The final values of 0 and v (determined by
D=D) will be very close to zero. The trajectory will
have the appearance of Fig. 2.

As we increase Do, g approaches unity, and the initial
slope of the trajectory approaches that of the ideal
case more closely. For large Do, g will remain close to 1
for a considerable distance along the trajectory, which
will approximate the ideal case for some distance and
will perform one or more loops. The critical "point"
now occurs at v= 2/L3Xg(D)]; this gradually moves to
the left as D decreases and g moves away from 1, so
that the spirals as a whole move gradually to the left.

Eventually, however, D becomes small and g becomes
large. The term involving g begins to dominate, and
Eq. (4.14) applies again. o can no longer increase, and
the trajectory crosses the spirals and again moves
toward the origin. However, v has reached an appreci-
able value (of the order of unity) in the first part of the
trajectory, so that its final value will be larger than
the 6nal value for small initial D. The trajectory may
appear as in Fig. 3, although for higher Do there will be
more spirals.

We must now ask about the behavior of the final
values of 0. and v. It is apparent that, as Do increases,
the total length of the trajectory will increase and that
the place where the trajectory begins its last downward
plunge will vary in position around the spiral. We may
call the last part of the trajectory the "tail." The
increased length of the trajectory will primarily be
taken up in the spiral and will cause diGerences in
position of the tail.

1 m

1
3

'I I

/
I & r

I
I

Fn. 4. EAect of in-
creasing central den-
sity from value used
in Fig. 3. Trajectory
develops two addi-
tional horizontal tan-
gents; 6nal point
moves to the left.

To fix ideas, suppose that at the l.ast horizontal
tangent in Fig. 3, the value of D is D&. Roughly at this
point g(D) becomes large enough to begin domination
of the do./dx equation. If we now increase Dp slightly,
the point at which D=Di will move a slight distance
clockwise around the spiral. This will cause the entire
tail of the trajectory to shift slightly downwards and
to the right. As Do increases, the point D=Dj will
continue to move clockwise along the spiral. The
trajectory will gain added length, most of which will

go to forming more spiral. As Do increases, the point
D=D» will pass a horizontal tangent below the line
0 3 as shown in Fig. 4. Further increase in Do will

produce a second loop in the spiral, as in Fig. 5.
We can now see that, as Do increases, the point

D= D~ will travel around the spiral, converging toward
the center. The 6nal point on the trajectory will map
out a spiral as D=D~ does.

The following is now apparent. We may select a value
of Do, called a "threshold" value, such that for all Do
above this value, a spiral is formed in the trajectory.
(There is thus considerable arbitrariness in definition
of this threshold. ) For any Dp above this threshold, the
first part of the trajectory forms a spiral, the second
part a tail which begins in the central region of the
spiral and ends near the v axis. One essential feature of
the tail is that it begins in a small, bounded region of
the v-0 plane, which is roughly a neighborhood of the
quasicritical point a = ip, v=-'pX '. (This neighborhood
has moved slightly to the left because of the gradual
increase in g.) Another essential feature is the fact that
the tail always begins roughly at the same value of
D(—Di), nearly irrespective of Dp. The value of Dp, if
above threshold, primarily determines the number of
circuits in the spiral and performs the important func-
tion of determining the "phase" where the tail begins.

We now note from these facts and Eq. (3.22) that
the value of x where the tail begins is also roughly
independent of Do. The tail thus begins at approxi-
mately the same values of 0, v, and x for every Do above
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FiG. 5. EGect of in-
creasing central den-
sity from value used
in I"ig. 4. Trajec-
tory develops addi-
tional loop in spiral;
Anal point moves
back to the right.

1

i. i p jI
I

~/
/

/

r

1
3

t

1
2

threshold. The major variations of the tail's initial
point are found in the small oscillations of 0 and v

at D= D& for varying Dp. These are transmitted to the
final point of the tail.

We can add some rigor to the above qualitative
argument by the following treatment. Let us consider
the tail, which begins from the point at which D= D~
(now called the "initial" point) and continues until
D=D. We write f7=0& and v=v& at this point. The
"initial" x at this point can now be determined from
Eq. (3.22). Let us write the functions 0(x) and v(x)
on this special trajectory as 0*(x) and v*(x), so that

and

with

dv*/dx = v*(0*—-', )

do*/dx= a~L1—0*—Xv*g(D*)$,

D*=3v*a'(47ra') 'e '~"

(4.18)

(4.19)

(4.20)

d(hv)/dx= (Av) (a*—-',)+ (Aa) v*, (4.23)

d(Sa)/dx= (av)&a*(g'+D*g*')
+ (ha) $1—2a*+kv*(g*+D*g*')$, (4.24)

where g*=g(D*). We now have two coupled linear
equations for Av and 3,0, with coefficients as given

Now consider a trajectory corresponding to a slightly
different value of Dp, and use the usual variables v and
0 to describe it. We define

Aa(x) =a(x) —0*(x), (4.21)

Av(x) = v(x) —v*(x) . (4.22)

Now, our equations and their derivatives are all
continuous in the region of the tail, so the new trajec-
tory will be close to the old one. In fact, for large enough
Dp, the spiral will be tight enough, and the two trajec-
tories so close, that we can neglect squares of 60. and
Av along the trajectory. We may now compute the
derivatives of 60 and Av, neglecting terms of order
higher than the first:

functions of x (v* and 0* are 6xed once and for all).
The coefBcients are also independent of the position of
the tail's initial point in the spiral and of the initial
value of x, to lowest order; as pointed out earlier, these
quantities are approximately constant at the beginning
of the tail. Equations (4.23) and (4.24) may be called
"variation" equations.

We may now use the variation equations to calculate
Ar and b,v from D= Dj to D=D. Because the variation
equations are linear, ha and hv (final) will be linear
combinations of Aa and Dv (initial). In other words,
the variation equations provide a linear mapping of
possible initial points into final points.

The positions of the "initial" points may be given
approximately by Eqs. (4.10) and (4.11), in which x
is roughly constant and A and e vary with Do. (This
variation is given explicitly earlier in this section. )
The locus of these initial points is a spiral, qualitatively
the same as the earlier spiral, although the variable is
now actually Dp instead of x. The linear mapping maps
this spiral into another spiral, the locus of the final
points. (This can be seen qualitatively by considering
the initial spiral as a set of nested ellipses; the mapping
converts this set into another set of nested ellipses. )
Thus we see that the final point moves in a convergent
spiral as Dp increases. We see also that the period of
oscillation with lnDp as variable remains the same as
before, as does the amplitude. The essential feature in
all these conclusions is the fact that the initial r, v, and
x are roughly the same for each "tail."

The above discussion shows what was to be proved:
that E and m(E) vary in an oscillatory fashion with
Do for large enough Do. A graph of E versls m(E), with
Dp varying along the curve, will show a spiral-like
behavior. /It may be argued that a spiral will not
occur if E and m(R) are exactly in phase; however,
in that case, v=m/r would not oscillate, and it does. )

The behavior will be the same if we use Eq. (3.21)
instead of (3.20), since f(D) is similar to g(D) in all
important features.

S. GENERAL RELATIVISTIC CASE

We use the exact Eqs. (3.18) and (3.19). If we
consider first the ideal case, we find critical points
in the v-0 plane as follows: saddle points at 0.= 0, v=0;
0=1, v=0; and 0=0, v=i, ; node at a= —(3k) ', v=~;
stable focus at a= i3, v = 2k (k'+6k+ 1) '. A phase-plane
plot shows that the trajectory appears much as before
(Fig. 1), with one qualification: the trajectory can
never move as far right as the line v = -', .This means that
1—2v)0 always, and shows that the Schwarzschild
radius for every mass m(r) lies inside the mass.

We now investigate the case with the exact equation
of state. We first note that the above conclusion concern-
ing the Schwarzschild radius still holds for g&0, i.e.,
for dS/dD)0. Suppose v begins to approach -', . Then
Eq. (3.19) yields a large negative da/dx, 0 decreases
rapidly, and dv/dx goes negative so that v begins to
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For k= 3,

and

T= 16rr/(/47),

p= —sin '(—,',+94),

2 = (18/7+94)De-sls.

(5 4)

(5.5)

(5.6)

As noted before, these values can express only approxi-
mate behavior.

0. NUMERICAL CALCULATIONS

As mentioned earlier, calculations using a particular
equation of state were shown in graphs in Ref. 4.
While the oscillatory behavior of the mass as a function
of the central density is somewhat apparent there, the
radius shows no such behavior. FQRTRAN calculations
performed by the author at Los Alamos have elucidated
the behavior of the mass and radius for high central
densities. The extended graphs are shown in Figs. 6, 7,
and 8. It is now clear that the radius oscillates as well
as the mass. (The slightly peculiar behavior near
p = 10"g/cm' is due to the crushing point there; see the
graph of the equation of state in Ret. 4.) The asymptotic
values for the mass and the radius are approximately

8=6.4 km,

M =0.423f o.
1

0
I

0.2
I

0.4
I

0.6

FIG. 6. Graph of total mass of star as function of central density,
as calculated with equation of state of Ref. 4. 3fo=solar mass.
Oscillatory behavior at high densities is apparent.

decrease again. Thus v can never reach —,'. v cannot even
approach —', asymptotically.

For large Do, we have the same situation as before:
the trajectory approximates the ideal trajectory closely.
Eventually D becomes large enough for the last term
in Eq. (3.19) to dominate. We note that this term has a
factor (1+3ok)(1—2v) ' which did not occur in Eq.
(3.20). However, the first factor must lie between the
values 1+3k and 1 and cannot aGect g much, and the
second factor is well behaved as long as v stays away
from —',. This is assured, as noted above. In this way, we
see that the extra factors modify the equation for
do/dx in an almost trivial fashion, and we can expect
the same qualitative behavior as was exhibited earlier
in the approximate case.

We can calculate the period and amplitude of
oscillation as before. We obtain a period (lnDs is the
independent variable)

8
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phase
T=8s.(1+k)/(7+42k —k')'"

1 7+42%—k')'"
Q= —sin '

4 3k+1
and amplitude

Sk 3k+1
! D —(1+3k) / (4+4A:)

k'+ 6k+ 1 ~7+42k —k'

(5.1)

(5.2) I I

10
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t

10
I

10"

PIG. 7. Graph of radius of star as function of central density, as
(5 3) calculated with equation of state of Ref. 4. Graph oscillates at

high densities.
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the usual proportionality of e and p,'at high densities,
we have e p"4.

The calculated results are shown in I"ig. 9. It was
found most convenient to plot average mass per
nucleon, M(R)/E(R), on a scale which shows the
deviation from the low-density value; the variable hnsz
is defined as
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(7.3)

8. INTERPRETATIONS AND CONCLUSIONS

We first note a fact pointed out by Wheeler4: there
are regions of instability in the range of central densi-
ties. These regions are characterized by d3I/dpp(0' for
if we compress the star further to get a higher po, it
can at the same time eject mass. Compression and

Thus hm~ is the binding energy per nucleon in units
of nucleon rest energy. It will be noted that, while
mass per nucleon remains fairly close to the low-density
value, it shows oscillations as Do increases, much as
the mass does. The oscillations, however, are out of
phase with those in the mass; at high densities, they
are approximately 180' out of phase.

10,
0

I

0.2
t

0.4 08
Mo

1.0
I

1.2

20
10

Fn. 8. Graph of radius of star as function of star total mass, as
calculated with equation of state of Ref. 4. Central density is
parameter along the curve. Note the focal behavior at high
densities.

These yield as final values for o and v approximately

o.= &X &0-"

v =0.097.

The period of oscillation is found to be roughly given
by Eq. (5.4) for large Dp.

7. NUCLEON NUMBER

The equation for nucleon numbers, si

dN'/dr=47rrsm(1 —2mr ') '" X(0)=0 (7.1)
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was also integrated to determine the total particle
number E(R) in the star. In Eq. (7.1), nis the loca, l

nucleon density; e must be determined from the
equation of state calculations. A convenient analytic
6t for ss(p) for all ranges of p was obtained from the
calculations used to derive the results of Ref. 4:

I-0+4 -0.02
I I I I

0.02 0.04 0.06 0.08 0.10

I=6.022g&&10"p(1+7.7483)&10 ispsiis) —4~s (7 2)

where ss is in crn ', p in g/cm'. At low densities, this is

FIG. 9. Graph of relative mass per nucleon as function of central
density, as calculated with equation of state of Ref. 4. This is
merely the binding energy per nucleon in units of nucleon rest
eQB1'g7 ~ ritÃN = (M/+)L (~/Ã) low depeityg 1.



B 1652 B. KENT HARRISON

simultaneous ejection will then move the star along
the curve to a point of minimum mass; further com-
pression would then require augmented mass, so that
the star is stable at this point with respect to small
perturbations of mass. However, the binding energy
curve shows that Am~&0 for po& 10" g/cm', so that
the star is unstable against large-scale deformation
and complete dispersal into individual particles. The
detailed treatment of this stability behavior is presented
elsewhere. "

The results of this paper are quite insensitive to the
exact details of the equation of state. The only assump-
tions are found in Eqs. (2.11)—(2.12) and in the require-
ment that g(D) become large for small D. g (D) need not
even be monotonic. However, there might be more
difficulty in proving the paper s conclusions if g de-
creases below unity for large D, since the initial slope
of the trajectory would become less steep and there
would be a tendency for the trajectory to go to the
right instead of downward if g were small enough.
We can investigate the possibility of this behavior of g.
Suppose, for large D, S has the behavior

S=kD—AD' & (8.1)

with 0 &k& 1, p) 0, A )0. Then calculation shows that
dg/dD(0 (monotonically decreasing) for large D if

"V.A. Ambartsumyan and G. S. Saakyan, Astron. Zh. 37, 193
{1960)/English transl. : Soviet Astron. —AJ 4, 187' {1960)j.

Now, for a mixture of relativistic Fermi gases we find
p=-', . Equation (8.2) then becomes

(8.3)

This is satisfied for k= 3, as in Ref. 4. Investigation
into the case k= 1 shows that more terms in Eq. (8.1)
are needed to determirie the sign of dg/dD. However,
even if g should go below unity and then increase to
approach unity, the arguments in the text will hold
unless g decreased substantially below one, which is
extremely unlikely.

The most important quantity to be determined for
high-density equations of state is obviously the constant
k. There is yet considerable uncertainty as to its value.
Reference 4 gives k= 3; Zel'dovich' obtains a possible
k = 1. Ambartsumyan and Saakyan'3 consider the
possibility of formation of baryons heavier than
nucleons and their results yield a possible value k = 1/13,
as mentioned in Ref. 10. We can expect the final star
mass and radius to depend markedly on k, since the
position of the focus in the ideal system is a function of
k. The value of v at the focus for the relativistic equa-
tions is 2k(k'+6k+1) ', and this quantity takes the
values 1/4, 3/14, and 13/124 for k= 1, 1/3, and 1/13,
respectively.

One rather striking feature of the results of this
paper is the fact that their qualitative behavior does
not depend on whether the classical or relativistic
equations are used. (Here we speak of the general
relativistic equations; special relativity, of course, is
used in the equation of state. ) The only effect of the
inclusion of the general relativistic terms is to modify
the numerical results. (A slight exception to this might
be found in the above-mentioned situation with y= ~,
k= 1, when the trajectory could have a slight tendency
to move out to the right. The relativistic singularity
at v=-', would inhibit this tendency. ) In connection
with this, we mention again that at zero temperature
there is no possibility of pathological behavior due to
the Schwarzschild "singularity. "

The assumption that the temperature T=O has been
made in this paper. It should be noted that the results
will hold for 7&0, as long as T is low enough that the
matter is degenerate. Equilibrium cannot be assumed,
for there will be radiation from the star; however, there
may be quasiequilibrium, since the radiation will

change the star's mass appreciably only if it persists
over a very long period of time.

We mention brieAy the question of conservation of
nucleons, raised originally by Wheeler' and discussed
further by Chiu. 7 In crude form, this problem is:
Suppose we have a star near the critical mass limit, and
suppose a large amount of mass is gently lowered onto
this star. Then the star will become unstable and will
tend to eject most of the new mass; however, it does
not have enough available energy to do so. The only
way in which the star can eject the new mass is to
convert nucleons to radiation until enough energy has
been acquired to eject the remaining unwanted mass.
This violates the law of conservation of baryons. (As
emphasized by Chiu, the conversion of nucleons to
radiation takes place at the center of the star, where
there is a real singularity; the SchwarzschiM "singu-
larity" does not contribute to this process. )

There is a tendency to say that this will not happen
because of the positive binding energy for pp&10'
g/cm . However, we recognize that the positive binding
energy will tend to cause gravitational collapse, and
Wheeler has shown" that, if one compares the endpoint
of collapse with the beginning, one has two choices:
(1) ba, ryon number is not conserved, or (2) baryon
number has no meaning as denoting number of heavy
particles. A detailed discussion is given in the reference
cited.
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