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2. Qualitatively there is very little difference between
the A and = spectra. At higher energies the spectra
peak more sharply.

Figure 5 presents the total cross sections for A and
Z-. The main qualitative difference, typical of V—4
versus V+A4 is the much more rapid rise for A produc-
tion. This is a possible way to verify that in the Z-
interaction V/A4 is positive.

CABIBBO AND F.

CHILTON

It is also of some interest to use our asymptotic
formulas to make estimates of the hyperon to nucleon
ratios. If we use Eq. (32) and choose a?/2=M,? or
M+, then the results are

a‘A/O'N — 0.078= 1/13 :
and
oz/on — 0.055~1/18.
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In stellar matter as cool and dense as the interior of a white dwarf, the Coulomb energies between neigh-
boring nuclei are large compared to the kinetic energies of the nuclei. Each nucleus is constrained to vibrate
about an equilibrium position, and the motion of the nuclei in the interior of a white dwarf is similar to the
motion of the atoms in a solid or liquid. We propose a solid-state method for calculating the rate at which a
nuclear reaction proceeds between two identical nuclei oscillating about adjacent lattice sites. An effective
potential U (r) derived by analyzing small lattice vibrations is used to represent the influence of the Coulomb
fields of the lattice on the motion of the two reacting nuclei. The wave function describing the relative
motion of the two reacting particles is obtained by solving the Schrédinger equation containing the effec-
tive potential U (r). From this wave function, we derive an expression for the reaction rate. The rates of the
p+p and C12-C*2 reactions calculated using this solid-state method are typically 1 to 10 orders of magnitude
smaller than those calculated by the method previously suggested by Cameron.

I. INTRODUCTION

HE motions of nuclei in the interiors of cool, dense
stars resemble the motions of atoms in solids or
liquids. The mean free path between collisions suffered
by a given nucleus is much smaller than the average
distance between nuclei and may be comparable to the
particle’s quantum-mechanical wavelength. Each nu-
cleus is therefore forced to oscillate about a fixed position
in a lattice structure.!

Reactions between charged particles in stars are
inhibited by the small probability of penetrating the
Coulomb barrier between nuclei. However, the prob-
ability of penetrating the barrier increases rapidly with
the energies of the colliding particles. In most stars, the
effective energies are due primarily to thermal motions.
In stars as cold as white dwarfs, the thermal energies
alone are too small to allow charged particles to react at
significant rates. However, the Coulomb potential of
the lattice combined with the ground-state vibrational
energy of the reacting nuclei can, at high densities,
enable nuclei at adjacent lattice sites to react rapidly
even at zero temperature.

* Supported in part by the U. S. Office of Naval Research
[Nonr-220(47)] and the National Aeronautics and Space Ad-
ministration [NGR-05-002-028].

t National Science Foundation Predoctoral Fellow in Physics.

1 E. E. Salpeter, Astrophys. J. 134, 669 (1961).

It is important that one be able to calculate the rates
of reactions occurring at high densities and low tem-
peratures, reactions to which Cameron? has applied the
name ‘‘pycnonuclear.” Cameron has suggested that
such reactions might be the source of energy for nova
explosions. A knowledge of the rates of pycnonuclear
reactions would also be useful in mathematical studies
of white dwarfs. From the rates of reactions at high
densities, one can infer certain limitations on the possi-
ble compositions of the interiors and envelopes of white-
dwarf stars, compositions which would otherwise be
completely unknown.? Any future attempts to evolve
stellar models into the white-dwarf state from higher
temperature configurations will also require detailed
knowledge of pycnonuclear reaction rates.

In this paper we develop a method for finding the rate
at which nuclear reactions proceed between particles
vibrating about adjacent lattice sites. For reactions
between particles with Z>2, the solid-state approach
applies to the temperatures and densities in region I of
Fig. 1. Figure 1 also shows typical central temperatures
and densities for various types of stars.

We consider primarily reactions in a lattice of iden-
tical nuclei, although we do suggest a rough model for

2 A. G. W. Cameron, Astrophys. J. 130, 916 (1959).
3'T. Hamada and E. E. Salpeter, Astrophys. J. 134, 683 (1961).
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generalizing the method to include reactions in lattices
with arbitrary compositions. A more accurate treatment
of reactions in dense stars with complicated composi-
tions would require detailed analysis of the structures
of lattices containing more than one nuclear species.

At the high densities of interest here, the motions of
any pair of nuclei are strongly coupled to the motions
of other nuclei nearby. In order to compute the mean
lifetime for a reaction between two adjacent nuclei
without solving the complete many-body problem
exactly, we make the fundamental assumption that the
effect of the rest of the lattice on the relative motion of
the two reacting particles can be adequately represented
by a static potential U(r). The reaction rate depends
strongly on U (r) through the barrier-penetration factor.
In Sec. II, we analyze the small vibrations of the lattice
to find U(r). Then in Sec. III, we solve the Schrodinger
equation for the wave function characterizing the
relative motion of the two reacting particles. Having
found this wave function, we derive an expression for
the reaction rate. Section IV contains a discussion of the
limitations of the solid-state treatment. We also con-
sider in Sec. IV the problem of generalizing the method
to include reactions between nonidentical nuclei. In
Sec. V, we present numerical results for the rates of the
p+p and C24C* reactions. Our method predicts rates
several orders of magnitude slower than those obtained
using the procedure suggested by Cameron.? Salpeter
has developed a way of calculating reaction rates at
temperatures higher than those covered by the solid-
state method; our results are consistent with those of
Salpeter.

II. ESTIMATION OF THE EFFECTIVE POTENTIAL
A. General Discussion

The strong Coulomb forces between nuclei in a
lattice greatly complicate the calculation of reaction
rates at high densities. Each nucleus experiences
Coulomb forces due to many neighboring particles. To
compute the reaction rate per unit volume exactly, one
would have to solve the complete many-body problem
including all the nuclei in the lattice. This many-body
problem seems tractable only for the case of small dis-
placements of the nuclei from positions in a periodic
lattice, the case to which the phonon approach of solid-
state physics is applicable.

We cannot calculate reaction rates, however, by
relying just on the phonon theory to describe the motion
of nuclei under the influence of lattice Coulomb fields.
A nuclear reaction between two particles must involve
their approaching one another to within a distance of
the order of the nuclear radius, which is much smaller
than bn,, the nearest-neighbor distance. The phonon
theory does not apply to such large displacements from
equilibrium. We do know, however, that for small

4 E. E. Salpeter, Australian J. Phys. 7, 373 (1954).
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F1c. 1. Central temperatures and densities of various types of
stars. The solid-state approach to nuclear reactions applies to
region I on the figure. In region II, most nuclear motion is
vibrational, but the nuclei most likely to react have enough energy
to break through the lattice. In regions III and IV, the nuclei
move like atoms in a gas. In region III, the electrons are de-
generate, while in region IV they are nondegenerate.

separations between nuclei, the relative motion of the
two nuclei is influenced primarily by a potential
Z%~1, and the forces due to the rest of the lattice are
not important.

We assume that the relative motion of two nuclei
oscillating about adjacent lattice sites can be adequately
represented by motion in some potential V(r). We
require that V (r) — Z2%% ! as r — 0 and use the results
of the phonon analysis to determine V (r) for small dis-
placements from equilibrium, i.e., for r approximately
equal to the vector between the equilibrium positions
of the two nuclei. In this way, one can reduce the many-
body problem involving all the nuclei in the lattice to
one involving just the relative motion of two particles.
By proper choice of the potential, we can accurately
approximate the effects of motions of the neighboring
nuclei.

In this section we treat only identical nuclei, each
having mass M and charge Ze. We consider the rate at
which a nuclear reaction proceeds between two of these
nuclei, labeled 1 and 2. Let the relative displacement of
the two nuclei be given by r=r;—r,, and let the com-
ponents of r be «, y, and 2. The mass characterizing the
relative motion is given by

u=3zM. (I1.1)

Let the equilibrium positions of the particles be
separated by a distance dn, along the z axis, where buy
is the nearest-neighbor distance characteristic of the
lattice. The potential ¥ (r) acting on the relative motion
of the two neighboring nuclei must have a minimum at
(0,0,b4n). Near the minimum point, the potential has
the form

V(1) =V (0,0,b00) 30 Q2 (#+%) +Q. (3— bun)*] , (I11.2)

if the lattice is, as expected, symmetric under the
operations  (x— —x,y—1%), (x—x, y— —7y), and
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(x—9y,y—> —«). In Sec. IIB we use the phonon
analysis of lattice vibrations to determine the values of
Q, and Q..

We note that the total effective potential can be
separated into two parts, one representing the static
Coulomb field between nuclei 1 and 2, and the other
representing the effective potential due to the other
nuclei in the lattice. That is, we can write

V(r)=22"4-U(r). (I1.3)

Since nuclei 1 and 2 are assumed identical, the potential
U (r) satisfies the relation

U@)=U(r1—r2)=U(r;—1r)=U(—r), (II.4a)
which implies that
VU (0,0,0)=0. (I1.4b)
We define the zero of energy by the relation
U(0,0,0)=0. (IL.5)

Equations (I1.2)-(IL.5) express all our knowledge of
U (r). They determine the value and gradient of U (r) at
the origin and the gradient and second derivatives of
U(x) at (0,0,bnn). Equations (I1.2)-(I1.5) obviously do
not determine U (r) uniquely for all r.

We must now consider the effects of our incomplete
knowledge of U (r) on the calculated reaction rate. It can
be shown that the potential U(r) affects the reaction
rate mainly through a barrier penetration factor P(E),
where

P(E)=exp[— (8u)"2~1,]. (I1.62)

The factor I, in Eq. (II.6a) is defined by
]p=/ [222r+U(0,0,r)— EJ%dr, (I1.6b)
R

where E is the energy of the relative motion, R is the
nuclear radius, and 7, is the classical turning point
radius defined by
E—U(0,0,r,)=Z%:". (I1.6¢c)
For 7 near 7., the quantity U(0,0,r)—E makes an
important contribution to the integrand in Eq. (IL.6b).
Fortunately, for 7 near 7., the quantity U (0,0,r)—E can
be determined accurately from Egs. (II.2) and (IL.3).
For 7 near b,,, the potential V (r) is accurately described
by Eq. (IL.2). Since we assume that the vibrations are
small, i.e.,

(bnn—_fc)bnn_l<<1 y (II.7)
the harmonic oscillator approximation of Eq. (II.2) is
accurate in the region where the wave function is large.
Thus, the eigenstates of the Schrdinger equation with
potential V(r) can be labeled by harmonic oscillator
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quantum numbers #,, #,, and 7., and the relation

E=Enznym.)= n+n,+1)iQ,
+ (1431247 (0,0,bn)  (IL.8)

gives the energy eigenvalue for the state (#,,m,,n.).

Equation (I1.8) accurately establishes E— V (0,0,b55)
for any given state, while Egs. (I1.2) and (IL.3)
accurately determine U (0,0,7)—V (0,0,b,,) for 7 near
r.. Hence the quantity U(0,0,7)—E is known for 7
near 7..

However, Egs. (I1.2)-(I1.5) do not accurately deter-
mine U(0,0,r)— E for r<r,. Fortunately the integral in
Eq. (I1.6b) does not depend strongly on U(0,0,r)—E
for small 7, since

22> |U (0,0, —E| ,

if 7<<7.. In order to minimize the error in the barrier
penetration integral I, due to our incomplete knowledge
of U(0,0,r)—E, we assume U (r) can be represented in
the simple form

U(r)=kor* ks’ + k' (2245?). (I1.9a)

Substituting Eq. (I1.9a) in Eq. (II.3) and comparing
the result to Eq. (IL.2) for 7 near (0,0,b,,) yields

ko=22%bun—1uQ.2, (I1.9b)
k3= — 22+ 3uQ2bnn !, (I1.9¢)

and
B'=102. (11.9d)

(The oscillator frequencies 2, and Q. will be determined
in Sec. IIB.) We have assumed that U(r) takes the
simplest form consistent with Egs. (IL.2)-(IL.5).
Further investigation has shown that several other
smooth forms assumed for U(r), forms which are also
consistent with Egs. (II.2)-(IL.5), yield values of I,
within a few percent of that given by the U(r) of
Eq. (I1.9a).

B. Lattice Dynamics
1. General Discussion

In this subsection we use a normal-mode analysis to
show that the relative motion of particles 1 and 2 can,
for small displacements, be represented by motion in a
harmonic-oscillator potential. We then compute the
frequencies ©, and Q. characterizing the oscillator
potential.

The electrons are highly degenerate at the tempera-
tures and densities to which the solid-state method
applies. The energy of the Coulomb interaction between
an electron and a nucleus is comparable to the average
electron kinetic energy only at distances small compared
to the electron’s wavelength. Consequently, the fields
of individual nuclei cannot significantly affect the
electron wave functions. The electrons can react only
to lattice vibrations with very long wavelengths. By
solving the Thomas-Fermi equation for the electron
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distribution, one can show! that the electron motion
affects only a negligible part of the vibrational spectrum
as long as

banKaoZ1B (I1.10)

where ao is the Bohr radius. Since inequality (II1.10)
always holds under the conditions to which the solid-
state model applies, we assume a uniform distribution
of electrons.

The total potential of the system of electrons and
nuclei is then the sum of the following three terms: (1)
the electron-electron potential energy, which does not
depend significantly on the positions of the nuclei; (2)
the potential energy of interaction between the uniform
distribution of electrons and the lattice of nuclei; and
(3) the energy of the Coulomb interactions among the
nuclei themselves.

For small displacements of the nuclei from their
equilibrium positions, the potential energy can be
written to good accuracy in the form

W=WotW., (I1.11)

where Wy is independent of the nuclear displacements,
and W3 is a homogeneous polynomial of second order in
the displacements. Using the usual normal mode
procedure,® we can find linear combinations Q, of the
displacements of the nuclei such that the total Hamil-
tonian of the system of nuclei can be written in the form

H=%}3 ,(P2M 7 +Mw2Q2), (I1.12)

where, classically,

P=MQ,, (I1.13)

and M, and w;? are constants independent of the nuclear
displacements. Quantizing the system, we find that the
wave function describing the nuclear displacements is
the product of the harmonic oscillator wave functions
for all the normal mode oscillators.

We shall find in Sec. IV that the solid-state approach
applies primarily to temperatures such that 277! is
small compared to most of the normal mode frequencies.
It is therefore reasonable to consider the zero-tempera-
ture limit and assume that all of the normal mode
oscillators are in their ground states.

The ground-state harmonic oscillator wave function
is a simple Gaussian, and the product of the ground-
state wave functions of all the normal mode oscillators
can be written

V=4 exp[—2 s (M0 A1)Q:*], (I1.14)

where A4 is a normalization constant. Since the Q, are
linear combinations of the displacements, the exponent
in Eq. (I1.14) could also be written as a homogeneous
polynomial of second order in the displacements. We
are interested only in the relative motion of particles 1

% For a discussion of the normal mode approach as applied to
solid lattices, see, for example, J. M. Ziman, Electrons and Phonons
(Oxford University Press, London, 1960), Chap. 1.
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and 2. To find the probability distribution for the rela-
tive displacement of particles 1 and 2, we integrate
|¥[? over the displacements of all the nuclei except 1
and 2, and then integrate over the displacement of the
center of mass of particles 1 and 2. The successive
integrations of |¥|? over the displacements do not alter
the general functional form. Each integration yields a
pure exponential with a homogeneous polynomial of
second order as the exponent. Assuming the lattice
invariant under the operations (x— —x, y—y),
(*— %, y— —9¥), and (x— 9, y— —x), we obtain an
expression of the form

P(r)=A" exp{—ph ' [Q(2?+92)+Q.(3— ban)?]} (I1.15)

for the probability distribution of the relative positions
of particles 1 and 2.

The probability distribution described by Eq. (I1.15)
is identical with that of a three-dimensional harmonic
oscillator in its ground state. Despite the complicated
effects of lattice vibrations on the relative motion of the
two adjacent nuclei, the probability distribution for
small displacements in the relative positions of the two
nuclei is the same as it would be if the relative motion of
the two nuclei were subjected to a static harmonic
oscillator potential. Thus, we have only to find the
proper oscillator frequencies 2, and Q..

2. Finding the Oscillator Frequencies

We know that for small displacements, the proba-
bility amplitude is a three-dimensional Gaussian. The
remaining problem is to find the widths of the Gaussian
in the transverse and longitudinal directions. The widths
are related to the oscillator frequencies by

(a2 )= / dx / dy / dz 2P (1) =h(2u0.)~", (11.16a)

and

((z—b,m)2)o=/dx/dy/dz(z—bnn)2P(r)

y =1(2u2.)"1, (IL.16b)
/dx/dy/dz P(r)=1. (I1.16¢)

The phonon approach of solid-state physics provides
an easy way of calculating (x*)o and {(z— bun)?)o. For
the case of a periodic lattice, the normal mode vibra-
tions can be described as lattice waves with given wave
numbers and polarizations. The characteristic fre-
quencies and the polarization vectors were calculated
numerically for several thousand wave numbers in the
first Brillouin zone,® and the expectation values (x?),
and {(z—bun)?)o were computed using an average over
the first Brillouin zone. These expectation values, when
substituted in Egs. (II.16a) and (I1.16b), yield the

¢ Normal mode frequencies in a lattice of like charges have also
been computed by W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
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following results:
Q,=1.28wo, (I1.17a)
and
Q.=1.88wo, (II1.17b)
where
wo=Ze(Mb*)112, (I1.17¢)

and 53 is the number density of nuclei in the lattice.
These numerical values are expected to be accurate to
within 19, for the physical model adopted here. By
substituting Eqgs. (I1.17a) and (I1.17b) in Egs. (I1.9b)-
(I1.9d) one can find the parameters ks, ks, and %’ in the
expression for U (r).

We have used the normal mode analysis of lattice
vibrations to determine the parameters Q. and €,
characterizing the effective potential V (r) acting on the
relative motion of the two reacting particles. In Sec.
II1, we solve the Schrédinger equation containing V (r)
for the wave function of the relative motion of the
reacting particles. Before proceeding to solve the
Schrodinger equation, however, we should consider two
related problems.

3. Nonzero Temperature

We have treated only the case where all the oscillators
are in their ground states. For most of the temperatures
to which the solid-state model applies, nearly all of the
oscillators are in fact in their ground states. However,
we can calculate the average expectation values of #?
and (z—ban)? for any given temperature using the same
phonon approach. For all temperatures, these average
expectation values are within about 209, of those ob-
tained using the simple harmonic oscillator model with
the frequencies @, and Q. given by Egs. (II.17a) and
(I1.17b). Thus, we expect that the approximate
potential well of Eq. (IL.2) describes the relative motion
even for nonzero temperatures.

4. Comparison with the Static Model

We have determined the lattice potential U(r) by
examining small vibrations of the lattice. The strong
coupling between the relative motion of two reacting
particles and the motion of neighboring nuclei is thus
taken into account approximately.

The frequencies 2, and Q. can be obtained more easily
if one neglects the lattice motion and calculates U(r)
using a purely electrostatic model. This procedure has
the advantage of allowing direct numerical calculation
of U(r) for any r, thereby eliminating the need for
relying on an extrapolation formula like Eq. (IL.9a).
Van Horn” has shown that, in this static approximation,

Q.= 1.85w,, (I1.18a)
and

Q,=2.3%0 (I1.18b)

for the bcec lattice structure.

7 H. Van Horn (private communication).
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Comparison of Egs. (I1.18) with Egs. (I1.17) indi-
cates that coupling to the lattice motion decreases the
oscillator frequencies somewhat. The second derivatives
8V /922(0,0,bnn) and 62V /9x2(0,0,bnn) are reduced by
389 and 529, respectively, by the motion of the
lattice. The lattice effectively polarizes under the in-
fluence of the motion of the two reacting particles. This
polarization acts to reduce the Coulomb fields that
oppose displacements of the reacting nuclei from their
equilibrium positions. Lattice polarization increases the
reaction rate noticeably. Figure 3 compares reaction
rates computed using the static and dynamic values of
Q. and Q..

III. CALCULATION OF THE REACTION RATE

In this section, we derive an expression for the re-
action rate. We begin by finding a formula for the
reaction rate in terms of the wave function correspond-
ing to the non-nuclear potential

V(r)=Z%r "+ ko + R’ +E (32497 . (IIL1)

In Secs. ITIB and ITIC, we derive the wave function,
and in Sec. IIID we obtain the reaction rate itself.

A. General Expression for the Reaction Rate

The total potential affecting the relative motion of
two reacting particles is the sum of the non-nuclear
potential V(r) of Eq. (III.1) and a nuclear potential.
The nuclear potential is effectively zero except within
a radius R, where

Rbpn, (I11.2)

since we limit ourselves to densities well below nuclear
densities.

We decompose the regular solution to the Schrédinger
equation

{V+2ui*[E—V (1) J}¢(r)=0 (I1L.3)
in terms of spherical harmonics as follows:
YO =21y oo fL(E; )V Ly (Q). (I11.4)

Let the regular solution to the Coulomb-wave Schréd-
inger equation

(V24 2utE— 22 ]} (r) =0 (I11.5)
be written
Vo) =21y aru’fr(E; )Y e (@).  (1IL.6)
Since
V(r) = Z%%! (I11.7)

for r<&bny, the radial functions fL(E;7) and fr°(E;7)
must differ only by a constant factor when 7 is near the
nuclear radius R, which is small compared to bn,. Thus
it is interesting to compare the reaction rate I'(E) for
an external potential V(r) with the rate T'*(E) of the
same reaction at the same energy but with an external
potential Z%¢%1. .
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We limit ourselves to reactions in which one incident
orbital angular momentum value L dominates the
reaction rate. We also choose a ¥°(r) which approaches
a plane wave of unit intensity as » —, except for the
usual slowly varying phase factor characteristic of
Coulomb waves. We normalize f1¢(E;7) such that

fro(E;7) — (kr) L sin[wkr—a(r)], (I11.8)

as r — o, Then one can show that the reaction rates
for external potentials V(r) and Z%?/r are related as
follows:

fu(E;7) |

lim
™ fre(E;7)

PL=ZMldLM\2

(I11.9)
Iy 4x(2L41)

In the follow subsections, we find expressions for
ary and fr(E; ) for substitution in Eq. (II1.9).

B. The Radial Equation

The remaining problem is to solve Eq. (III.3) for
¥(r). We concluded in Sec. II that the harmonic oscil-
lator approximation is valid near the point (0,0,bnn).
Thus, near (0,0,6,n) we can write

2o e fr(N)Y L (R)
=U.(nz; x)Uzl(”y§ y)UZ(”23 z).

The right side of Eq. (II1.10) represents a normalized
three-dimensional harmonic oscillator wave function
with frequencies Q,, 2,, and ©, and occupation numbers
4y Ny, and n,. The harmonic oscillator wave functions
are large only near x=0, y=0, 2= by, or, in other words,
7=0bnn, 0=0. Thus, the product U,(#,;x)U,(n,;y)
essentially expresses the angular dependence of the
wave function while U,.(n.;2) describes the radial
dependence. Hence, we can write

(I11.10)

fr(ne; 1)~ Us(n.; 7)bnnt (I11.11)
for 7 near bu, and
aLM(n,ny)zb,m‘l/ dx/ dyU ,(n,; %)
XUy(ny; 9)Y 1a*[Q(,p)].  (I11.12a)

In this approximation the coefficients @z depend on
7, and #,, but not on #,. We have shown that the radial
wave function is independent of 7, and 7, for  near
bun, and we shall show later that f, is approximately
independent of #, and #, for smaller 7.

We should note that the integration in Eq. (ITI.12a)
can be performed readily for the important special case
where #,=#n,=L=M=0, and the result is

200(0,0) =72 (uQban®) /2. (II1.12b)

According to Eq. (II1.11), fi(n.; ) must satisfy the
same differential equation as U,(n.;7) for » near bpn.
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Thus, we find that

[__d_z_’_gl(r)]fL(nz,r)zO (III.133.>
ar?

for 7 near b,,. The quantity g:(r) is defined by

41 (7) = 2#;2"2[:[/(0,0,7’) - V(0,0,bnn>
— (nA4-9HQ.]. (111.13b)
We want to compare Eqs. (IT1.13) with the equation
fr satisfies for small ». At small 7, we can neglect the
anisotropy of the potential and separate the solution

into radial and angular components in the usual way.
Then, for 7<bnn, [z satisfies the equation

& LL+1)
[+

ar? 7

+g0 (r)][rfL (n.;7)]=0, (I11.14a)

where
g2(r)=g1(r) = 2u77 Qe (ot +1).  (I11.14b)

It would, of course, be convenient if fr(n.;7)
satisfied the same differential equation for all 7,
0<7<bya. We now show that the radial wave function
approximately satisfies the differential equation

@ L(L+1)
|-+

ar 7?
both for 7=bs, and for 7<<ba, by noticing that Egs.
(II1.13a) and (IT1.15) are approximately the same for
7 near by, and that Eqs. (II1.14a) and (III.15) are
essentially equivalent for small 7. Comparing Egs.
(I11.13a) and (II1.15) we note the following facts: (1)
the term L(L+1)7% in Eq. (II1.15) is negligibly small
for 7 near b,, providing the expectation value {(z— bnn)?)
is small compared to buo?; and (2) the quantity 7 fz(n.;7)
can be accurately approximated by bnnfr(#.;7) for r
near bnn. It follows that Eqgs. (II1.13a) and (II1.15) are
essentially the same for 7 near bn,. Comparing Egs.
(II1.14a) and (II1.15) for #<<bnn, we notice that the
quantity e, defined by

€ay=20QF (1151, +1) (I11.16)

is small compared to 2uZ%? 2. Thus Eqs. (III.14a)
and (II1.15) differ little for 7<<bn,. We have now
established that Eq. (III.15) holds accurately in the
limits of large and small ». We assume that it holds
approximately for intermediate 7.

The most serious approximation involved in the use
of Eq. (IT1.15) for all 7 is the neglect of e, for small and
intermediate 7. One can estimate the resultant error in
the calculated reaction rate by adding e,, to the energy
for small 7 in the barrier penetration factor of Eq. (IL.6).
One finds that the error in the barrier penetration
integral I, should be less than 29,.

By making various approximations we have shown
that the radial wave function satisfies Eq. (III.15) for

+g1 (r):|[rf1,(nz; 7)]=0, (IIL.15)
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all 7. In Sec. ITIC we outline the procedure for integrat-
ing Eq. (II1.15) to find fr(n.;7).

C. The Radial Wave Function

Our method of solving Eq. (III.15) approximately
for fr(m.;r) is algebraically complicated but straight-
forward. It introduces errors small compared to those
due to the approximations involved in Eq. (III.15)
itself. Thus, we only outline the procedure briefly.

We use the modified WKB approximation® in which
the centrifugal potential is represented by (L-+43)*2
instead of L(L+1)r2. We determine the normalization
by matching the WKB approximation to the harmonic
oscillator wave function for r near bn,. The WKB
integral cannot be evaluated analytically, but it can be
expressed to a good approximation as the sum of two
integrals which can be calculated exactly. The first
integral is the one that appears in the WKB approxi-
mation to a Coulomb wave function. Thus, the radial
wave function fr(#.;7) can be written as the product
of a Coulomb wave function and a correction factor.
The Coulomb wave function appearing in f.(n.;7) is
fLe(E'; r), where

E'=2%(14-£71). (I11.17)
The relation

§=2u22 2 (L+3) . (I11.18)
defines the parameter £, which is usually much larger
than one. Thus, E’ is approximately the energy of a
pure Coulomb wave with classical turning point 7.. The
classical turning point radius defined in Eq. (I1.6c) can
be expressed in the approximate form

Te= bnn“— [h (2nz+ 1):]1 12 (#Qz)wlﬁ ,

providing the vibrations are small.
To find the reaction rate using Eq. (IT1.9), we must
calculate the ratio Q given by

Q= lim [fr(nz57)/ foo(E;7)],

(I11.19)

(I11.20)

where E is defined in Eq. (I1.8). The quotient Q is the
ratio of the Coulomb wave functions for energies E’ and
E multiplied by a correction factor.

We must define four parameters occurring in the two
Coulomb wave functions. The expressions

k=" (2uE)/? (I11.21)
and

K =hQuE )2 (111.22)
express the wave numbers in terms of the energies, while
the equations

n=2%uh"%1, (111.23)
and

7' =Z2uh2(’)! (111.24)

8F. L. Yost, J. A. Wheeler, and G. Breit, Phys. Rev. 49, 174
(1936).
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give the Coulomb field parameters in terms of the wave
numbers.

We must also define some parameters occurring in the
correction factor that multiplies the ratio of the Cou-
lomb wave functions. Let

C=2ukot2(L+%)"2r s, (I11.25)
and

o=2uks# 2 (L+%) 5. (I11.26)
Then define 4, B, C, and D by the relations
A= (1/16)(38+482—4H) (14577, (I11.27)
B=(1/128)(29¢*4 72842482 —32£—48)

X (4§02, (111.28)

C=(1/24)(94-32¢4+-8) (1452, (II1.29)

and
D= (1/192) (8754356824 356£+192) (14 £)~*. (111.30)
Finally, let

I=(L+%)[(cos™a)({A+eB)+iC+eD], (II1.31a)
where
a=—E£(t+2)7. (IIL.31b)
Then one can show that
0=F expl3I—n(r'—n)], (I11.322)

where

2, (k)2 L 14yt 2\ 12
F=[# ) H( s )] . (IIL.32b)

ThiE 1 o1 \ 14?52

The quantity Q gives the ratio of the wave function
fr(n.;7) to the Coulomb wave function for the energy
E. We now use Egs. (I11.32) in Eq. (IIT.9) to find the
reaction rate.

D. The Reaction Rate

We first consider the reaction rate from an initial
state (ns,my,%,). Substituting Eqgs. (IIL.32) in Eq.
(I11.9) yields

TrL(#z,n,,m.) =Gl L(E), (I11.33a)
where
G=[4r QL+ X | s (naymy) |
Xexp[I—2r(n'—n)], (II1.33b)

and I'.°(E) is the reaction rate for a pure Coulomb wave
with energy E.

To find the average lifetime of a nucleus in a stellar
interior, we must perform a thermal average over
oscillator states. We shall find in Sec. IV that the theory
applies only to temperatures low enough that

71, (RT)- 1. (I11.34)

Thus, we assume 7, and #, are both zero. The sum over
n, must be carried out, however, due to the strong
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dependence of 4’ on #.. Consistent with our previous
assumption of a bec lattice, we assume each nucleus has
eight nearest neighbors and obtain the expression

r'=8 ¥ T'1(0,0,1,) exp[ —nAQ.(T)"1], (IIL.35)

nz=0

for the inverse lifetime.

In the important special case of an s-wave interaction,
the reaction rate corresponding to a Coulomb wave with
unit number density at infinity is often written?

To*=S(E)E-le2m, (I11.36)

where the cross-section factor S(E) can usually be
determined from the results of laboratory experiments;
it contains all of the purely nuclear aspects of the
reaction rate. The quantity » in Eq. (IIL.36) is the
velocity corresponding to energy E and wave number
«. Using Eqs. (I1.17), (II1.12b), (IT11.32b), (IIL.33), and
(II1.36) in Eq. (II1.35), one finds that the inverse
lifetime for an s-wave reaction is given by

TO.-I= J an S(E)
Xexp[ —2my'+1—n4.(RT)™"], (I11.37a)

where

J=1.00(p/M)2/571. (II1.37b)

The quantities ' and I were defined in Eqs. (I11.24)
and (II1.31), respectively. The energy E can be written
in the convenient form

E=1.4872¢*(o/ M)\ *++1.88(n.+1)1iZep PM~". (II1.38)

Equations (III1.35) and (II1.37) give the inverse
lifetime of a nucleus in a solid lattice of density p. In
Sec. IV we describe the range of temperatures and
densities to which these formulas apply.

IV. LIMITATIONS AND GENERALIZATIONS
A. Assumption of Identical Particles

We have considered so far only the case of nuclear
reactions in a lattice of identical particles. The assump-
tion of identical particles allowed the relatively easy
evaluation of bnn, 22, and Q.. If these parameters could
be evaluated for a medium of more complicated com-
position, the rest of our treatment could immediately
be generalized to include reactions between nonidentical
particles. Equation (III.33) holds for nonidentical
particles, providing we interpret u as M 1Mo (M +M,)™!
and replace Z2 by Z:Z; in all cases.

Accurate evaluation of byn, 2., and @, is difficult for a
nuclear reaction in a star of arbitrary composition. Such
a star does not possess a periodic lattice. Consequently
the phonon technique cannot be used to find Q. and .,
and typical distances between neighboring nuclei of the
reacting species could only be estimated accurately by

? P. D. Parker, J. N. Bahcall, and W. A. Fowler, Astrophys. J.
139, 602 (1964).

REACTIONS

IN SOLID-LIKE STARS B 1641
careful analysis of the energies of different geometrical
configurations.

Here we suggest a crude general rule for estimating
the nearest-neighbor distance between two nonidentical
nuclei. We picture the lattice as composed of neutral
regions, one region for each ion. The neutral region
including a nucleus of charge Z’ would have volume
Z'n;"1, where #, is the electron number density. For
example, consider the case of a nucleus of charge Z;
imbedded in a medium of much smaller charges Z,. We
could picture the charge Z; at the center of a sphere of
radius (3Z,)'3(47n,)13. The sphere would then be
surrounded by small cubes of edge length Z,!/31,7153,
each cube containing one nucleus and Z, electrons.
According to this crude picture, the nearest-neighbor
distance between nuclei of charge Z; and nuclei of
charge Z, is given by

bun=n," B[ (3Z)\3 (4m) B3 Z0]. (IV.1)

Although Eq. (IV.1) was ‘“derived” for the case of
Z>Z,, we note that it also gives a reasonable formula

ban=1.126 (IV.2)

for the case where Z; and Z; are equal. Thus Eq. (IV.1)
would be a reasonable guess for all Z,>Z,.

We can make a correspondingly simple assumption
about the lattice potential. We assume U(r) has the
form suggested in Eq. (I1.9a), with &; set equal to zero.
Then Egs. (I1.9b) and (I1.9¢) imply that

02=3Z17:6%"0un2, (IV.3)
and

kz'—-“ %Z1Z26zbnn_3 . (IV4)

Setting Q. equal to @, would not cause serious error since
the reaction rate does not depend strongly on Q..

Equations (IV.1)-(IV.4) represent only crude esti-
mates of the parameters needed for finding a reaction
rate in a medium of arbitrary composition. Careful
analysis of lattice configurations for various composi-
tions might suggest more accurate rules.

B. Assumption of One L Value

We have assumed that one initial value of orbital
angular momentum dominates the reaction rate.
Reactions between light nuclei are predominantly
s wave, but several different orbital angular momenta
may be important in reactions between heavier nuclei.
Incorrectly assuming that one L value dominates the
rate, one may overlook the effects of interference and
may make errors in the geometrical factors arj, but
such errors are unlikely to amount to as much as a
factor of ten. The barrier penetration factors for re-
actions between heavy particles range from about =%
to ¢71% for the conditions to which the solid-state model
applies. Owing to our incomplete knowledge of U(r)
and our approximate method of solving the Schrodinger
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equation, we are likely to make errors of several percent
in the barrier penetration exponents. These errors are
likely to be larger than any caused by incorrect assump-
tions about the dominant L values.

C. Resonant Reactions

The treatment outlined above does not apply directly
to reactions with strong resonances at energies smaller
than about two or three times Z%2%~!, which ranges
from less than 1 keV for protons at 10° g/cc to several
hundred keV for carbon nuclei at 10" g/cc. The widths
of the harmonic oscillator states are likely to be large
compared to the widths of the nuclear resonances. To
apply the solid-state treatment to a reaction like

3 Het— C24vy,

which involves low-lying resonances, one would have to
estimate the widths of the oscillator states and replace
the sum in Eq. (II1.37a) by an integral.

D. High-Density Limit

At high densities, the amplitudes of the ground-state
vibrations may become comparable to dsn. When this
happens, the nuclei no longer form a bcc lattice, as
assumed in Secs. IT and III. Several investigators have
estimated the “melting density” of a lattice consisting
of electrons immersed in a uniform distribution of posi-
tive charge. These estimates can easily be converted to
apply to the case of a lattice of nuclei in a uniform
negative charge density. The most recent estimates are
those by de Wette® His work locates the melting
density in the range

16X 1042544 < p,, <1.6X 1052844,  (IV.5)

where p, is in g/cc. Earlier work™ indicated a melting
density of about 1082844 g/cc.

Just above the melting point, the nuclei form a fluid
rather than a periodic lattice, but the motion is still
largely vibrational. In this liquid range, where the mean
free path between collisions is small compared to bnn but
the vibrations are still too large to allow a strictly
periodic lattice, it still seems reasonable to treat the
relative motion of two particles using the potential of
Eq. (I1.9). That potential depends on the assumption
of a bec lattice through the parameters bnn, s, and Q..
The nearest-neighbor distance varies only a few percent
from one lattice structure to another. The frequencies
Q. and Q. have been calculated for the fcc lattice and for
a “smeared-out” lattice intended to resemble a liquid,
and the values of Q, and Q, are within about 109 of the
values obtained for the bec lattice. Thus we conclude
that the parameters bnn, @, and Q. are nearly inde-
pendent of the geometrical arrangement of the lattice,

©F, W. de Wette, Phys. Rev. 135, A287 (1964).
11 P, Noziéres and D. Pines, Phys. Rev. 111, 442 (1958) and
N. F. Mott, Phil. Mag. 6, 287 (1961).
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although they depend strongly on the density and on
the charge and mass of the nuclei. We therefore hope
that the values of bun, 2., and Q, for the bee lattice also
suffice for the range of densities where the nuclei
execute small vibrations in a nonperiodic lattice. The
range of applicability of the formula could then be
extended to a density given by the approximate relation

pe=~108Z84% g/cc. (Iv.6)

The above considerations are important mainly for
reactions between protons. At densities greater than
about 10% g/cc, a zero-temperature proton star could be
described more accurately as a degenerate gas than as
a solid. Thus the solid-state approach fails to apply to
protons at densities well below those expected in
neutron stars.

We have also assumed that the nearest-neighbor
distance is large compared to the nuclear radius. Thus,
the solid-state model applies only if

pK10 g/cc. av.m

E. High-Temperature Limit

The temperature enters the expression for the re-
action rate through the sums over %, in Eqgs. (I11.33)
and (I11.37). Below a critical temperature T, given
approximately by the relation

T\~1200ZA41p!7, (IV.8)

where T, is in °K and p is in g/cc, essentially all re-
actions take place from the ground state. Thus, for
T<T., the rate is independent of 7. Near the tempera-
ture T, the first few excited states become important,
and the rate begins to increase with temperature. At a
temperature just slightly above 7', most reactions take
place from unbound states, and the solid-state approach
fails. Just above the critical temperature, most of the
nuclei in the lattice are still in their ground states
because

Q. (kT ) '=24, (Iv.9)
and

1 (kT ) ~3.5. (IV.10)

However, the exceptionally energetic nuclei that. are
most likely to react have enough energy to break
through the lattice. The mean free path between colli-
sions of these unusually energetic nuclei is large com-
pared to ban, and they can be treated approximately as
gas particles. Salpeter* has developed a method for
calculating reaction rates for 7>>7.

V. NUMERICAL RESULTS

A. Proton-Proton Reactions

Equations (II1.37) have been used to calculate the
mean lifetime of the protons in hydrogen stars at various
temperatures and densities. The protons were assumed
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to undergo the reactions

H4+-H! - H2+-et» (v.1)
and

Hid-e+H! — H24y. (V.2)

For densities greater than about 10° g/cc, the extreme
degeneracy of the electrons causes the capture reaction
(V.2) to dominate the process of hydrogen burning.

Figure 2 shows the temperature dependence of the
mean lifetime at a density of 10° g/cc. Below a critical
temperature of about 2X105°K, the reaction rate is
independent of temperature. Above about 10%°K, the
formula of Salpeter? should be accurate.

B. Carbon-Carbon Reactions

The mean lifetimes of C? nuclei in stars of pure
carbon have also been computed. Two carbon nuclei
may react to form the following products: Mg*+,
Na®4-H!, Mg®+n, Ne¥+He?, and 042 He*. Equa-
tions (II1.37) were used to calculate the mean lifetimes
of the carbon nuclei, even though there is no reason to
expect that the reactions are predominantly s wave.
Reeves'? has expressed the rate of the carbon-carbon
reactions in terms of the cross section parameter S(E).
The small errors caused by estimating the geometrical
factors ary incorrectly and by neglecting interference
effects should not be serious because of the strong
density dependence of the reaction rate.

Figure 3 shows the mean lifetime of a carbon nucleus
at 10°K. At low temperatures the reaction rate is
significant for densities greater than about 10" g/cc.
The rate of the C'?4-C* reactions depends much more
strongly on density than the rate of the proton-proton
reactions because the barrier penetration exponent is
much larger for Z=6 than for Z=1.

C. Comparison with Cameron’s Method

Cameron? has suggested calculating the rates of
pycnonuclear reactions by treating the system of nuclei
as a gas with Coulomb interactions between the parti-
cles. The curves marked “cas(caAMERON)” in Fig. 3 were
computed by a method similar to that proposed by

T T T T
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12 H. Reeves, Astrophys. J. 135, 779 (1962).
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Cameron, using the same values of the cross-section
parameter S(£)*® as in the solid-state calculation.

Figure 3 indicates that the solid-state method pre-
dicts rates one to ten orders of magnitude smaller than
those computed by the gas model. The large discrepancy
in the predictions of the two models is due to the differ-
ent estimates of the classical turning point radius 7,,
which is an important factor in the barrier penetration
exponent. According to the solid-state approach, 7, is
slightly less than the nearest-neighbor distance. Accord-
ing to Cameron’s model of electrostatic screening at low
temperatures, 7. is slightly less than the charge-cloud
radius, given by (3Z:)'3(4wn,)~13, where Z;>Z,. For
Z1=2Z,, this charge-cloud radius is only 0.57 of our
nearest-neighbor distance. Due to the strong depend-
ence of the barrier penetration factor on the classical
turning point, this factor of 0.57 causes a large difference
in the predicted rates. However, for Z;3>Z,, Cameron’s
charge-cloud radius is approximately equal to the
nearest-neighbor distance given by Eq. (IV.1). Hence
Cameron’s method and the solid-state method would
give similar predictions for reactions in which one
nucleus is much larger than the other.
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