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Z . Qualitatively there is very little difference between
the A and Z spectra. At higher energies the spectra
peak more sharply.

Figure 5 presents the total cross sections for A and
Z—.The Inain qualitative difference, typical of V—A
versus V+A is the much more rapid rise for h. produc-
tion. This is a possible way to verify that in the Z—

interaction V/A is positive.

It is also of some interest to use our asymptotic
formulas to make estimates of the hyperon to nucleon
ratios. If we use Eq. (32) and choose tt'/2=M, ' or
M~*', then the results are

op/o N -+ 0.078= 1/13,

o s/o tv -+ 0.055= 1/18.
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In stellar matter as cool and dense as the interior of a white dwarf, the Coulomb energies between neigh-
boring nuclei are large compared to the kinetic energies of the nuclei. Each nucleus is constrained to vibrate
about an equilibrium position, and the motion of the nuclei in the interior of a white dwarf is similar to the
motion of the atoms in a solid or liquid. We propose a solid-state method for calculating the rate at which a
nuclear reaction proceeds between two identical nuclei oscillating about adjacent lattice sites. An effective
potential U(r) derived by analyzing small lattice vibrations is used to represent the influence of the Coulomb
6elds of the lattice on the motion of the two reacting nuclei. The wave function describing the relative
motion of the two reacting particles is obtained by solving the Schrodinger equation containing the e8'ec-

tive potential U(x). From this wave function, we derive an expression for the reaction rate. The rates of the

p+p and C"+C"reactions calculated using this solid-state method are typically 1 to 10 orders of magnitude
smaller than those calculated by the method previously suggested by Cameron.

I. INTRODUCTION

HE motions of nuclei in the interiors of cool, dense
stars resemble the motions of atoms in solids or

liquids. The mean free path between collisions suffered

by a given nucleus is much smaller than the average
distance between nuclei and may be comparable to the
particle's quantum-mechanical wavelength. Each nu-

cleus is therefore forced to oscillate about a 6xed position
in a lattice structure. '

Reactions between charged particles in stars are
inhibited by the small probability of penetrating the
Coulomb barrier between nuclei. However, the prob-
ability of penetrating the barrier increases rapidly with
the energies of the colliding particles. In most stars, the
effective energies are due primarily to thermal motions.
In stars as cold as white dwarfs, the thermal energies
alone are too small to allow charged particles to react at
signidcant rates. However, the Coulomb potential of
the lattice combined with the ground-state vibrational

energy of the reacting nuclei can, at high densities,
enable nuclei at adjacent lattice sites to react rapidly
even at zero temperature.

*Supported in part by the U. S. OfBce of Naval Research
PNonr-220(47)g and the National Aeronautics and Space Ad-
ministration LNGR-05-002-028j.

f National Science Foundation Predoctoral Fellow in Physics.
' E. E. Salpeter, Astrophys. J. 134, 669 (1961).

It is important that one be able to calculate the rates
of reactions occurring at high densities and low tem-
peratures, reactions to which Cameron' has applied the
name "pycnonuclear. " Cameron has suggested that
such reactions might be the source of energy for nova
explosions. A knowledge of the rates of pycnonuclear
reactions would also be useful in mathematical studies
of white dwarfs. Prom the rates of reactions at high
densities, one can infer certain limitations on the possi-
ble compositions of the interiors and envelopes of white-
dwarf stars, compositions which would otherwise be
completely unknown. ' Any future attempts to evolve
stellar models into the white-dwarf state from higher
temperature configurations will also require detailed
knowledge of pycnonuclear reaction rates.

In this paper we develop a method for 6nding the rate
at which nuclear reactions proceed between particles
vibrating about adjacent lattice sites. For reactions
between particles with Z&2, the solid-state approach
applies to the temperatures and densities in region I of
Fig. 1. Figure 1 also shows typical central temperatures
and densities for various types of stars.

We consider primarily reactions in a lattice of iden-
tical nuclei, although we do suggest a rough model for

2 A. G. W. Cameron, Astrophys. J. 130, 916 (1959).
3 T. Hamada and E. E. Salpeter, Astrophys. J. 134, 683 t'1961&.
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generalizing the method to include reactions in lattices
with arbitrary compositions. A more accurate treatment
of reactions in dense stars with complicated composi-
tions would require detailed analysis of the structures
of lattices containing more than one nuclear species.

At the high densities of interest here, the motions of
any pair of nuclei are strongly coupled to the motions
of other nuclei nearby. In order to compute the mean
lifetime for a reaction between two adjacent nuclei
without solving the complete many-body problem
exactly, we make the fundamental assumption that the
effect of the rest of the lattice on the relative motion of
the two reacting particles can be adequately represented
by a static potential U(r). The reaction rate depends
strongly on U(r) through the barrier-penetration factor.
In Sec. II, we analyze the small vibrations of the lattice
to find U(r). Then in Sec. III, we solve the Schrodinger
equation for the wave function characterizing the
relative motion of the two reacting particles. Having
found this wave function, we derive an expression for
the reaction rate. Section IV contains a discussion of the
limitations of the solid-state treatment. Ke also con-
sider in Sec. IV the problem of generalizing the method
to include reactions between nonidentical nuclei. In
Sec. V, we present numerical results for the rates of the

p+p and C"+C"reactions. Our method predicts rates
several orders of magnitude slower than those obtained
using the procedure suggested by Cameron. ' Salpeter'
has developed a way of calculating reaction rates at
temperatures higher than those covered by the solid-
state method; our results are consistent with those of
Salpeter.

II. ESTIMATION OF THE EFFECTIVE POTENTIAL

A. General Discussion

The strong Coulomb forces between nuclei in a
lattice greatly complicate the calculation of reaction
rates at high densities. Each nucleus experiences
Coulomb forces due to many neighboring particles. To
compute the reaction rate per unit volume exactly, one
would have to solve the complete many-body problem
including all the nuclei in the lattice. This many-body
problem seems tractable only for the case of small dis-

placements of the nuclei from positions in a periodic
lattice, the case to which the phonon approach of solid-
state physics is applicable.

We cannot calculate reaction rates, however, by
relying just on the phonon theory to describe the motion
of nuclei under the inhuence of lattice Coulomb fields.
A nuclear reaction between two particles must involve
their approaching one another to within a distance of
the order of the nuclear radius, which is much smaller
than b „, the nearest-neighbor distance. The phonon
theory does not apply to such large displacements from
equilibrium. We do know, however, that for small

' E. E. Salpeter, Australian J. Phys. 7, 373 (1954).
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FIG. 1. Central temperatures and densities of various types of
stars. The solid-state approach to nuclear reactions applies to
region I on the 6gure. In region II, most nuclear motion is
vibrational, but the nuclei most likely to react have enough energy
to break through the lattice. In regions III and IV, the nuclei
move like atoms in a gas. In region III, the electrons are de-
generate, while in region IV they are nondegenerate.

separations between nuclei, the relative motion of the
two nuclei is influenced primarily by a potential
Z'e'r ', and the forces due to the rest of the lattice are
not important.

We assume that the relative motion of two nuclei
oscillating about adjacent lattice sites can be adequately
represented by motion in some potential V(r). We
require that V(r) —& Z'e'r ' a,s r ~ 0 and use the results
of the phonon analysis to determine V(r) for small dis-
placements from equilibrium, i.e., for r approximately
equal to the vector between the equilibrium positions
of the two nuclei. In this way, one can reduce the many-
body problem involving all the nuclei in the lattice to
one involving just the relative motion of two particles.
By proper choice of the potential, we can accurately
approximate the effects of motions of the neighboring
nuclei.

In this section we treat only identical nuclei, each
having mass M and charge Zt, . We consider the rate at
which a nuclear reaction proceeds between two of these
nuclei, labeled 1 and 2. Let the relative displacement of
the two nuclei be given by r= r&—r2, and let the com-
ponents of r be x, y, and s. The mass characterizing the
relative motion is given by

if the lattice is, as expected, symmetric under the
operations (x —+ —x, y —& y), (x —+ x, y —& —y), and

@=~2M.

Let the equilibrium positions of the particles be
separated by a distance b„„along the s axis, where b„
is the nearest-neighbor distance characteristic of the
lattice. The potential V(r) acting on the relative motion
of the two neighboring nuclei must have a minimum at
(0,0,b ). Near the minimum point, the potential has
the form
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V (r) =Z'e'r '+ U (r) . (II.3)

Since nuclei 1 and 2 are assumed identical, the potential
U(r) satisfies the relation

U(r) = U(r, —rg) = U(rg —ri) = U( —r), (II.4a)

which implies that

(x ~ y, y —+ —x). In Sec. IIB we use the phonon
analysis of lattice vibrations to determine the values of
0, and 0,.

We note that the total effective potential can be
separated into two parts, one representing the static
Coulomb field between nuclei 1 and 2, and the other
representing the effective potential due to the other
nuclei in the lattice. That is, we can write

quantum numbers e„n„,and n„and the relation

E=E(e.,e„n,)= (e,+e„+1)AQ,
+ (n.+-', )80,+V(0,0,b„„) (II.8)

gives the energy eigenvalue for the state (e„n„,m,)
Equation (II.S) accurately establishes E V(0,—0,b„„)

for any given state, while Eqs. (II.2) and (II.3)
accurately determine U(0,0,r) —V(0,0,b ) for r near
r, H. ence the quantity U(0,0,r) —L is known for r
near r, .

However, Eqs. (II.2)—(II.5) do not accurately deter-
mine U(0,0,r) —E for r«r, . Fortunately the integral in

Eq. (II.6b) does not depend strongly on U(0,0,r) F—
for small r, since

Z'e'r —'))
~
U(0,0,r) —E ~,

VU(0,0,0)=0.

We define the zero of energy by the relation

(II.4b)
if r&&'r, . In order to minimize the error in the barrier
penetration integral I„due to our incomplete knowledge
of U(0,0,r) —8, we assume U(r) can be represented in
the simple form

U(0,0,0) =0. (II.5) U(r) =k~r'+k r'+k'(x'+y') (II.9R)

Equations (II.2)—(II.5) express all our knowledge of

U(r). They determine the value and gradient of U(r) at
the origin and the gradient and second derivatives of

U(r) at (0,0,b„„).Equations (II.2)—(II.5) obviously do

not determine U(r) uniquely for all r.
We must now consider the effects of our incomplete

knowledge of U (r) on the calcula ted reaction rate. It can
be shown that the potential U(r) affects the reaction
rate mainly through a barrier penetration factor P(L~),
where

P(E) =exp[ —(Sp)'"/i 'I„j.
The fa,ctor I, in Eq. (II.6a,) is defined by

(II.6a)

[Z&g&g i+U(0 0 y) —gJ/&ifr (II 6b)

where E is the energy of the relative motion, R. is the
nuclear radius, and r, is the classical turning point
radius defined by

L' U(0,0,r,) =ZVr—, '. (II.6c)

the harmonic oscillator approximation of Eq. (II.2) is
accurate in the region where the wave function is large.
Thus, the eigenstates of the Schrodinger equation with
potential V(r) can be labeled by harmonic oscillator

For r near r„ the quantity U(0,0,r) —E makes an
important contribution to the integrand in Eq. (II.6b).
Fortunately, for r near r„ the quantity U(0,0,r) —E can
be determined accurately from Eqs. (II.2) and (II.3).
For r near b„„,the potential V(r) is accurately described

by Eq. (II.2). Since we assume that the vibrations are
small, i.e.,

Substituting Eq. (II.9a) in Eq. (II.3) and comparing
the result to Eq. (II.2) for r near (0,0,b„„)yields

and

kg= 2Z e 6~~ pQ

kg= Z'e'b '+—,'iiQP b . ',-
(II.9b)

(II.9c)

(II.9d)

(The oscillator frequencies 0, and 0, will be determined
in Sec. IIB.) We have assumed that U(r) takes the
simplest form consistent with Eqs. (II.2)—(II.5).
Further investigation has shown that several other
smooth forms assumed for U(r), forms which are also
consistent with Eqs. (II.2)—(II.5), yield values of I„
within a few percent of that given by the U(r) of
Eq. (II.9a).

B. Lattice Dynamics

1. Genera/ Discmssi oe

In this subsection we use a normal-mode analysis to
show that the relative motion of particles 1 and 2 can,
for small displacements, be represented by motion in a
harmonic-oscillator potential. We then compute the
frequencies 0 and 0, characterizing the oscillator
potential.

The electrons are highly degenerate at the tempera-
tures and densities to which the solid-state method
applies. The energy of the Coulomb interaction between
an electron and a nucleus is comparable to the average
electron kinetic energy only at distances small compared
to the electron's wavelength. Consequently, the fields
of individual nuclei cannot significantly a6ect the
electron wave functions. The electrons can react only
to lattice vibrations with very long wavelengths. By
solving the Thomas-Fermi equation for the electron
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following results:

where

Q.= 1.28oro,

0,= 1.88coo,

(II.17a)

(II.17b)

3. Nortsero Terzt peroture

We have treated only the case where all the oscillators
are in their ground states. For most of the temperatures
to which the solid-state model applies, nearly all of the
oscillators are in fact in their ground states. However,
we ca,n calculate the average expectation va, lues of x'
and (s—b„„)'for any given temperature using the same

phonon approa, ch. For all tempera, tures, these average
expectation values are within about 20% of those ob-
tained using the simple harmonic oscillator model with
the frequencies 0, and 0, given by Eqs. (II.17a) and
(II.17b). Thus, we expect that the approximate
potential well of Eq. (II.2) describes the relative motion
even for nonzero temperatures.

4. Compansoe with the Static Model

We have determined the lattice potential U(r) by
examining small vibrations of the lattice. The strong
coupling between the relative motion of two reacting
particles and the motion of neighboring nuclei is thus
ta,ken into account approximately.

The frequencies 0 and 0, can be obtained more easily
if one neglects the la, ttice motion and calculates U(r)
using a purely electrostatic model. This procedure has
the advantage of allowing direct numerical calculation
of U(r) for any r, thereby eliminating the need for
relying on an extrapolation formula like Eq. (II.9a).
Van Horn has shown that, in this static approximation,

0 = 2.39Mo

for the bcc lattice structure.

' H. Van FIorn (private communication).

(II.18a)

(II.18b)

zoo
——Ze(Mb') 'i', (II.17c)

and b ' is the number density of nuclei in the lattice.
These numerical values are expected to be accura, te to
within 1% for the physical model adopted here. By
substituting Eqs. (II.17a) and (II.17b) in Eqs. (II.9b)—
(II.9d) one can 6nd the parameters h~, h3, and h' in the
expression for U(r).

We have used the normal mode analysis of lattice
vibrations to determine the parameters Q, and 0,
characterizing the effective potential V(r) acting on the
relative motion of the two reacting particles. In Sec.
III, we solve the Schrodinger equation containing V(r)
for the wave function of the relative motion of the
reacting particles. Before proceeding to solve the
Schrodinger equation, however, we should consider two
related problems.

Comparison of Eqs. (II.18) with Eqs. (II.17) indi-
cates that coupling to the lattice motion decreases the
oscillator frequencies somewhat. The second derivatives
O'V/Bs'(0, 0,b„„) and O'V fax'(0, 0,b„„) are reduced by
38% and 52%, respectively, by the motion of the
lattice. The lattice effectively polarizes under the in-
Quence of the motion of the two reacting particles. This
polarization acts to reduce the Coulomb fields that
oppose displacements of the reacting nuclei from their
equilibrium positions. Lattice polarization increases the
reaction rate noticeably. Figure 3 compares reaction
rates computed using the static and dynamic values of
0 and 0,.

III. CALCULATION OF THE REACTION RATE

In this section, we derive an expression for the re-
a.ction rate. We begin by finding a formula for the
reaction rate in terms of the wave function correspond-
ing to the non-nuclear potential

V(r) =Z'e'r '+h2r'+h3r'+h'(x'+y') . (III.1)

In Secs. IIIB and IIIC, we derive the wave function,
and in Sec. IIID we obtain the reaction rate itself.

A. General Exjpression for the Reaction Rate

The total potential affecting the relative motion of
two reacting particles is the sum of the non-nuclear
potential V(r) of Eq. (III.1) and a nuclear potential.
The nuclear potential is effectively zero except within
a radius R, where

(III.2)

since we limit ourselves to densities well below nuclear
densities.

We decompose the regular solution to the Schrodinger
equation

(V'+2ph —'t E—V(r)]}P(r)=0 (III.3)

in terms of spherical harmonics as follows:

f(r)=Pz~ azszfz(E; r)Yz~(D). (III 4)

Let the regular solution to the Coulomb-wave Schrod-
inger equation

fV'+2tzh 't E Z'e'r ']}t—P'(r) =0 (III.S)

be written

P'(r) =Pz~ az~'fz, '(E; r) Yz~(Q) . (III.6)
Since

V(r) =Z'e'r ' (III.7)

for r«b„„, the radial functions fz, (E; r) and fz'(E; r)
must differ only by a constant factor when r is near the
nuclear radius E., which is small compared to b„„.Thus
it is interesting to compare the reaction rate I'(E) for
an external potential V(r) with the rate I"(E) of the
same reaction at the same energy but with an external
potential Z'e'r —'.
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We limit ourselves to reactions in which one incident
orbital angular momentum value I dominates the
reaction rate. We also choose a P'(r) which approaches
a plane wave of unit intensity as r —+~, except for the
usual slowly varying phase factor characteristic of
Coulomb waves. We normalize fL'(8; r) such that

fL'(8; r) ~ (~r) ' sinLi~r —zz (r)j, (III.8)

as r~~. Then one can show that the reaction rates
for external potentials V(r) and Z'e'/r are related as
follows:

I'L Z~~rzL~)' fL(&; r) '
lim

I'L' 4'�(2I.+1) fL'(8; r)
(III.9)

In the follow subsections, we find expressions for
aLzr and fL(E; r) for substitution in Eq. (III.9).

Thus, we find that

d2

+g, (r) f L(e„r)=0
dr2

(III.13a)

for r near b„„.The quantity g&(r) is defined by

g, (r) = 2zik 'LV(0,0,r) —V(0,0,b„„)
—(I,+-', )AQ,j. (III.13b)

We want to compare Eqs. (III.13) with the equation

fL satisfies for small r. At small r, we can neglect the
anisotropy of the potential and separate the solution
into radial and angular components in the usual way.
Then, for r(&b„, fL satisfies the equation

d' L(L+1)
+ +g, (r) frfL(rr, ; r)(=0, (III.14a)

dr r'

fL(e, ; r) = U, (N, ; r) b

for t' near b and

(III.11)

rzLir(ri, e„)=b» ' dx dyU. (e.; x)

XU, (~, ; y) VL~*PQ(*,y)j. (111.12a)

In this approximation the coeKcients up~ depend on
e and e„,but not on e,. We have shown that the radial
wave function is independent of e, and e„ for r near
b„, and. we shall show later that fL is approximately
independent of e, and e„ for smaller r.

We should note that the integration in Eq. (III.12a)
can be performed readily for the important special case
where e =e„=I=M=0, and the result is

aoo(0,0) =Ir'"(pQ b ')—'I' (III.12b)

According to Eq. (III.11), fL(N, ; r) must satisfy the
same differential equation as U, (e, ; r) for r near b„„

B. The Radial Equation

The remaining problem is to solve Eq. (III.3) for
P(r). We concluded in Sec. II that the harmonic oscil-
lator approximation is valid near the point (0,0,b„„).
Thus, near (0,0,b „)we can write

ELM rzLiirfL(r) VL3f (Q)
= U, (e; x) U„(e„;y) U'. (e, ; s) . (III.10)

The right side of Eq. (III.10) represents a normalized
three-dimensional harmonic oscillator wave function
with frequencies Q„Q„and 0, and occupation numbers

n„e„, and e,. The harmonic oscillator wave functions
are large only near @=0,y=0, s=b„„,or, in other words,
r=b„„, 8=0. Thus, the product U (e, ;x)U„(rs„;y)
essentially expresses the angular dependence of the
wave function while U, (N, ;s) describes the radial
dependence. Hence, we can write

where

g2(r) =gi(r) —2ph 'Q, (n,+e„+1). (III.14b)

It would, of course, be convenient if fL(e, ; r)
satisfied the same diRerential equation for all r,
0(r(b„„.We now show that the radial wave function
approximately satisfies the differential equation

d' L(I.+1)
+ +gi(r) frfL(&z„r))=0, (III.15)

both for r=b„„and for r&(b„„by noticing that Eqs.
(III.13a) and (III.15) are approximately the same for
r near b„„and that Eqs. (III.14a) and (III.15) are
essentially equivalent for small r. Comparing Eqs.
(III.13a) and (III.15) we note the following facts: (1)
the term L(L+1)r ' in Eq. (III.15) is negligibly small
for r near b„„providing the expectation value ((s—b„)')
is small compared to b„'; and (2) the quantity rfL(e„r)
can be accurately approximated by b fL(e, ; r) for r
near b„„Itfollows . that Eqs. (III.13a) and (III.15) are
essentially the same for r near b„„. Comparing Eqs.
(III.14a) and (III.15) for r(&b „, we notice that the
quantity e „defined by

e y= 2rzQ, A '(e,+n„+1) (III.16)

is small compared to 2pZ'e'5 'r '. Thus Eqs. (III.14a)
and (III.15) diRer little for r(&b„„. We have now
established that Eq. (III.15) holds accurately in the
limits of large and small r. We assume that it holds
approximately for intermediate r.

The most serious approximation involved in the use
of Eq. (III.15) for all r is the neglect of e,„for small and
intermediate r. One can estimate the resultant error in
the calculated reaction rate by adding c,„to the energy
for small r in the barrier penetration factor of Eq. (II.6).
One finds that the error in the barrier penetration
integral I„should be less than 2%.

By making various approximations we have shown
that the radial wave function satisfies Eq. (III.15) for
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a,ll r. In Sec. IIIC we outline the procedure for integrat-
ing Eq. (III.15) to find fz, (n, ; r).

The relation
E,'=Z'e'r, '(1+$—').

&
= 2pZ'e'k —'(L+-')—'r

(III.17)

(III.18)

defines the parameter (, which is usually much larger
than one. Thus, E' is approximately the energy of a
pure Coulomb wave with classical turning point r, . The
classical turning point radius defined in Eq. (II.6c) can
be expressed in the approximate form

r,=$~„—Pz(2n, +1)]'&'(pQ )
—i&2

providing the vibrations are small.
To find the reaction rate using Eq. (III.9), we must

calculate the ratio Q given by

Q= lim Lf, (n, ; r)/f', (E; r)j, (III.20)

where E is defined in Eq. (II.8). The quotient Q is the
ratio of the Coulomb wave functions for energies E' and
E multiplied by a correction factor.

We must define four parameters occurring in the two
Coulomb wave functions. The expressions

and
~= k '(2pE)'I'

lr'=k '(2pE')'"

(III.21)

(III.22)

express the wave numbers in terms of the energies, while
the equations

(III.23)
and

q'= Z'e'pk '(a') —' (III.24)

' E'. L. Yost, J. A. Wheeler, and G. Breit, Phys. EKev. 49, 174
(j.936).

C. The Radial Wave Function

Our method of solving Eq. (III.15) approximately
for fr, (n„r) is algebraically complicated but straight-
forward. It introduces errors small compared to those
due to the approximations involved in Eq. (III.15)
itself. Thus, we only outline the procedure briefly.

We use the modified WEB approximation' in which
the centrifugal potential is represented by (L+—', )'r '
instead of L(L+1)r ' We d. etermine the normalization
by matching the KKH approximation to the harmonic
oscillator wave function for r near b„„. The WEB
integral cannot be evaluated analytically, but it can be
expressed to a good approximation as the sum of two
integrals which can be calculated exactly. The first
integral is the one that appears in the WEB approxi-
mation to a Coulomb wave function. Thus, the radial
wave function fr.(n„r) can .be written as the product
of a Coulomb wave function and a correction factor.
The Coulomb wave function appearing in fz(n„r) is

fr. '(E'; r), where

give the Coulomb field parameters in terms of the wave
numbers.

We must also define some parameters occurring in the
correction factor that multiplies the ratio of the Cou-
lomb wave functions. Let

i =2pkgk —'(L+-', ) 'r.4,

0 = 2pkak '(I.+-', )
—'r, '.

(III.25)

(III.26)

Q =a exp(-', I— (&'—&)j, (III.32a)

2pQ (lr')'z & (1+rl"s '
F= g i

. (III.32b)
irk&2r~i, , (1+g2s 2

The quantity Q gives the ratio of the wave function

fz, (n„r) to the Coulomb wave function for the energy
E. We now use Eqs. (III.32) in Eq. (III.9) to find the
reaction rate.

D. The Reaction Rate

We 6rst consider the reaction rate from an initial
state (n„n„,n.). Substituting Eqs. (III.32) in Eq.
(III.9) yields

where
I'r. (n„n„,n,)=GI'r. '(E), (111.33a)

G= L4~(2L+1)) 'I'~ Qir
~
ar.ir(n„n„) ~'

XexpLI —2m (g' —n) j, (III.33b)

and I'z, '(E) is the reaction rate for a pure Coulomb wave
with energy E.

To 6nd the average lifetime of a nucleus in a stellar
interior, we must perform a thermal average over
oscillator states. We shall find in Sec. IV that the theory
applies only to temperatures low enough that

AQ, (kT) '((1. (III.34)

Thus, we assume e, and n„are both zero. The sum over
n,- must be carried out, however, due to the strong

Then de6ne A, 8, C, and D by the relations

A = (1/16) (3/+4/ —4$) (1+$) '" (III.27)

8= (1/128) (29)4+72/+ 24/ —32'—48)
X (1+$) '", (III.28)

C= (1/24) (9/+32)+8) (1+$) ', (III.29)

and

D= (1/192)(87@+356/+356)+192)(1+$) 4. (III.30)

Finally, let

I= (L+-,')$(cos—'a)(|2+08)+i C+ODj, (III.31a)

where
(III.31b)

Then one can show that
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dependence of g' on e,. Consistent with our previous
assumption of a bcc lattice, we assume each nucleus has
eight nearest neighbors and obtain the expression

rr, ' ——8 P I'r, (0,0,n.,) expL —N.AQ, (kT)—'j (III.35)
nzM

for the inverse lifetime.
In the important special case of an s-wave interaction,

the reaction rate corresponding to a Coulomb wave with
unit number density at infinity is often written'

P c 5'(E)pE—le—2m y (III.36)

where the cross-section factor $(E) can usually be
determined from the results of laboratory experiments;
it contains all of the purely nuclear aspects of the
reaction rate. The quantity e in Eq. (III.36) is the
velocity corresponding to energy E and wave number
a. Using Eqs. (II.I7), (III.12b), (III.32b), (III.33), and
(III.36) in Eq. (III.35), one finds that the inverse
lifetime for an s-wave reaction is given by

=&Q., S(E)
XexpL —2~g'+I —e,kQ, (kT) 'j, (III.37a)

where
J= 1.00 (p/M)'~'k ' (III.37b)

The quantities g' and I were defined in Eqs. (III.24)
and (III.31), respectively. The energy E can be written
in the convenient form

b„„=1.12b (IV.2)

for the case where Zi and Z2 are equal. Thus Eq. (IV.1)
would be a reasonable guess for all Z&&Z2.

We can make a correspondingly simple assumption
about the lattice potential. We assume U(r) has the
form suggested in Eq. (II.9a), with ka set equal to zero.
Then Eqs. (II.9b) and (II.9c) imply that

careful analysis of the energies of different geometrical
configurations.

Here we suggest a crude general rule for estimating
the nearest-neighbor distance between two nonidentical
nuclei. We picture the lattice as composed of neutral
regions, one region for each ion. The neutral region
including a nucleus of charge Z' would have volume
Z'n, ', where e, is the electron number density. For
example, consider the case of a nucleus of charge Z~
imbedded in a medium of much smaller charges Z~. We
could picture the charge Z& at the center of a sphere of
radius (3Z,)'"(4n.e,) '". The sphere would then be
surrounded by small cubes of edge length Z&'~'e, 'f',
each cube containing one nucleus and Z~ electrons.
According to this crude picture, the nearest-neighbor
distance between nuclei of charge Z» and nuclei of
charge Z2 is given by

b~~= n ~'P(3Zi)'~'(4m) —'~'+-,'Z2'~'g. (IV.1)

Although Eq. (IV.1) was "derived" for the case of
Z~))Z~, we note that it also gives a reasonable formula

E= 1.48Z'e' (p/3E)'"+ 1 88(e.+-,') kZ. ep'~'M '. (III.38)
Qg =3ZyZge p bnn (IV.3)

Equations (III.35) and (III.37) give the inverse
lifetime of a nucleus in a solid lattice of density p. In
Sec. IV we describe the range of temperatures and
densities to which these formulas apply.

IV. LIMITATIONS AND GENERALIZATIONS

A. Assumption of Identical Particles

We have considered so far only the case of nuclear
reactions in a lattice of identical particles. The assump-
tion of identical particles allowed the relatively easy
evaluation of b„„,0, and 0,. If these parameters could
be evaluated for a medium of more complicated com-
position, the rest of our treatment could immediately
be generalized to include reactions between nonidentical
particles. Equation (III.33) holds for nonidentical
particles, providing we interpret p as Miff~(Mi+M2) '
and replace Z' by Z&Z2 in all cases.

Accurate evaluation of b„„,0„and 0, is difficult for a
nuclear reaction in a star of a,rbitrary composition. Such
a star does not possess a periodic lattice. Consequently
the phonon technique cannot be used to find 0 and 0„
and typical distances between neighboring nuclei of the
reacting species couM only be estimated accurately by

' P. D. Parker, J. N. Bahcall, and W. A. Fowler, Astrophys. J.
139, 602 (1964).

and
k2= —,'ZgZ2e'b (IV.4)

Setting 0, equal to 0, would not cause serious error since
the reaction rate does not depend strongly on 0,.

Equations (IV.1)—(IV.4) represent only crude esti-
mates of the parameters needed for finding a reaction
rate in a medium of arbitrary composition. Careful
analysis of lattice configurations for various composi-
tions might suggest more accurate rules.

B. Assumption of One L Value

We have assumed that one initial value of orbital
angular momentum dominates the reaction rate.
Reactions between light nuclei are predominantly
s wave, but several different orbital angular momenta
may be important in reactions between heavier nuclei.
Incorrectly assuming that one L value dominates the
rate, one may overlook the effects of interference and
may make errors in the geometrical factors aL,~, but
such errors are unlikely to amount to as much as a
factor of ten. The barrier penetration factors for re-
actions between heavy particles range from about e '0

to e '" for the conditions to which the solid-state model
applies. Owing to our incomplete knowledge of U(r)
a,nd our approximate method of solving the Schrodinger
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equation, we are likely to make errors of several percent
in the barrier penetration exponents. These errors are
likely to be larger than any caused by incorrect assump-
tions about the dominant I. values.

C. Resonant Reactions

The treatment outlined above does not apply directly
to reactions with strong resonances at energies smaller
than about two or three times Z'e'b ', which ranges
from less than 1 keV for protons at 10' g/cc to several
hundred keV for carbon nuclei at 10"g/cc. The widths
of the harmonic oscillator states are likely to be large
compared to the widths of the nuclear resonances. To
apply the solid-state treatment to a reaction like

3 He'~ C"+y,
which involves low-lying resonances, one would have to
estimate the widths of the oscillator states and replace
the sum in Eq. (111.37a) by an integral.

D. High-Density Limit

At high densities, the amplitudes of the ground-state
vibrations may become comparable to b „.When this
happens, the nuclei no longer form a bcc lattice, as
assumed in Secs. II and III. Several investigators have
estimated the "melting density" of a lattice consisting
of electrons immersed in a uniform distribution of posi-
tive charge. These estimates can easily be converted to
apply to the case of a lattice of nuclei in a uniform
negative charge density. The most recent estimates are
those by de bette. ' His work locates the melting
density in the range

1.6&(10'Z'A'(p &1.6&(10'Z'A, (IV.5)

where p is in g/cc. Earlier work" indicated a melting
density of about 10'Z'A' g/cc.

Just above the melting point, the nuclei form a fluid
rather than a periodic lattice, but the motion is still
largely vibrational. In this liquid range, where the mean
free path between collisions is small compared to b„but
the vibrations are still too large to allow a strictly
periodic lattice, it still seems reasonable to treat the
relative motion of two particles using the potential of
Eq. (II.9). That potential depends on the assumption
of a bcc lattice through the parameters b„„,Q„and 0,.
The nearest-neighbor distance varies only a few percent
from one lattice structure to another. The frequencies
0, and 0, have been calculated for the fcc lattice and for
a "smeared-out" lattice intended to resemble a liquid,
and the values of Q, and Q, are within about 10% of the
values obtained for the bcc lattice. Thus we conclude
that the parameters b„„, 0, and 0, are nearly inde-
pendent of the geometrical arrangement of the lattice,

'0 F. W. de Wette, Phys. Rev. 185, A287 (1964)."P. Nozieres and D. Pines, Phys. Rev. 111, 442 (1958) and
N. F. Mott, Phil. Mag. 6, 287 (1961).

p&&'10t4 g/cc.

E. High-Temperature Limit

(IV.7)

The temperature enters the expression for the re-
action rate through the sums over e, in Eqs. (III.33)
and (III.37). Below a critical temperature T„given
approximately by the relation

T,= 1200ZA —'p'f', (IV.S)

where T, is in K and p is in g/cc, essentially all re-
actions take place from the ground state. Thus, for
T(&'T„ the rate is independent of T. Near the tempera-
ture T„ the first few excited states become important,
and the rate begins to increase with temperature. At a
temperature just slightly above T„most reactions take
place from unbound states, and the solid-state approach
fails. Just above the critical temperature, most of the
nuclei in the lattice are still in their ground states
because

AQ, (kT,) '=2.4, (IV.9)

M, (kT,) '=3.5. (IV.10)

However, the exceptionally energetic nuclei that are
most likely to react have enough . energy to break
through the lattice. The mean free path, between colli-
sions of these unusually energetic nuclei is large .com-
pared to b„, and they can be treated approximately as
gas particles. Salpeter4 has developed a method for
calculating reaction rates for T))T,.

V. NUMERICAL RESULTS

A. Proton-Proton Reactions

Equations (III.37) have been used to calculate the
mean lifetime of the protons in hydrogen stars at various
temperatures and densities. The protons were assumed

although they depend strongly on the density and on
the charge and mass of the nuclei. We therefore hope
that the values of b„„,Q„and 0, for the bcc lattice also
suKce for the range of densities where the nuclei
execute small vibrations in a nonperiodic lattice. The
range of applicability of the formula could then be
extended to a density given by the approximate relation

p, =10 Z'A g/cc. (IV.6)

The above considerations are important mainly. for
reactions between protons. At densities greater than
about 10' g/cc, a zero-temperature proton star could be
described more accurately as a degenerate gas than as
a solid. Thus the solid-state approach fails to apply to
protons at densities well below those expected in
neutron stars.

We have also assumed that the nearest-neighbor
distance is large compared to the nuclear radius. Thus,
the solid-state model applies only if
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to undergo the reactions 26— I I

PROTON

and
H'+H' —+ H'+e++ v

H'+e +H'~ H'+v

(V.1)

(V 2)

For densities greater than about 10' g/cc, the extreme
degeneracy of the electrons causes the capture reaction
(V.2) to dominate the process of hydrogen burning.

Figure 2 shows the temperature dependence of the
mean lifetime at a density of 10' g/cc. Below a critical
temperature of about 2X10"K, the reaction rate is
independent of temperature. Above about 10"K, the
formula of Salpeter4 should be accurate.

C. Comparison with Cameron's Method

Cameron' has suggested calculating the rates of
pycnonuclear reactions by treating the system of nuclei
as a gas with Coulomb interactions between the parti-
cles. The curves marked ' GAS(cAMERQN)" in Fig. 3 were
computed by a method similar to that proposed by

FIG. 2. Predictions of
proton lifetimes at 10'
g/cc. The lifetimes pre-
dicted by the method of
Salpeter are compared
to those computed by
the solid-state method
using oscillator frequen-
cies obtained by analyz-
ing the dynamics of the
lattice. The dashed line
indicates a reasonable
interpolation between
the two formulas.

l9—

O
CD

IS-
LLI

LLI
L l7—

O
C9

~ l6—

l5

DYNAMIC SOLID

PROTON
LIFETI MES

IO g/cc .

GAS (SALPETE

I I

4 5 6 7
LOGIO ( TEMI ERATURE, 'K)

"H. Reeves, Astrophys. J. 13$, 779 (1962).

B. Carbon-Carbon Reactions

The mean lifetimes of C~ nuclei in stars of pure
carbon have also been computed. Two carbon nuclei
may react to form the following products: Mg"+7,
Na"+H', Mg"+e Ne"+He4 and 0"+2He4. Equa-
tions (III.37) were used to calculate the mean lifetimes
of the carbon nuclei, even though there is no reason to
expect that the reactions are predominantly s wave.
Reeves" has expressed the rate of the carbon-carbon
reactions in terms of the cross section parameter S(E).
The small errors caused by estimating the geometrical
factors a&~ incorrectly and by neglecting interference
effects should not be serious because of the strong
density dependence of the reaction rate.

Figure 3 shows the mean lifetime of a carbon nucleus
at 10"K. At low temperatures the reaction rate is
significant for densities greater than about 10M g/cc.
The rate of the C"+C" reactions depends much more
strongly on density than the rate of the proton-proton
reactions because the barrier penetration exponent is
much larger for Z= 6 than for Z= 1.

Fn. 3. Predictions of
the lifetimes of protons
and C" nuclei. The life-
times predicted by the
method of Cameron are
compared to those com-
puted by the solid-state
method using oscillator
frequencies obtained (1)
from an analysis of
lattice dynamics and
(2) from an electrostatic
analysis.
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Cameron, using the same values of the cross-section
parameter S(E)' "as in the solid-state calculation.

Figure 3 indicates that the solid-state method pre-
dicts rates one to ten orders of magnitude smaller than
those computed by the gas model. The large discrepancy
in the predictions of the two models is due to the difer-
ent estimates of the classical turning point radius r„
which is an important factor in the barrier penetration
exponent. According to the solid-state approach, ~, is
slightly less than the nearest-neighbor distance. Accord-
ing to Cameron's model of electrostatic screening at low
temperatures, r, is slightly less than the charge-cloud
radius, given by (3Zr)'~'(4rre, ) '", where Zr&Zs. For
Z&=Z&, this charge-cloud radius is only 0.57 of our
nearest-neighbor distance. Due to the strong depend-
ence of the barrier penetration factor on the classical
turning point, this factor of 0.57 causes a large difference
in the predicted rates. However, for Z~&&Z2, Cameron's
charge-cloud radius is approximately equal to the
nearest-neighbor distance given by Eq. (IV.1). Hence
Cameron's method and the solid-state method would
give similar predictions for reactions in which one
nucleus is much larger than the other.
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