
PHYSICAL REVIEW VOLUME 187, NUMBER 68 22 MARCH 1965

Hyyercharge Conservation, CI' Invariance and the Possible Existence
of a Zero-Mass Zero-Syin Field*

T. D. LEE

Deportnsent of Physics, Coftcmbict University, Peto York, ¹toYork

(Received 12 November 1964)

It is shown that by introducing a neutral zero-mass zero-spin Geld cf, the Lagrangian density of all inter-
actions (including weak interactions) can be made invariant under the hypercharge gauge transformation.
Consequently, there exists a hypercharge current density J„ that is absolutely conserved. The current
density J„ is related to the usual hypercharge current density j„of all the presently known particles by

J„=f„—X-'(ay/az„),

where ) is a coupling parameter. The same Lagrangian density is invariant under CP transformation, time-
reversal transformation, and Lorentz transformation. It turns out that if the conserved quantity J'J4d'r WO,
then there exists an energy difference between any hypercharged particle and its antiparticle with the same
momentum. Such an energy difference would induce decays such as E20 —+ 2+, and the decay rate is pro-
portional to the square of the E-meson energy.

Ao —& p+sr, etc. (2)

Since Fs——F =0 and F„=1,it follows that reaction (2)
violates I' conservation, and thus the weak interaction
is usually regarded to be noninvariant under the hyper-
charge gauge transformation.

Recently, Christenson, Cronin, Fitch, and Turlay'
observed that the long-lived component of the neutral
E-meson, the E2', decays into two x mesons

Es' —+ sr++sr= (3)

1. INTRODUCTION

T is well-known that the strong and electromagnetic
- - interactions conserve the hypercharge I' and are
invariant under the hypercharge gauge transformation

P.(r,t) e*'V.(r,t),
where 8 is an arbitrary constant, F,(=0, or &1, .) is
the hypercharge of the particle tt, and P, is its field
operator. The weak interaction allows processes such as Pft~]=4v'V47u(1+&Vs)A

8$p

the y~, y2, y5 are the usual Dirac matrices, b= con-
stant, and the dagger denotes Hermitian conjugation.
The expression (5) is not invariant under the hyper-
charge gauge transformation. In order to maintain the
gauge invariance, we replace (5) by

G[pA7r] exp (—ikey)+ H.c. (6)

and assume that under the hypercharge gauge trans-
formation (1), the field P transforms according to

To see how this can be achieved we may consider,
for example, reaction (2) and represent the relevant
part of the usual weak-interaction Lagrangian density
by (in the absence of p)

GP)Asr]+ H.c.,

where G is the appropriate weak-coupling constant and

which apparently indicates that CI' is also not con-
served in the weak interaction. The CI' invariance is
connected with the transformation

(4)ib. (r, t) g.P.(—r, t),
where g, is a phase factor and f, is the field operator
for the antiparticle of a. The experiment by Christenson
et al. seems to imply that the weak interaction might
not be invariant under the transformation (4).

The purpose of this paper is to point out that by
introducing a neutral field, P which is associated with
a zero-rest mass and zero-spin particle, it is possible to
preserve both the hypercharge gauge invariance and
the CI' invariance for the weak interaction, and at the
same time allow all the observed weak reactions such
as (2) and (3).

*This research was supported in part by the U. S. Atomic
Energy Commission.' J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Letters 13, 138 (1964).
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$~Q —X '8,

where the parameter X is real and has the dimension of
a length. The gauge invariance requires that qh have
zero mass. Under the CI' transformation, we assume
that

y(r, t) ~ —y( —r, t).
The new Lagrangian density (6) is, then, invariant
under the Lorentz transformation, the hypercharge
gauge transformation, and the CI' transformation.

As a consequence of the hypercharge gauge invari-
ance, there exists a conserved hypercharge current
density

J„—=j„—'A '(By/Bx„)

which satisfies the conservation law

(BJ„/Bx„)=0, (10)

where j„is the usual hypercharge current density due
to all the presently known particles. For example, in
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the case of fermions such as p, 22, , etc. , we have

j.= i Z. l'.4.'V 4m A''

Equation (10) implies that

2. LAGRANGIAN AND HAMILTONIAN

In general, we can write the usual weak-interaction
Lagrangian density in the absence of the P field as

L ..i (0)=G Z Lsr,

J44pr=—iQ (12)

is absolutely conserved, and its value is determined by
the initial condition of the system. Decays such as
h.' —+ P+tr do not violate the conservation of hyper-
charge current J„, provided we also include in the
definition of J„the contribution of the P field.

It will be shown that if the system is in any state
with QWO, there must exist a difference of energy
between any hypercharge particle and its antiparticle
of the same momentum. For E' and E', this energy
difference is given by

V= —u2(Q/fl), (13)

where 0 is the volume of the system and is, presumably,
the same as the volume of the "universe. " Under CP
transformation, J4 changes sign. The CP invariance
implies that, for every eigenstate (of the entire system)
with Q=Qs, there exists another eigenstate of the same
energy but with Q= —Qs. The existence of this energy
difference V between E' and E' in a given state of the
system, therefore, does not contradict the requirement
of CP invariance.

It has been pointed out' that, independent of the
precise nature of the mechanism, if such an energy
difference V exists between E and X' then the decay
E' —+ 2m can occur, and its rate is proportional to

(14)

where the subscript AI' denotes the amount of hyper-
charge violation and the sum extends over AY=0 and
&1. The wea¹interaction Lagrangian density in the
presence of the g field is given by

L„...=G P (Lsr) expL il—t(al )y5

The Lagrangian density of the entire system can be
written as

L=Le+L(+L;„„
in which the free-field Lagrangian density is given by
L~ and L~, where

Ls= —-'2( B4/ B$)'

L&= Z.—O.'V (v, (B!»,)+m.)4. ,

and the interaction Lagrangian density is given by

Lint =. Letrons+ Leleet+ Lwegit y

(20)

(21)

(22)

where L,-&„„gand L,&„& are, respectively, the Lagrangian
density for the strong interaction and the electro-
rnagnetic interaction, and L„„i,is given by Eq. (18).
For simplicity, we include only the expression for the
free Fermions in Eq. (21). All repeated indices are to
be summed over.

The Lagrangian density L is invariant under the
Lorentz transformation, the time-reversal transforma-
tion, the CP transformation and the hypercharge gauge
transformation. By using L, the equation of motion is
found to be

where (is= c=1)
'yVf(ml m ) 2 (Fl 12)1 (15)

and
(B'4/B '$) = (BIB&—)L -~ (23)

(1 ti2)
—1/2 (16)

m;, I'; are the rest mass and the decay width of E
(i=1, 2), f B tt B

'Y4~ yg +ma ~4' = aLint
B$g J B'Ij/ a

L„.t . (24)
»a Bi(a,a-

and v is the velocity of E2' with respect to the rest
system of the "universe. " Since in the present theory,
the energy difference V is independent of y, the observed
rate for the 2x decay of E20 must be proportional to p'.

Identical considerations can, of course, be applied to
other quantities such as strangeness, or I,. The hyper-
charge is used only as a representative of any such
quantities that could be conserved by introducing a
zero-mass and zero-spin field. Throughout this paper
we follow the method of canonical formalism of
quantum-field theory. The eGect of general relativity
is not discussed.

2 J. Bernstein, N. Cabibbo, and T. D. Lee, Phys. Letters 12,
146 (1964).

where

lia, g= (B/B$a)i/a alld i/a, g
= (B/B$ir)i)a

The hypercharge current density J„ is related to the
Lagrangian density by

J„=—i+ 1'

where

+~ ', (25)-
a aB4' , —as B4'.g

P,„=Brit/B$„.

From the equations of motion and the gauge-invariance
property of L, the conservation law (Eq. (10)j
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follows. An alternative form of J„is given by Eq. (9)

Z„=j„—X-i(ap/ax„),
where (36)

(37)

UP, Ut=f, exp( —ikey, Q),

U&Ut=p,

Um-U~ =m —~p.

(26)
and

j„=—iQ I,
a —4'a, ts r)4'a, ts—

and is the hypercharge density of the lb. 's. Under the
canonical transformation,

The usual canonical formalism can be directly applied
to the present problems The conjugate momentum of
the P field is given by

ir = r)P/r)t (27)

H =He+Hi+H;„s, (28)

The corresponding Hamiltonian density can be written
as

The Hamiltonian density is transformed into

HU= UHUt=H, +H,+H„,„.,+H...„yH...k(0)
—Xfp7r+ j VP]+-') 'p' (39)

where j is the spatial part of the 4-vector j„, the terms

B~, IIy, II,~„„„andH, i„~ are the same as that given by
Eqs. (29)—(31), but H„.,k(0) is related to Eq. (17) by

where
(29)

H„..k(0) = —I,„„k(0), (40)

Hi, =g f,t tr —V+Prts, (30)

Hint Hsscens+Helect+Hweek ~

The matrices n and P are the usual Dirac matrices. The
B,«.„„II,i„~, and H„,,k describe, respectively, the
strong, the electromagnetic, and the weak interaction
which includes the modification due to the P field.

For simplicity, we have assumed in Eq. (30) that
except for P all other fields are Fermion fields. To
simplify further our discussions, we consider, in the
following, only the case that I.;„& does not contain
derivatives of P,. (All our conclusions can, of course, be
applied to any other case.) Thus,

where

s.(r)=0 'i'Ls. s+Q 7rk exp( —ik r)],
k&0

&k s —k t 4'k 4'—k

(42)

and the commutation relations

Ls kA'k'$

and is independent of p. In HU, the coupling between p
and f, is of a derivative type with )t as the coupling
constant.

To understand the meaning of conservation of hyper-
charge in this new representation, it is convenient to
consider the Fourier expansions of P and. s. in a volume
0:

y(r) =0-'i'I ps+a @k exp(ik r)j
and

+weak Iwee, k

and j„is given by Eq. (11).Both s. and& are IIermitian
operators which satisfy (43)d7I tj/dt=0.

$m. (r, i),y (r', 1)j= iP (r r'l—, — (33) The conservation of hypercharge, after the canonical
transformation, becomes simply

and the f, obeys the usual anticommutation relation.

(32) are satisfied for all k and k'. The transformed Hamil-
tonian HU is independent of gs. Thus,

mo= constant, (44)
3. A CANONICAL TRANSFORMATION which is a quantum number characterizing the par-

ticular state of the system. Under CI' transformation,
any state with xo&0 is transformed into another state
which has a xo of the opposite sign but with the same
magnitude. The ss is related to the Q, introduced in
Eq. (12), by vrs=Q 'i'PQ).

It is important to notice that the hypercharge gauge
transformation becomes a totally trivial operation after
the canonical transformation. This may at first sight
seem rather strange, but it is actually a general feature
of such gauge invariance. In the Appendix, we give a
simple example to illustrate further the same property.

To exhibit more explicitly the constant of motion
implied by the conservation of hypercharge current,
we consider the canonical transformation'4 generated
by the unitary operator

(34)U=—exp i)t Ppd'r

where
(35)p= ij 4 P. I'.4.t4. — ——

4. APPARENT CP NONINVARIANCE

In this section we discuss the various consequences
for the state which has a ~sNO. From Eq. (39), we

'Similar canonical transformations have been used by F. J.
Dyson, Phys. Rev. 73, 929 (1948), and R. J. Glauber, ibid 84, .
395 (1951}.

4 The present considerations are, however, suggested by some
results on the (physically unrelated) polaron problein by T. D.
Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953). See the
discussions given in the Appendix.



notice that, after the canonical transformation, the yis given by Eq. (16).Since VQO, the actual mass and
Hamiltonian can be written as width of E&' and E&' are determined by X& and A.&. We

may define

H~d'r = —0 '~Ver«pd'r+ H'd'r

where

H'=Hp+Hp+H„, .„+H,,L,,i+H„„g(0)+Hi (46)

and
H, = —Z[p~, +j Vy, ]+-',Z'p'.

In Eq. (47), the operators pi and xi are defined to be

X,=—q-'[m; —@r,],
where j=1, 2. The "observed mass" m&, m& and the
"observed width" I'i and I'~ depend on y. If ~«~&&1

(which corresponds to y«10'), then

(mi —i-,'I'i)=(mio —i—',I',')+-'&'V'[Am' —i-', AI'] ' (59)

and

(m~ —i-', I'«)—(m~' —i-,'I'~') —-'p'V'[Am' —i-,'Ai'] ', (60)

where

and and
(48)

Am'= my~ —mg', (61)

(62)

1
X,——,

' V+—[(mio+ m««) —i-,'(I'io+ I'«') ]
27

For large values of 7 ())10'),
The first term on the right-hand side of Eq. 45

shows that there is an energy difference V between any
hypercharge particle and its antiparticle of the same
momentum. For particles with I'=1, this potential
energy difference is given by

(63)

V= —2n-»9,~, . (49) Xg———'U+—[(mi +my )—i—'(I'i +rg )]. (64)
2v

As mentioned in the Introduction, the existence of
such an energy difference implies that

Ego —+ 2m

can occur and the analysis made in Ref. 2 is applicable.
In the following, we list the various consequences for
the weak decays. Most of these results have already
been stated in Ref. 2.

(i). In a vacuum (i.e., in the a,bsence of any neighbor-
ing matter), the two states ~Eio) and ~E~'), each of
which has a single lifetime, are related to

~

E') and its
CP conjugate state

~

E') by ~
V( —2X10 'eV (66)

Thus, the lifetimes of Ej' and E~' become the same at
the extremely high-energy limit.

(ii) From Eqs. (50), (51), and the CP invariance
property of the theory, we find (in vacuum)

Rate(E« ~ m++m ) Rate(E« ~ s +ir )=
(
«~'. (65)

Rate(Ei'~ 7r++ir ) Rate(Ei' —+ ir'+ir')

The result of Christenson et al. ' shows that at y—2,
~«~

—2X10 '. This corresponds to a

(Ei")=[2(1+~«~ )] '

X[(1+«) )
E')+ (1—«) (E')]e '"i' (50)

For y«10', the parameter
~
«~' varies according to y';

for y))10', the parameter
~

«~
'—1.

For the 3x decay mode, if we neglect the high angular
momentum states in the final (ir +7r++iro) system,

and

Rate(Eg'~ s++ir +s')

IE«')=[2(1+I«l')] '
then

X[(1—«) ~E')—(1+«)~E')]e '"" (51)
Rate(Ei« —& ir++s +m')

where ~E') and ~E«) are time-independent,

(53)
Rate (Ei' —+ ir'+ s'+ ir')

=
~

«~'. (67)
Rate (E&'~ ir'+ir'+ ir')

and
g= (2p) '[(mi' —mP) —i~ (I'i' —I'&')], (56)

V (57)

g= (2y) '[(mi«+my') —i-', (I'i«+I'«')], (55) If we assume the DQ= DS rule for the leptonic decay
modes, then

Rate(Ei« —+ ir +l++vi)
=Rate(E«' ~ 7r++l +v(), (68)

In Kqs. (55) and (56), the mi', I'i' and mP, I'««are the
mass and width of E~' and E~' in the absence of V, and

Rate(Eio —+ ir++1 +vi)
= Rate(E, o -+l++.,), (69)
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and
Rate(E12-+ 2r +1++v)) 1+» '

Rate(E12 ~ 2r++l +v1) 1—»

(70)

where l=e or p.
(iii) All above results [Eqs. (50)—(54) and (65)—(70)]

are applicable to E~ and E~' in a medium, provided we
replace Eqs. (55)—(57) by

„=(2~)- [(m,»+ m, ») —2-', (r,»+ I',2)]
',—(22-+22' 2—)k2, (71)

divers from the corresponding contraction of the time
derivatives of pi by a 5'(x—y) function which, in the
evaluation of the 5 matrix, contributes terms that are
exactly canceled by the corresponding terms generated
by the 2X2p2 in Hi [Eq. (47)]. Therefore, in deriving
the Feynman rules we can' ignore the b'(x y)—function,
but regard the contraction of the derivatives of the &1
as given by

82

[2Dv(x —y)] (76)
~&p~&v

g= (2&)- [(m,o—m,o) —2-', (I,o—I,o)],
and

i =-'2 [V—(23—23') kV],

72
and, at the same time, replace Eq. (47) by

(73) (77)
where k is the momentum of the E meson and e, e' are,
respectively the complex index of refraction of E and
X in the medium.

The sign of V can be determined either by observing
the interference term between the decay of E&' with
that of E2' in vacuum, or by studying the decay rates
of E~' or E2 in a medium.

In all above formulas, the y is measured with respect
to the rest system of the entire volume Q. On the other
hand, we can also measure the value of y with respect
to earth by direct means. Combining these two meas-
urements, it would become possible to measure the
"absolute" velocity of the earth.

(iv) In the decays of all other particles, no apparent
CP noninvariant term can be observed if an energy
di6erence of the order of 10 ' eV between the particle
and its antiparticle can be neglected.

f=Amer, (74)

where m~= mass of the nucleon. To study the emission
and absorption processes of P quanta with k/0, we

briefly describe the rules for Feynman graphs.
Let us start with H& [Eq. (45)] and use the inter-

action representation. From Eq. (48), it follows that
as 0 —+~, the propagator of pi is given by'

5. EMISSION AND ABSORPTION OF P QUANTA

From Eq. (47) we find that the coupling between P
a,nd P, is of a derivative type and that the coupling
parameter, ) has the dimension of a length. It is
convenient to introduce a dimensionless coupling
constant, f:

In the limit that the weak-coupling constant 6~ 0,
the current J„ is conserved. From Eq. (77), it follows
that the emission and absorption rate of any p quanta
with k/0 must be zero if G=O. Therefore, the actual
emission and absorption probability for each p quantum
is proportional to G'f'. The same conclusion can also
be derived in a more transparent way by using the
original Hamiltonian, H given by Eq. (28).

The p quanta can be emitted whenever there is a
violation of the conservation of j„such as, e.g.,

A' —+ p+2r .

The rate for the process

A.'~ P+2r +P
is (to lowest order in G' and f2) proportional to

f2~M~2(162r3Em ')—'83k

(78)

(79)

(80)

where E is the maximum energy of the soft p quantum
emitted. Similarly, the rate for

where M is the matrix element for the A'~ P+2r
vertex in the p emission, k is the momentum of p and.
E= ~k~. For the emission of soft @ quantum, we can
regard M as independent of k. The branching ratio is
given by

Rate(A'-+ P+2r +y) = f'E 2(82r2m ') ' (81)
Rate(A'~ P+2r )

A'~ p+2r +41+(~2+ +42r
$1 (x)$1 (y)=(16m) ' (2k) ' p[2k1, (*—y)y]d k (75 is (to lowest order in G and f ) proportional to

(82)

—=—,'Dv(x —y),

where k'=kik1 and d k is real. It is well known that the
second time derivative of the right-hand side of Eq. (75)

(23 ])—1f2N
~

~
~

2 g (16~3E m 2)—1d3k (83)

For a detailed proof of this well-known result see, for example,' See G. C. Wick, Phys. Rev. 80, 268 (1950) for the de6nition the Appendix in T. D. Lee and C. N. Yang, Phys. Rev. 128, 885
«@ (~)s (&). (&962).



T. D. LEE

quanta emission, the corresponding branching ratio

Rate(h.s~ P+m +~)8=—

is given by

[(2+) liS I]—i[fsQ s (47rski�&s)—i]n (85)

where E,„ is the maximum value of the to/al energy
given to the e d-quanta system.

Identical formulas can be applied to the p-emission
probability associated with any AI'/0 weak reactions.
From existing data, we know that

f2((] (86)

6. REMARKS

(i). The possibility tha, t our system (or universe) is
in a state with ~0/0 evokes many questions concerning
its nature. From Eqs. (49), (66), and (74), we notice
that the energy density due to mo is given by

rQ 'ass= (Sf') 'V'm~') 10r BeV/cm'. (89)

The total energy in the 4=0 mode is proportional to
the entire volume 0 of the system (which is much
greater than the rest-mass energy of the baryons in the
universe). The corresponding energy contained in any
other mode in the ground state of the system is the
well-known zero-point energy s ~k~. The zero-point
energy density contained in all the k@0modes diverges
in the ultraviolet region. If we introduce a momentum
cutoff k . ))nz&, the energy density in all the kAO
states is

(Ss') 'k 4))10'4(sr 0 'a-ss) .

Indeed, it seems that (4m) 'f' can be as big as the fine
structure constant without violating any known
observations.

For @ quantum of sufficiently high energy, reactions
such as @+p—+A'+m+ can occur. The corresponding
cross section is expected to be G'f'. lf the energy of g
is &175 MeV, then to the lowest order of G' (but to
arbitrary orders in f' and e') the @ quantum cannot be
absorbed by a nucleon at rest. Thus, the mean free
path of P in a medium is, in general, much longer than
that of the neutrino.

So far, we consider the case that p is related to the

hyper charge gauge transforms, tion (or strangeness-
gauge transformation). Therefore, for weak decays
which sa, tisfy AY=0, the emission proba, bility for g is
zero. On the other hand, if g is connected with the
gauge transformation associated with the s component
of isotopic spin, I„then reactions such as

(87)
or

(88)

become possible (l=e or p).

Although the fractional energy contained in the k=0
mode is extremely small, the fact that its average value
is of a macroscopic nature gives rise to the many striking
physical effects discussed in this paper.

The absorption and scattering of the P quantum in
matter have some similarities with neutrinos. Thus, it
is of some interest to compare the energy density con-
tained in the k=O mode of the p field with the de-
generate neutrino energy density of the universe, which
is, of course, not known. If we make the arbitrary
assumption that these two energy densities should be
comparable, then the Fermi momentum of the de-
generate neutrinos would be 10 eV. As has been
discussed by steinberg, ~ such a high value of Fermi
momentum is, theoretically, not impossible. Similarly,
an energy density of the magnitude given by Eq. (89)
may also be possible for the p field in some oscillatory
cosmological models.

(ii). The present theory resembles the Bose-Einstein
condensation of a system of Bose particles. In either
case, the k=0 mode acquires a macroscopic value for
its occupation number. Such solutions are intrinsically
different in both mathematical content and physical
manifestation from the usual ones. It is possible that
the existence of such eigensolutions is a general feature
of any boson system. In this sense, the present theory
may also serve as a simple model for a general class of
field theories.

In the case of Bose gas, it is known that there are
quasistationary states which correspond to the Row of
superQuid. The simplest way is to divide the entire
volume into many smaller but macroscopic boxes, and
to allow variations between diferent boxes. The same
can also be done in the present case by allowing the
value for 7ro to change gradually from one box to the
next one. In this way, we can construct a macroscopic
field s.s(x). The solutloll mrs($)/constant is not an
eigenstate of the Hamiltonian of the entire system, but
it might be regarded as a quasistationary solution. Such
a macroscopic field, if it exists, should have some
cosmological influences, and the present value of pro as
determined by the observed E&'~ 2~ rate may, then,
fit into a general picture concerning the evolution of
our universe.

(iii). An entirely different mechanism has been sug-
gested' ' to account for the 2z decay mode of E2' and,
at the same time, to maintain CI' i~variance by
introducing a long-range spin-1 field V„interacting with
the hypercharge (or I,) curren. t density j„of the pres-
ently known particles.

Since j„ is not conserved, V„must have a mass m.

' S. Weinberg, Phys. Rev. 128, 1457 (1962).' J. S. Bell and J. K. Perring, Phys. Rev. I.etters 13, 348 (1964).
(There is an unpublished note by F. Giirsey and A. Pais in which
they considered the possible existence of a pseudoscalar field in
connection with the experiment by Christenson et a/. The proposal
by Gursey and Pais seems to be totally diferent from the theory
discussed in this paper and from the suggestion made by Bernstein,
Cabbibo and Lee, and by Bell and Perring. )
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It has been pointed out by Weinberg' that the mass,
m cannot be too small. In order to account for the
observed rate of E2' —+ 2', the experimental absence of
real emission of such V„quanta and the present experi-
mental accuracy" of the equality between the observed
gravitational mass and the inertial mass, the Compton
wavelength rw ' of V„should be about (or less than)
the radius of the earth. The corresponding (coupling
constant)' is about (or larger than) 10 ".Thus, such
a 6eld, if it exists, could also be detected by improving
the present accuracy of the Eotvos-type experiment by
another order of magnitude. In contrast, the theory
discussed in this paper does not give any such observable
effect in the Eotvos-type experiment.

If the vector field U„exists, its predictions on all
apparent CP noninvariant phenomena are the same as
that discussed in the present paper. These two different
theories can be differentiated either by improving the
present accuracy on the equality between the gravita-
tional mass and inertial mass or by observing the real
emission of either the V„or the p quantum and deter-
mining its spin.

Another variation on the same theoretical idea is to
couple V„with J„LEq. (9)j.Since J„is conserved, V„
could then also have zero mass. While such a model has
some appeal because of its possible connection with the
gauge invariance of the second kind, it does appear at
the present time to be too speculative to warrant a full
discussion.

APPENDIX

In this Appendix we give a simple example of the
interaction between an electron and the phonon 6eld
in a solid to illustrate the interplay between the gauge
transformation, the canonical transformation, and the
apparent asymmetry phenomenon. 4 Let the Hamil-
tonian be given by

Il = +P cog(ns'ns+ ',)-
25$

+P LVsnse~j 'r+ V„ea„te—n rj, (A1)

where r, p are the coordinate and momentum of the
electron, a~ and O.~t are the annihilation and creation
operators of the phonon, ~& is its frequency and V& is
the interaction form factor. The Hamiltonian (A1) is
invariant under the transformation

and
eke;k d

r~ 1'—d. (A2)

' S. Weinberg, Phys. Rev. Letters 15, 495 (1964)."R.H. Dicke, Phys. Rev. 126, 1580 (1962).

ACKNOWLEDGMENTS

I wish to thank J. Bernstein, G. Feinberg, R. Serber,
and G. C. Wick for discussions.

This invariance is connected with the conservation law
that the total-momentum operator

p+Ps as ask (A3)

commutes with H.
We may introduce a canonical transformation gen-

erated by a unitary matrix

U=exp)i P as"a),k rj
which transforms

(A4)

and

UngU~=age '"'
UrUt =r,

UpUt= p —Q ai,task. (AS)

Thus, the transformed Hamiltonian becomes

(p—2 n~'nk)s+Z res(n~'as+ s)
25$

+Q 1 Vs'+ Vs*apt j. (A6)

1——Q (p.k)ngtns. (A8)

This implies that the energy of a phonon with momen-
tum k is different from that of —k.

We may carry the analogy further and imagine that
for some observational reasons it is easy to detect the
phonons, but the existence of the extra electron is not
known. Thus, it would appear that in this solid phonons
are created and annihilated spontaneously and there is
an apparent nonconservation of momentum. By
postulating the existence of an additional electron it is
possible to construct the Hamiltonian, Eq. (A1), which
is invariant under the gauge transformation (A2), thus
conserving momentum, and which is invariant under
the discrete space inversion transformation k-+ —k.
However, if the system is in a state with a nonzero
value of total momentum, there would exist an apparent
noninvariance under space inversion as well, which is
in complete analogy with the apparent CP noninvari-
ance discussed in the paper.

In the transformed system, UHUt is independent of r;
therefore p=0, and the conservation of momentum
becomes simply

p= constant. (A'7)

Furthermore, after the canonical transformation, the
gauge transformation (A2) becomes an identity trans-
formation for the transformed 0.~.

This simple example shares all the features of the
theory discussed in the paper. Indeed, if the system
(after the canonical transformation) is in a state with

p+ {)

the first term on the right hand side of (A6) contains a
part which is of the form


