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It is assumed that the E —+ 7f-+w+ e+v process has a Born term dominated by E*exchange. By assuming
a "nearly conserved" axial current we obtain a Goldberger-Treiman-type relation by which the E,4 ampli-
tude is related to the E~ width and E —+ p, +v amplitude. This is used to determine the left-hand cut for a
set of partial-wave dispersion relations. With the assumption of elastic unitarity for pion-pion scattering,
integral equations of the Muskhelishvili-Omnhs type are obtained, which are then solved using various as-
sumed forms for the pion-pion T=0 interaction. The effect of the p resonance is included in the T= 1 I'-wave
amplitude. We obtain agreement with the experimental rate for E,4 decay when the S-wave pion-pion
interaction is described by a scattering-length approximation with a scattering length of ae ——(1&0.3) pion
Compton wavelengths. With this value of no, the two-pion invariant mass distribution is in good agreement
with experiment, and the total P-wave contribution to the total rate is predicted to be 18'1/o. If a o meson
(I'=0, S-wave resonance at 400 MeV) is assumed to dominate the S-wave pion-pion interaction, the cal-
culated rate becomes larger than the experimental one by two orders of magnitude. The possibility of
T violation is discussed.

I. INTRODUCTION

SIGNIFICANT number of events of the type
E~ xmeJ has been reported recently, ' thus allow-

ing a detailed check of the theoretical models proposed
for this decay.

In addition to the obvious interest related to the weak
interaction responsible for this process, it is also of
special interest for strong-interaction physics. The final
state containing two pions, which could be in an even or
odd angular-momentum state, provides an ideal testing
ground for the x-m interaction, being free of any dis-
turbance from other strongly interacting particles.
Needless to say, in interpreting different measurable
quantities of this process, one has to be careful as to
the possibility of separating the strong- and weak-
interaction effects.

In this article, we shall calculate the rate and some of
the decay spectra for the E,4 process with the inclusion
of the 6nal strong interaction between thepions. Theoret-
ical treatments of this process have already appeared in
the literature. The early ones are concerned with rough
estimates for the rates, ' ' while in subsequent works' '
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the m-~ interaction has been included with various de-
grees of reliability. Generally, on including the x-m in-
teraction the previous workers were unable to reproduce
the experimental rate (usually by about one order of
magnitude), unless a certain assumption is made for the
weak axial current (Ref. 9), which we find somewhat
implausible.

Our work comes close in some details to that of Ref. '7,

although there are significant differences which will be
mentioned at the appropriate points in this paper.

For the leptonic current we take a V-A form. The
strangeness-changing weak current of the decay then
has a vector as well as an axial-vector part. Arguments
have already been given in the past' to show that the
vector current gives a very small contribution. For the
axial vector part, we employ a technique which was first
used by Beg, Cornwall, and Woo' in dealing with the
3m decay of the intermediate vector boson. Namely, we
assume the three-particle (Esrsr) weak axial current to be
dominated by the resonant states E*m. Then, we use
the concept of a "nearly conserved" axial vector current
which we express mathematically by assuming its
divergence to obey an unsubtracted dispersion relation.
A pole approximation is then made, through which
the E,4 decay is related to the rate for E» decay.
This approach has proved successful in deriving the
Goldberger-Treiman relation, " though one should re-
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LEnglish transL: Soviet Phys. —JETP 17, 113 (1963)j; B. A.
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consin report (unpublished).' L. M. Brown and H. Faier, Phys. Rev. Letters 12, 514 (1964)."M. A. B. Beg, J. M. Cornwall and C. H. Woo, Phys. Rev.
Letters 12, 305 (1964)."J. Bernstein, S. Fubini, M. Gell-Mann and W. Thirring,
Nuovo Cimento 17, 757 (1960}.
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member that its usefulness for the axial strangeness-
changing current has not been yet proved or disproved
experimentally. This method has also been used in
Refs. 7 and 8 to relate the E,4 decay to the EXxx-
scattering amplitude. By using the (E*s.

~
A „~0) current

we avoid any direct reference to the unknown EEm.m

amplitude, and our rate will be given in terms of the E
width, the E—+ p, v decay rate, and the pion-pion inter-
action parameters.

In order to include the m-m final-state interaction we
use the amplitude calculated from the K*x current as a
Born term in an Nesubtracted one-dimensional dis-
persion relation, which we assume to hold for the decay
amplitudes. When elastic unitarity is assumed, the in-

tegral equation obtained is of the Omnes-Mushkelishvili

type. We are able to obtain an approximate solution,
which can be expressed in closed form. Different forms
for the 5- and P-wave shifts are fed into the equations.
Once a de6nite form for the phase shifts is assumed,
there is no free parameter and the model gives definite
predictions for any measurable quantities.

Before proceeding with the calculations, we would like
to touch brieRy on a point so far avoided, which the
reader may already have noticed. We h,ave assumed the
(Error~ J„"~0& axial vector-current matrix element for
this decay to be given by the (E*ir

~

J„~~0) approxima-
tion, without mentioning the other possible two-
particle configurations of the E7rrr states, i.e., (Ep~ and

possibly (Ea
~

. The reason is that we have chosen to in-

clude the effects of the p (and o.) in the phase shifts, in
order to preserve the unity of our treatment of the final-

state interactions.
In Sec. II, a general analysis of the E,4 amplitude and

a decomposition into partial waves is given. In Sec. III
we obtain the contribution of the Born term to the
various independent terms of the amplitude. In Sec.
IV the dispersion relations are solved and in Sec. V we

give the numerical results of our model. In Sec. VI the
discussion and conclusion are presented. We also

brieRy discuss the possibility of time-reversal violation
in E,4. In Appendix A we amplify on some problems re-

lated to the solution of the integral equations while in

Appendix B an alternative calculation is given for the
case where the 2~ channel is dominated by resonances.

E+~ irs+srs+e++v

E+-+ s.++sr +e++v
E' —& sr

—+s'+e++v.

(2.1a)

(2.1b)

(2.1c)

II. THEORETICAL PRELIMINARIES

A. General Form of the Matrix Element

We consider the decay

E~ 7r+sr+e+v

and assume the validity of the AI =
~ rule, and hence of

the hS=+EQ rule. Thus we treat specifically

Let p, qi, qs, e, and v be the four momentum of the E,
the two pions, the positron, and the neutrino, respec-
tively, with

We define
p=qi+qs+e+v.

k= (e+v),
s= (qi+qs)'= (p —k)',
tt ——(qs+k)'= (p —qi)',

ts ——(qi+k)'= (p —qs)',

(2.2)

(2.3)

s+ ti+ ts ——rex'+2p'+ k' (2 5)

where m~ is the E mass, and p is the pion mass, we see
that a complete set of scalar invariants consists of s,
'g) and k .

We assume the t/'-3 form of interaction for the lep-
tons. Then

~= (—i)(2~)'t""(p—qi —qs
—k)

with

X (2s-ev, out
~
Z(0)

~
E,in), (2.6)

L(2~)'"j'

(2srev, out
l ~(0) I E, in& = (2s, out

I J.I E&

Xu, ay" (1 its) s,—(m, /es) U' (2.7).

Here J„has both an axial vector (J„~)and a proper vec-
tor part (J„v).On invariance grounds we can write the
most general form as

(2qi 2qs 2p')'"(2sr, out) J "~E)
=A (s,rl, k') (qi+ qs) „+B(s,r),k') (q,—qs) „

+C(s,g,k')k„, (2.8)
and

(2qi'2qs'2p')' '(27r, out
)
J [ E)
=D(s, rl, k')e„s.,q, 'qs k'. (2.9)

Here A, 8, C, and D are scalars in Lorentz space, but
contain isotopic indices. From kinematical considera-
tions the contribution of the vector part (2.9) to the
E,4 decay is expected to be small. A rough calculation
using the (E 7r

~
approximation (as described later on

in detail for the axial part) gives us a contribution of
less than a few percent to the rate. "Henceforth, we
shall concentrate in our work on the axial-vector
part (2.8).

B. Isotopic Spin Structure

We use the AI=2 rule and assume that J„carries
away ~ unit of isotopic spin in the form of an isotopic
spinor spurion. Let n, P be the charge-state indices for

"The characteristic radius in our problem is. (1/s„) = 1/(67es '),
The vector contribution should be negligible (see Refs. 2—5).

also
t) =-', (tr —4) = —k(qi —qs) = —p(q, —qs) . (2.4)

Then, since
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bs-=V'68't-"', s frs, r-3=26-"' (2.11)

where 8(') and 8(') are projection operators for the
two pions in states of total isotopic spin 0 and 1,
respectively. "

Hence

A&o&=g6A&+&, A&'&=2A& &, etc. , (2.12)

where A( ) and A(') are, respectively, the amplitudes
for the normalized isotopic spin states 0 and i.

Under the interchange of the two pions s ~ s,
g —+ —g and k' —+ P . Hence Bose-Einstein symmetry
implies

the pions (o&, P= 1, 2, 3). Also let && and o be the indices
for the E and the spurion, and let Xq, X be two-
component isotopic spinors. Then each of the amplitudes
A, 8, C must have the form

x,+(A&+&8&& +s fr&&, r $A& &)X&„etc. (2.10)

The (+) and (—) amplitudes are simply related to the
amplitudes which have a definite value of isotopic spin
for the two pions. In fact

tr = ,'(m-zr'+k'+2p, ') ,'—s+-2pq cos8,

ts ,'(m—z—r'—+k'+2&I,') ', s —2p—q—cos8,

where 8 is the angle between P and qr. Also

(2.18b)

(2.18c)

and
(qr+ qs) „=2o&b„,p,

(qr —qs).=2qq, (2.19)

where o& is the pion energy (o&'= q'+p, '), and P is a unit
three-vector along &ir. Hence (qrqs, I~ J„~~K) splits up
into "independent" time and space components, i.e.,

For fixed k', we go into the center-of-mass system of
the two pions, in which

q'= k(s—
4& '),

(2.17)p'= fs—(mzr —gk')'j fs—(mzr+Qk')'j/(4s),

where p and q are the magnitudes of the 3 momenta of
the E and of the pions. Further expressions which will
be used throughout this article are:

» —,(t, t,) — p(q, q,)—+2pq cos8 (2 18a)

and

A&'&(s, rt k')=A&'&(s, —rt k')

B& &(s, rt,k') = —B&'&(s, —», k'),
C&"(s,rt k')=C&'&(s, —rt k')

(8qr qs p )' '(q q&Is~ J&&~~K)=A& &(s,rt k')2o& (2.20)

(2.13) and

(8qr&&qs&&P&&)'i'(q, qs. I I J~
~
K) B&z&(s rt k')2q" . (2.21)

A &"(s,»,k') = —A &'&(s —», k')

B&'&(s, t,kr') =+B&'&(s, —
rt, k ),

C&"(s,rt,k') = —C&'&(s, —rt, k') .

(2.14)

o&(b) =-', &0(c)+2&0(&z) .

C. Partial-Wave Decomposition

(2.16)

We now turn to the construction of eigenstates of
angular momentum for the two pions. We treat only
the A and 8 amplitudes, since only these will be needed
in the 6nal calculations.

"See, e.g., G. F. Chew, M. L. Goldberger, F. E. Low, and Y.
Nambu, Phys. Rev. 106, 1337 (4957); W. R. Frazer and J. R.
Pulco, Phys. Rev. 117, 1603 (1960).

fIn (2.13) and (2.14) the symmetry with respect to
p —+ —p seems to contradict the isotopic spin symmetry
for B. However, recall that we are treating a vector
amplitude. j

One finds by standard Clebsch-Gordan techniques
that the amplitudes for the processes (2.1a)—(2.1c) are

1 1
M( '= A('), 3E(')=—A(')—

Q6 2 g6
(2.15)

1
~(~)— A (~)

g2
and therefore the following relation between the rates
exists:

Here (qrqs', I~ refers to a state of the two pions with
definite isotopic spin I.

From (2.18) and (2.20) it is clear that A&z& can be
expanded in a complete set of partial waves. Further
from (2.13) and (2.14) A&'& contains only even E, and
A(') only odd l. Thus

A & &(s» k') = P As„+z&z&(s,k')Ps„+z(cos8) )I (2.22)
@~0

and As„+z&z&(s,k') will have the phase of the partial-
wave pion-pion scattering amplitude for isotopic spin
I, /= 2zs+I (at least in the elastic region 4&u'& s& 16'').

It is clear from (2.13) and (2.14) that an expansion in
Legendre polynomials also exists for 8( ), that is

B&z&(s,rt, k')= QBs.+r z&z&(s,ks)I's.,r z(cos8). (2.23)
n-0

However, the 8~ do rot correspond to eigenamplitudes
of angular momentum. This is due to the presence of
g(8,$) in (2.21). In fact

q = (4s-/3)'" g Fr, (8,y)1I'.„*, (2.24)

where g are a set of unit vectors"

(x+sy), z, + (x—sy) ~. (2.25)
~2

' '
y2 )

' J. M. Blatt and V. F. Weisskopf, Theoretical Nscclear Physics
(John Wiley 8z Sons, Inc., New York, 1952), Appendix B.
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Further,

t
4~ y'I'

I'i(cose) (4 /3)'"1'i. -(0,4) =
I I

1'~,0(~A) (4~/3)"'I"i, (~A)
E2/+1)

( 4~ 1/2

1', , „(eA)(/1; Om I/1;/ —1, m)&/1; O, of/1;/ —1, 0&
I2/ —1

/' 4n

+I I
I'~x.-(0,4)(/1; Om I/1; /+1, m)(/1; 00 I/1; /+1, 0), (2.26)

I 2/+1)

where (4/2; mmmm~ I
/~/u', LM& is the usual Clebsch-Gordan coefficient. LNotice that L=/ does not enter into (2.26).$

Collecting terms from (2.21), (2.23), (2.24) and (2.26) we are led to

(8q~'q2'p')'"&q~q2; II J'IE&=2q 2 x-*2 I
I'..(Oy){Bi,' (.,k )&I,—1, 1;0,mfI —1, 1;Z„m)

m I 2L+ lj
X(L—1, 1; 00

I
I—1, 1; L, 0)+ Br+g"& (s k')(L+1, 1; 0, m

f 1+1,1;Lm)(L+1, 1 OOI L+1 1 L 0&) (2 27)

In (2.27) I=O contains only even L and I= 1 contains only odd I.. Further B &—=0. ft is clear that the quantity
inside the curly brackets in (2.27) corresponds to the eigenamplitude for the Lth partial wave, having the ap-
propriate pion-pion scattering phase. In particular, the 1.=0 and I.= T amplitudes are related to

L=O, I=O: Bg&'&(s,k2) (2.28)

L=1, I=1:Bo&'&(s,k')(01; Om f01; 1m)(01; OOI01; 10&+B2'(s,k')(21; Om
f
21; 1m)(21; 00

f
21; 10). (2.29)

We remark that Ag( ) will contain the standard kine-
matic singularity factor (pq)', as does B&&r&.

III. BORN TERMS AND DISPERSION RELATIONS

We turn now to the calculation of the (2m
I
I„"IE&

amplitude. It is convenient for our purpose to consider
the process E+(eu) -+ vr+7r, which is the analytic con-
tinuation in the k' variable of the decay under study.
We make the assumption that the partial-wave ampli-
tudes 3 ~ ) and 8 ( ) which describe this process obey
an unsubtracted dispersion relation in the s variable. "
The discontinuity across the right-hand cut, which is
given by the unitarity condition and is related to the
pion-pion scattering amplitude, will be treated in the
next section. We consider here the contribution to the
left-hand cut, which will constitute the inhomogeneous
term in the integral equation.

The left-hand cut contribution can be obtained from
the appropriate partial wave-projections of the ampli-
tude for E+m —+~+(ev). The lowest intermediate
states for this process are Em states. We shall assume
that they can be approximated by the E* resonance

'5 The various analytic continuations and dispersion relations
which we assume to hold are on a safer footing than in the some-
what analogous problem of E ~ 37/-. This is because we keep only
the 6rst order in weak interaction and hence all Feynman graphs
will contain a continuous E line which can be traced through the
whole graph until the Gnal weak vertex. Thus even higher order
graphs should be free of overlapping cuts, complex singularities,
etc.

and we treat the E* as a vector particle. " (We do not
include the contribution of the ~ (725-MeV E~ reso-
nance) whose existence is uncertain. But see also note
added in proof. ) Henceforth, our problem is reduced to
calculating the (E*m

I
I„"

I 0) current.
The strangeness nonchanging component of the axial

vector current has been considered by Beg, Cornwall,
and Woo." They assume that the divergence of the
current vanishes as k' —&~, and so write an unsub-
tracted dispersion relat'ion for this divergence. For small
k the single-particle contribution dominates, i.e., the
pion or the kaon, respectively. If one sets k'=0 in the
resulting identity, one can obtain the full structure of
the form factor at k'=0. Unfortunately, the method
does not allow one to keep k' small but finite. The
method of the "partially conserved current" is ad-
mittedly somewhat ad hoc. However, it has had start-
ling success in the Goldberger-Treiman relation, and
we hope that it also works in our case.

We turn now to the details. For general four-momenta
IC and q for the E* and pion, with k=E+q (the E*
having isotopic spin index x and the pion 8) we write

'6 In principle, one would disperse over E~ intermediate states.
The major contribution would then arise from the vicinity of the
E~, and so only "mass shell" form factors for the E* will enter.
This argument leads to the same conclusion as reached by R. H.
Capps, Phys. Rev. j31, 1307 (1963). See also G. T. Hoff, Phys.
Rev. 131, 1302 (1963).
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the most general form

(2Ep2qp) ' '(E*2r
[ J "l0)= ((p q) (E—

q) 42(k')

+"P.(k')+('q)(E+q).~(k'))&' px. (3 1)

q„a

I

I

I

q„P
I
t

q2, P

= (g2/42r) X59 MeV, (3.3)

where M* is the E*mass (890 MeV). For a total decay
width of 51 MeV one obtains (g2/42r) =0.86.

We also define the axial vector current responsible
for E-meson decay as

(2kp)'~2(El J "l0)=Gk„, (3.4)

in terms of which the E+—+ p+v rate is given by

where

Q2

„„=—2N t42$1 —(t42/222r~2) j',
4x

G'mx'=2. 002X10 ' . (3.5)

Returning to (3.1) we write an unsubtracted dispersion
relation in k' for iB„J„~,and keep only the E-meson
pole contribution. One readily finds

(tlrl@2 t42)42(k2)+P(k2)+k2~(k2)
=—2gGLm~'/(222~' —k')]. (3.6)

We set k'=0 to obtain

(M*'—t4')n(0)+P(0) =2gG.

where X, is again the spurion spinor and & is the polariza-
tion vector of the E*, with e'= —1, & E=O and hence
e q=e k. The E-meson pole contributes directly only
to y, but will be used to "induce" n and P.

We use the standard (on the mass shell) E*E2r'
coupling form

(2Ep2qp)'"(E*2rl J~l0)=gp (k+q) xzr+r xp„(3.2)

where k and 0. now refer to the E meson. With this
definition the total width (E*+—& E'2r++E+2r') is
given by

g2 (L~4'2 —(224~ —t4)qL~+2 —(222~/t4) q) 2&2

rX
4m. 4M*'

K

p, X k, cr p, X

Fxo. 1. Graphs contributing to the Born terms.

Further, following Beg, Cornwall, and Woo, " it is
possible to argue that n is much smaller than P. Hence
finally we have

n(0) 0, P(0) 2gG. (3.7)

If we had written down dispersion relations directly
for n, P and y, the E-meson pole would have contributed
only to y. The lowest mass states which contribute to
n and p are E2r2.. The partially conserved current tech-
nique is needed to determine the subtraction constant
for u and P, given by (3.7) if we subtract at k'=0. LIn
fact, the argument leading to n(0) 0 corresponds to
showing that the n dispersion relation does not need a
subtraction. ) It follows that n(k2) and P(k2) will not
change greatly from their values at k'=0 until k'
reaches at least m~'.

In our application k2& (ma —2t4) 2, hence (3.7) should

be a good approximation. The third form factor y will

depend on k', however, it contributes only to C (Eq.
2.8), and C gives no contribution to E,4 decay in the
limit 222, ~ 0 (see Sec. V). Hence, we will not need the
actual form of p, nor need we keep C any further in our
calculations. (For E„4 decay the C term, and hence y,
must be kept. However the variation of y with k' will

be large and hard to estimate, since the E-pole term is
only one of the contributions. Thus K„4 decay is a more
dificult problem. )

The Born terms correspond to the two diagrams given
in Fig. 1. Using the E E2r coupling given in (3.2) and
E*2r axial vector current from (3.1) but keeping only
the P form factor we readily obtain

(2PP 2q2P 2q2P)' 2(q&ur' q2P out
l J„ lPrX)Born

Lg"—(1/~*') (p —qi).(p —qi).1=2g G (P+ql)X Xo 2 P&a~k

(p qi)'—
Lg"—(1/~*')(p —q2).(p —q2).j

+(P+q2)y X ra&PXa2

(P—q2)' —M"

1 1 q t 1 1
=2g'G & '(V'6A-"')~~ d+l + l(q~+q2). +&l,—,(q2

—q2).
I t,—M*2 t,—M*2) ~t,—M*2 t, M*2—

1 1 ~ f 1 1
+x'(26 '")"~ d+ — l(q~+q2). +d I + l(q& q

t, -HE*2 t,-M") Et, ~*2 t,-~'2) (3.8)
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where we have used (2.11), disregarded any k„part,
and where

3 y m~2 —q2
d+- = 1.36,

2 2 3f*'
(3.9)

1 1
B&P&=(2+6)g'Gd

~

Eti—M*' tp —M~')

1 1
B&'&=4g'Gd

~
+

&t& M"—' tg M"'—)

(3.11)

y m~2 —q2
=—+- =0.64.

2 2 3f*'
(3.10) and (3.11) show explicitly the symmetry proper-
ties (2.13) and (2.14).

We are interested in the partial-wave expansion of the
A's and 8's. To this end we use the standard de6nition
of the Legendre polynomial of the second kind to ex-
press our Born partial-wave amplitudes:

j.

Qi(x) =— P, (s)ds,
2 g g s

(3.12)
(J&'& = (2+6)g'Gd+~ +
Eti—M~' tp —M*') and we also make use of the relation

(3.10)
Q&(

—x) = (—1)'+'Qi(x).

Then making use of (2.18) we obtain
5&'&=4g Gd+~

& t, M*' —t, M*')—

The width of the E* is irrelevant in (3.8) and (3.9)
amuy from the left-hand cut, once it has been incor-
porated into the coupling constant, g. The form (3.8)
enables us to immediately identify A. &'&, 2&'&, B& & and
B"),where the tilde labels the Born contribution. We
find

(2+6)g'Gd+
S&P&(s, cos8) = g (2l+1)Q&(x(s))P&(cos8),

i=even

—4g'6d+
A. &'&(s, cos8) = Q (2l+1)Q&(x(s))P&(cos8),

(3.13)

B&»(s, cos8) =

Pq /=odd

—(2/6) g'Gd-
P (2l+1)Qi(x(s))P&(cos8),

l~dd
(3.14)

4g'Gd-
B&'&(s, cos8) = — P (2l+1)Qi(x(s))E&(cos8),

g )=even

with

x(s) = (8—s—2M*')j4pq,

a= ~zP+PP+2tiP

(3.15)

(3.16)

definitions (2.22) and (2.23)

(2v'6)g'Gd'
Xp&p&(s) Qo(x(s)) (3.17)

(4pg)'Qp 1
A(f

Qp 3 (a—s—2M*')'

and similarly
.3

1

We notice that in the physical decay region of E,4

one has

—12g'Gd+
Xi&'&(s) Qi(x(s)),

—(6+6)gPGd-
Bi"'(s)= Qi(x(s))

4g'Gd
Bo"'( )= Qo( ( )).

(3.18)

(3.19)

(3.20)

This is so because 2M*' is much larger than s so that we
can take only the leading terms in the expansion. This The full partial-wave amplitudes will have the same
can always be checked a postenori and is certainly kinematic singularities as those of the Born amplitudes
valid here, as our calculation shows. Hence, using the (3.17)—(3.20). We defme new amplitudesfrom which the
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kinematic singularities have been removed:

Ss"&=A &&&" 8& &'& =A &&'&/2pq
(3.21)

S~&&0—g~&s&/2Pq S &1& —jP &t&

Recall that the upper index refers to the isotopic spin,
the lower to the Legendre expansion of the scalar
amplitudes 3 and B.

From examination of the expansions (2.22), (2.27),
and (2.28) one sees that Q&&& & and S&& & have the I=O
S-wave phase of the m-x scattering, while 0',~(') and Sp(')
correspond to the E-wave phase.

We Anally write unsubtracted dispersion relations
for each of these amplitudes, with the appropriate
e "sin6 factor, and with the appropriate Born term.
Thus, generally we have

ds
&4& &(s) = Qs& &(s)+—

8&&"&(s')e 's'&" & sinbs(s'),
s —s—z6

1 " ds'
g &1& —

&» &&&(~)+ &t &i&(s')e—ih&i'& sing~(gi)
s —s—z6

1 ds'
S&&'&(s)= S,«&(s)+— S,&'&(s')e—"«"& sinb&&(s'),

4 s —s z6

1 ds
Ss&'&(s) = Ss&'&(s)+— Ss&'&(s')e—'"&"& sin&&&(s') .

4 s —s—$E

(3.22)

Qg('& =ag,

p('&=by)
(3.23)

where the single subscript now refers to I, and is a com-
plete label. Then, our current has the form:

The 8, and are also functions of k', which is to be kept
6xed in the dispersion integrals. The Born terms 8, and
S are likewise functions of k' (compare 3.16), and we
have dropped the dependance on k' only in the form
factors &s and P.

At this stage we simplify the notation by writing

G(s) =CQo(x(~))+
$ —$—ze

)& t e "&&"&+~&&4&e"& sinb&Q&&(x(s'))1+P (s)e"&", (4.2)

tion will have a Q& as the inhomogeneous term and can
be treated similarly. ) Since Q&&(x(s)) has only the left-
hand cut and is separated from the right-hand cut it is
possible to write down the solution either as the product
of two cuts or as the sum of the two cuts. We choose the
latter form. Provided the integral converges the solu-
tion of equation (4.1) is"

C&u~ (s)—u~ (4)

I=O:
A "'(~in k')(q&+qs) ~+&"'(si» k') (q&

—qs)
=+0(&ik') (ql+ qs)/+f&0(~ik') V(q& qs) i i (3 4) exp(u&(s) —Nl(4))

I=i:
(1&(s

&& ks)(ql+qs) +g(1&(s && k2)(ql qs)s
=a,(s,k')»(q, +qs)„+b&(s,k')(q& —qs)„. (3.25)

(s—4
= exp~—

8&(s') 1
dg' —

~

—= . (4.3)
(s' s ie)(—s' —4)I D—(s)

IV. SOLUTIONS OF THE INTEGRAL EQUATIONS

In the last section, we have obtained various integral
equations for the a's and b's. They are of the
Muskhelishvili-Omnes form. "We exemplify our treat-
ment by dealing in detail with the following integral
equation:

1 " e—"i sinb&(s')G(s')
G(s) =CQ&&(x(s))+— ds', (4.1)

Here D is the denominator function in the 1V/D method
for the partial-wave amplitude for pion-pion scattering,
and P„(s) is a polynomial of order &s. We need G(s) only
for 4&u'(s((mr& —p)' and hence evaluate (4.2) using
approximations which are valid for this range. Notice
that for these physical values of s, x(s) as given by
Eq. (3.16) is much larger than unity. Hence, for these
values of s we shall expand Q&&(x(s)) as follows:

where C is a constant. (The other type of integral equa- Q (x(s))=
1 1 1

1+— +'''
x(s) 3 t x(s)]s

'i R. Omnhs, Nuovo Cimento 8, 316 (1958). N. I. Muskhelish-
vili, Singular Integral Equations (P. NoordhoG Ltd. , Groningen,
The Netherlands, 1953).

and we also use this expansion inside the integral in
(4.2), since the high-energy part of the integral is well
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e"'(sinb)(s')e "«"'+"«)
ds'—,(4.4)

S —$—Ze S $~

where s~))1.
This expression for ("&F)(s) can be put in a more con-

venient form by considering the integral equation which
is satisfied by ("Fi(s):

(')Fi(s,s,) =
$ Sp

1 " e'" sinb)(s') "&F((s',s~)ds'
ds'

7/ 4 s —s
(4.5)

The solution of Eq. (4.5) is, of course, simply

g~u) (s)—u) (4)

("Fg(s,s„)= +
s+s„

e'" sinb)(s')e n)(")+")"ds', (4.6)
(s' —s) (s'+ s„)

which can also be put in the form

C&u~ (s)—u~ (—sp)

damped. (See discussion in Appendix A.) It is seen that
this series converges very fast in the physical region.
The expansion remains valid for larger (unphysical)
values of s up to perhaps s —',M*'. As s —+~, x(s)
approaches unity so that the expansion breaks down.
However, this does not affect the validity of the evalu-
ated integral. The accuracy of the approximation can be
checked by computing higher order terms in the integral
and, as will be shown in the Appendix A, they are in-
deed small. In the following we approxima, te Qp(x(s))
and Qt(x(s)) by their first leading terms.

It is well known that the solution of the Musk-
helishvili-Omnes equation is defined only to within a
term F„(s)en(s). In order to make the solution unique
we make the following ansatz'. Among the many solu-

tions as given by Eq. (4.2) we select the solution
which yields the best behavior for G(s). By "best be-
havior" we mean those solutions which make G(s) tend
to zero fastest as s —&Oo. This eliminates the possibility
of adding an arbitrary term such as F„(s)e"".

Typically we now have to calculate expressions like:

/gus (s)—u) (4)

(n&p, (s) =
s s&~

s„one obtains

('&F)(s,s„)= ( —1)"n!—
Bs„n (s+s )"+'

Therefore,

~u) (s)—u) (4)

C
"e'"sinb)(s')e "«"&+"«'&

(s' —s) (s'+ s„)"+'

( 1)n—i gn —1((1)p )
( )p(s)=

(n —1)! Bs„" '

( 1)n 1(—!n—1 -eni(s) —n) (—sn)-
=C-

(n 1)!e)s„"—-' s+s„
(4.8)

ap ———8+6g'Gd+
$ S~

(4.9a)

-~up (s)—up (—sp)—

b() 16+6g'G——d Bs„s+s„ (4.9b)

Qy= 32g Gd
Bs~ s+s„

&ui (s)ui (—sp)

by ———16g'Gd
s+s~

(4.9c)

(4.9d)

where S„=2M*'—8. We note that bp and g& have the
correct second-order pole and residue at —s„and no
first-order pole here.

We shall try to characterize the S and P wave pion-
pion phase shifts in a simple manner so that the e"
factor can be obtained without using numerical methods.
We shall discuss first the P-wave pion-pion interaction
because its behavior is well established experimentally.
Since the p resonance is far from the physical K,4

region, the enhancement factor given by Frazer and
Fulco" reduces to the simple form

enl(s) —nl(—sy) (s +s )/(s s) (4.»)
This of course corresponds to the Breit-Wigner form far
from the resonance position, where the imaginary part
is negligible.

The situation for the S-wave pion pion interaction is
much more complicated because the present experi-
mental evidence is conRicting. We shall consider the
following possibilities for the S-wave pion-pion phase
shift:

Using the formula (4.8), we obtain the following ex-
pressions for the a's and b's:

&up (s)—up (—sy)

' ()(F,)s)s=
s Sy

(4.7)
A. Scattering-Length Approximation

This clearly has the correct cut, discontinuity, pole and
residue, and satisfies our ansatz for uniqueness of solu-
tion. Differentiating (')F)(s,s~) n times with respect to

We use the form derived by Chew and Mandelstam"
where the left-hand cut contribution to the S-partial

"G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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32g'Gd+

(s+s„)'
16g'Gd (spjs„)
(s+s )(s,—s)j.

L(s—4)/sj'" cotlp= —+ H(-,'s —1), (4.11)
(i) Scatteritsg Length

(8+6)g'Gd+

Qp

where np is the scattering length and Bp is de6ned as

2
H(x) =—

I x/(x/1) $'" in(gx+(x+1)'") . (4.12)

$ sy
1 (sp)—+HI —

Ik4)
The enhancement factor is given by

~up(S) —up( —4tp)

1 (s
+HI ———1

I if—(s 4)—/s j'/'8(s 4)—
n,

16+6g'Gd
(4.13)

(s+s„)'

(1/np)+H( ss—n+ 1)

(1/ .)+H(-: -1)-'D -4)/ 3'"8( -4)
1 (sp 1

+HI ————
I4

This form is obtained by considering the 1V/D method
for the S-wave dispersion relation, and e"«') "«—'~) is
simply D(—s~)/D(s).

wave pion-pion amplitude is neglected. One can use a for the a's and 5's:
better form for the S-wave pion pion phase shift where
the left-hand cut p contribution is taken into account, Qy=

but for the present purpose it is unnecessary. Ke
approximate the phase shift by

(4.1/)

(4.18)

(4.19a)

(4.19b)

B. Resonance Behavior
—+HI —1

I

—iL(s—4)/sj'"8(s —4)
n, 4

%e approximate the S-wave pion-pion phase shift by

s sp

This gives the following enhancement factor

&u (41)—u (—Sy)

(ii) Eesor/atsce

1 8+6g'Gd"
L(s—4)/s7' ' cot8p(s) =—(s/p —s)+HI ——1

I
. (4.14) ap=—

k4 i +
sg+s, +4yp( —

)

sr/+s„+4yH$ (s~/4)+1j— (s
s/r s+4yHI ——1

I

—i4yg(s —4)/s j' '8—(s 4)—
)

s/r s+4yHI 1
I

—i4—yp(s —4)/sjt/'8(s —4) 16+6g'Gd
) (4.15) &p =——

(+,)'
where y is the reduced width, and in terms of the full
width F it takes the following value:

f"it
sr' —s+4y HI —

I

——
&4i

(4.20a)

4y —pat/2(sa/s~ 4) t/2P (4.16a)

H( —x) = H(x —1) for x) 1,
g—1

after some algebra we obtain the following expressions

' A. V. Efremov and D. V. Shirk. ov, Zh. Eskperim. i Teor.
Fiz. 42, 1344 (1962) t Enghsh transL: Soviet Phys. —JETP 15,
932 (1962)g and references given in this paper for previous works.

Here 8& is the resonance position and is related to s& by

e/r = s/r+4yH((e~/4) 1) . (4.16b—)

Equations (4.14) and (4.15) are derived by making an
extra subtraction in the D equation. "

Using Eqs. (4.10), (4.13), and (4.15) and the fact
that

(s
sn —s+4yHI ——1

I
—i4yL(s —4)/sj' '8(s —4)

(4.20b)

where we have used the fact that s~&)s in the physical
decay region of E,4 to simplify our final expressions.

On examining Eqs. (4.9), (4.10), (4.19), and (4.20)
we find cp))bp and b~&&ai. The enhancement factor
for ap at s=4 is simply 1+npH(s~/4)~1+ 1 3np.
for the scattering length formula, and is equal to
1+(s„/srr)+(4y/s/r)H(s~/4) for the resonance. It is
simple to see that by switching oG the pion-pion inter-
action the enhancement factor is unity as it should be.
For the resonant pion-pion interaction we expect a very
large enhancement because s„ is much larger than sg,
and as our calculation in the next section shows it is not
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possible to obtain the correct rate for E,4 in this situa-
tion. If ao is negative corresponding to a repulsive pion-
pion interaction, it is expected that the enhancement
factor should be less than unity. This is certainly the
case for our formula; however, our formula is no longer
correct because the demoninator function has a zero on
the left-hand cut corresponding to the existence of a
"ghost" in the solution of the pion-pion equation. We
are unable to obtain a simple equation for the D func-
tion for a repulsive S-wave pion-pion interaction which
is free from the ghost. Should the situation require, the
formula obtained here is simple but general enough to
use with a better D function for pion-pion scattering.

One question which may be asked concerns the reli-
ability of the scattering length formula [Eq. (4.11)]
and the resonance formula [Eq. (4.14)] which are used
to calculate the ratio D(—s„)/D(s) in order to obtain
the absolute enhancement factor. It is recalled that s„
is large; therefore we have to extrapolate the D function
in the pion-pion equations to a distant. point on the left-
hand cut. In order to see the reliability of our procedure
we have also used the D function for the S-wave pion-
pion interaction where the eft'ect of the p exchange in
the crossed channel is taken into account in an approxi-
mate manner by using the Shirkov crossing relation.
Taking the p width as 100 MeV, we And that the en-
hancement factor obtained with this more complicated
formula is about 10% larger than with Eq. (4.13). We
have also constructed the S-wave D-functions by the
pole approximation such that they reproduced the set of
S-wave pion-pion phase shift given by Taylor and one
of us" and we find that the enhancement factor is less
than 10% larger than that given by Eq. (4.11).In the
absence of a satisfactory set of solutions to the pion-
pion equation we choose to characterize the S-wave
phase shift by Eqs. (4.11) and (4.14) because of their
simplicity.

where the positron spinor (denoted by v,) is normalized
to v,2t, = —1, and the neutrino spinor to N„*24„=1. (Here
the asterisk denotes Hermitian conjugation, and
t'. =e*po, in general we follow the conventions used by
Schweber. ") Further

(flMI &5= ~V"l(1 2V )—~.M, .

The transition rate is then given by

(5.2)

d'q& d'q2
I' = (22r) 4 8&4& (P—

q1
—

q2
—p —e)

(2m.)5 (22r)2

d'e d's ns,
& l(flMI2&l' (53)

(22r)' (2n.)'8q1'q2 p 8 401»

where after summing over the lepton spins

g I(flMI2&l =M„M„*
spins 2v'm,

X [PP8"+P"8 (P 8)g—P"—20" "v.8p], (5.4)

Q=q1+q2, Ii =p+e=&,
E.= gy

—g2, I= 8—p,
(5.5)

with e being the usual antisymmetric tensor.
The general form of M„has been given in Eq. (2.8)

with b„=(e+P)„.It is easy to see that C gives no con-
tribution to (5.4) if we neglect m, 2 compared with other
typical meson masses. (This was the reason for neglect-
ing a detailed study of the C term in the previous
sections. )

In order to integrate in (5.3) it is convenient to use
the variables

V. NUMEMCAL RESULTS

We write the S-matrix element for the K,4 decay in
the form

with
P=Q+I' s=Q'

', (t, &,)=F s. -— (5.6)

S= ( 5)(2')454(p—
q1 q2 P —e)(f—I

M—
I
2&—

i
X— -(2/5, /e0) "' (5.1)

[(2~)5/2]5 (8q Oq Op0)1/2

Similar integrations have already been described in the
literature in detail. ' "Ke hence only give here the re-
sult after integrating over R, Ii, and J.

The E,4 decay rate is given by

m+$
I'1r,4= (3X2'X2r'mz) ' ds hl r0'

I a0I 22/2/r2$(s)+2 Re(a0b0*)I5'mrs'
l 5

—sM(s)

+Ib, l
h

M(s) 2s2/5ir'y
1. X(s)—

2sm~'x'-

15

h'
+r1'

I a1I'—M(s)+2 Re(a1b1*)h'nsir2
3

5$+X

5
—sX(s)

+ I
b1I'h' 22/5K'1V(s)+22/5xsyI 2xy ——ln

I
ztn~sx'

I

—(5—.7)
4 s

I J. G. Taylor and Tran N. Truong, Nuovo Cimento 25, 946 (1962}."S.S. Schweber, Relativistic QNuetere Field Theory (Row, Peterson and Company, New York, 'i961}.
22 R. H. Dahtz, Phys. Rev. 99, 915 (1955).
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b, b, are defined in (3.23)»d

mz' —s mx'+s

~K 2mK

3 mK
g (g) = -gay —sty+

16 s

s—4

(5.8a)

(5.8c)

~ 40

IX
'C
IKI-
IS
~~ 2O

and rp, r& are isotopic spin factors w-ichhich take the follow-
ing values for the decays (2.1a)—(2.1c), respectively: P.80 320 360

~s {MIV)

I

400 440

tp—
12

rg ——0) (5.9a)
80

(a)

~o

Q6 2
(5.9b)

60

rp rl= —
~ (5.9c)

n lenoth.TAaz, z I. Predicted rates versus scattering

Ap

—0.5—0.3
0.0
0.5
1.0
1.5
2.0
2.5

cu(a)'

55
160
410
910

1400
1800
2200
2500

ca(c)b

1290
1290
1290
1290
1290
1290
1290
1290

co(b)'

750
970

1500
2500
3400
4300
5000
5600

) of K+ -+ x~+~o+e++v.ace(c) =rate (per sec& o o +
b co(b) =rate (per SeC) Of X+ -+ m

&cu(c) =rate (per sec) of Ko —+ ~ vr e v.

Once a definite choice has been made for the x-m

E&~5.7~ ives us the rate orinteraction, expression &, g'

d d the spectrum of the invariant mass o e

one s ecific form (p-meson dominance), as

t' a resonance dominance. We present rst etion or a
scattering-length case.

len th, the rateF different values of the scattermg eng
for E+—+e+vm+x calculated from & . '

. 7,
(4 18) and (4.19) is given in Table I.~ ~

for E+~ e+vm+m was re-The experimental rate for E
el 100cently reporte on ed' the basis of approximately

events to be

F(E+~ 7r+s.—e+v) = (3.5+0.7) X10' sec—'. 5.10

W bt
'

this result for an attractive pion-pion inter-
action with a scattering length of about . p
wavelengths.

~40

fL

K

IS
~20

280 320 360
Js (NeV)

400 440

(b)

T - ' t fo 'o 1 oIh Two- ion spec
the S-wave scattering e g
0!p= .5' d: oIp=2.5. In each case the stogram is
data of Ref. 1.

ive the distribution of the invariantIn Fig. 2 we give e is
of the scat-masso t e wof h t pions for different values o

attractiverin len th (ns). The tendency of an attrac
'

S-wave pion-pion interaction is o en
f the two-pion spectrum while ppthe o osite is true oro e

the effect of the I' wave. In Fig. pi . 3 we lot separatey,
the contribution of the 5 wave to t efor sllustratton, e c

=1 whic ts our avtwo-p po- ion s ectrum for crp= h av
I' edistribution, -and theirvalue), the separate -wave is

an b& and a&, respectively Premem er t a

a b *z" in (5.7) is about 0.5% of the con-
("' t Th ttribution to thethe rate of the "

ap erm.
of the total I'-wave"Re(a,br*)" contributes about 5+~ o e o
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FIG. 3. Two-pion spectra for ap=1.0: a: S-wave contribution;
c: P-wave contribution; b: Sum of S and P-waves.

term. Hence, we verify in our model that the ampli-
tudes A and 8 of Eq. (2.8) can be taken to be pure S
and I' waves, respectively, to a very good accuracy.

The other alternative we have tried for the behavior
of the S-wave phase shifts is of a resonant type I Eq.
(4.20)j. Brown and Singer" have suggested the exis-
tence of an S-wave ~-s. resonance ("o."particle) with a
mass of about 400 MeV and a width of about 70-100
MeV, in order to explain the g —+ 3x rate and spectrum,
and have also interpreted the E —+ 3x decays in terms
of this resonance. We have varied in our calculation
the mass of the r between 370 and 410 MeV and
the width between 50 and 120 MeV. In Fig. 4 we
give the x-x invariant mass distribution for several
choices of these parameters. " It turns out that in
this case the P wave is negligible and the decay ampli-
tude is given by E~ o.+(ep), as assumed by Brown
and Faier. ' However, the rate for E,4 calculated from
(5.7) with a o., comes out to be larger than the experi-
mental one by at least two orders of magnitude. For
example, for m, =390 MeV, I',=100 MeV we get for
the decay rate E+~m+a e+v, 1/r=9.06&&10' sec ',
which is about 260 times larger than the experimental
rate. For larger 0. mass and width one obtains smaller
rates, but even for m =410 MeV and I' =120 MeV we
get 1/r =6.04X 10' sec ', which is still about 170 times
too large. For ns =380 MeV and I' =50 MeV one ob-
tains 1/r= 1.68&(10' sec '. In Appendix B we discuss
an alternative treatment incorporating the 0- resonance.
It leads to the same rate as obtained here.

Another possible test of the pion-pion interaction
would be the measurement of the forward-to-backward

"L.M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962);
Phys. Rev. 133, B812 (1964).

24 N. P. Samios, A. H. Bachman, R. M. Lea, T. E. Kalogero-
poulos, and W. D. Shephard, Phys. Rev. Letters 9, 139 (1962);
J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 130, 2481
(1963);F. S. Crawford, R. A. Grossman, L. J. Lloyd, L. R. Price,
E. C. Fowler, Phys. Rev. Letters 11, 564 (1963) also Erratum,
ibid. 14, 421 (1964); R. D. Fabbro, M. DePretis, R. Jones, G.
Marini, A. Odian, G. Stoppini, L. Tau, ibid. 12, 674 (1964).
The two-pion spectra in m+X —+ 2vr+37 and y+p ~ 2~+p can
be understood without invoking two pion resonances. V. V.
Anisovich and L. G. Dakhno, Phys. Letters 10, 221 (1964).

FIG. 4. Two-pion spectra for a 0- resonance of mass, m, and total
width F (in units of MeV): a: m, =400, F =70; b: m =400,
F,=130;c:m =380, 1 =70; d: m, =380, F,=50. The histogram
is taken from Ref. 1.

asymmetry of one pion in the c.m. system of the pions,
due to the interference of S and I' waves. Before pro-
ceeding to the complete expression, we shall briefly
explain this distribution in a simplified way. Let us
write approximately our weak current of the Emm

states as

I.O

F-1
F+8

0.5

280 320 360
~s (Mev)

400 440

FIG. 5. Forward-backward asymmetry of the two pions for
various values of ap. a:ap= 0.5 b:ap = 1.0; c:up = 1.5:d: an=2. 5,

"The usefulness of investigating this distribution was in fact
erst suggested by E. P. Shabalin, Zh. Eksperim. i Teor. Fiz. 44,
765 (1963) LEnglish transl: Soviet Phys. —JETP 17, 517 (1963)g.

I~(s) l(qt+qs). e'""+I&(s) I(qt qs)se'""

in an obvious notation. Then the differential rate for
E,& decay contains a term proportional to

dsd(cosg) I~(s) I I&(s) Ir(s) cos(5s —51) cos8,

where P(s) comes from the phase space. Obviously,
such a term does not contribute to the total rate.
Nevertheless, it might be useful in detecting the pres-
ence and type of the pion-pion interaction. By inte-
grating this term over cosg, so as to get the forward
hemisphere events minus the backward hemisphere
pion events, one obtains an expression which is a func-
tion of s and proportional to cos(8s —bt)."For an S-wave
resonance in the physical region the asymmetry dis-
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tribution would go through 0 at the position of the
resonance.

We shall present the asymmetry term as a function of
the 7r-m invariant mass. By using our expressions (3.24)

and (3.25) we obtain for the asymmetry distribution of
the positive pion in the center of mass of the pions with
respect to the line of Qight of the two-pions in the
E-meson rest system

cosy)0 cos8(0
dl'=ror~(3X2'Xvr'm ) 'ds

m~'h' Psych~ 8$zx s
X Re(aoa&*)— Ly(x' —2s)'+2(x +2s')y —Ss'~']+Re(aob&*) ——L(x' —2s)y+2s'"]

30 2 4 3

m~'h' m~x' s
+Re(a&bo*) ——$y(x' —2s)'+2y(x'+2s') —Ss' ']

4 6 15

m~h' y(s —4) (s—4)x4-
+Re(bobi*)mx'h' Ey(x' —2s)'+2y(x +2s') —Ss' ']+ L(x' —2s)y+2s' ']——

— 60 3 4
(5.11)

In Fig. 5 the asymmetry distribution is plotted for
various choices of the scattering length. (The resonance
case is discussed in the next section. ) As the terms a~,
b0 are much smaller in our model than a0, b~, respec-
tively, the main contribution in (5.11) comes from the
term "Re(aobq*)." The term "Re(aoa,),

" which is the
biggest among the small terms, does not exceed about
5% of the main term.

VI. SUMMARY AND DISCUSSION

We have given in this paper a detailed treatment of
the weak and strong interaction aspects of the E,4 de-
cays. By asslmieg a model for the weak interaction,
namely a "nearly conserved" axial strangeness chang-
ing current and the dominance in the (Emvr

~

states of
the (E*n.~, we obtain a Goldberger-Treiman-like rela-
tion Eq. (3.7) which relates the E,4 decay strength to
the E~ p,+v rate and the strong E*Em vertex. The
rate, as well as the different decay spectra discussed in
the previous section, are changed by significant amounts
when the Anal-state pion-pion interaction is included.
For this reason, we have developed in Secs. III and IV a
detailed treatment of this effect. Before comparing the
results of our calculation with the experimental data, we
would like to stress that even if our treatment of the
weak interaction is inadequate, the method of handling
the strong 6nal-state interaction effect is quite general
and reliable. See also note added in proof.

Let us now summarize our main results: Without any
pion-pion interaction in the S and P waves, the decay
rate we obtain is about 3.5 times smaller than the ex-
perimental rate. By including only the effect of the p
resonance, the calculated rate is still smaller than the
experimental rate by a factor of 2.5. Assuming that our
treatment of the weak part is adequate, the question
one would like to ask is what type of S-wave pion-pion
interaction would make the calculated rate equal to the
experimental one. We 6nd that when the p meson and
the S-wave pion-pion interaction in the form of the
-scattering length are introduced, we obtain the experi-
mental rate Eq. (5.10) for a scattering length of

uo= (1.0+0.3)h/m, c. This is consistent with the value
obtained by the analysis of the pion-nucleon phase
shift and other phenomenological analyses of the +-x
interaction. " This is the only unknown parameter in
the calculation. Once it is Axed we can make the pre-
dictions on the two-pion spectrum, the S to P wave
ratio, and the forward-backward asymmetry. For this
value of the scattering length (no ——1.0) the total con-
tribution of the P wave is 1S% of the total decay rate
for E+~m++m +e++p. The two-pion spectrum is in
good agreement with the experimental one (see Fig. 3).
With the existing experimental data, our curves seem
already to rule out a too large scattering length D.e.,
2 5(h/re c).] It is see.n that while the S-wave distorts
the two pion invariant mass distribution towards smaller
values of Qs, the 8-wave effect tends to bring it back to
the "pure phase space" distribution. This accounts for
the observed spectrum which does not differ very much
from the S-wave phase space. If a 0. resonance dominates
the m-m T=O channel LEq. (4.14)] then our calculation
predicts a rate which is larger than the experimental one
by about two orders of magnitude. Because of the un-
usually large enhancement factor involved, it would be
interesting to find out whether the number obtained
does not depend on our model. For this purpose, we
have written the amplitude for the E,4 decay in the form
suggested by Brown and Faier, ' i.e., (a.

~
A „~E)J„,where

J„is the lepton current. This form is also consistent with
our result that if |T is included, the P wave is negligible.
In Appendix B we calculate (0 ~A„~E) by using again
the Beg, Cornwall and Woo technique' and we obtain
again that the rate is about 200 times larger than the
observed one.

As far as the two-pion invariant mass distribution is
concerned a 0- with mass of 400 MeV and width of

130MeV is not ruled out by the existing experimental
results. ' However, a r with parameters 350—380 MeV

~ For a recent review of the experimental and theoretical status
of pion-pion interactions, see J. Hamilton in Strong Interactions
and EIigh Energy Physics, Scottish Universities' Summer School
1963, edited by R. G,. Moorehouse (Olivez an/ Boy/, Edinbursh
1964),
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and. 50-70 MeV gives a spectrum (see Fig. 4) which dis-
agrees with the experimental data.

For repulsive S-wave pion-pion interactions, our cal-
culation shows that the rate is smaller than that which
is obtained by switching off the S-wave pion-pion in-
teractions effect. This is certainly what we expected for
a repulsive interaction, therefore our calculation for
K,4 is not consistent with the repulsive S-wave pion-
pion interaction.

A scattering length of approximately 1 is favored by
both the rate and the ~-x mass distribution ie ogr
model. It is very desirable to compare also the data on
the backward-forward asymmetry to our prediction
(Fig. 5). For the resonance case, this distribution goes
through zero at the resonance mass; however, it does not
rise in the other direction about 2-3%%u~. This is due to
the very small P/S ra, tio predicted by our model.

Additional tests have been suggested recently by
Maksymowicz and Cabibbo. '~ Our model can be easily
used to calculate the proposed distributions.

We would like now to comment on the difference be-
tween our method and others in the literature. In Ref. 8,
there is no serious attempt to treat the strong effects in
the manner of our paper. The effect of the strong inter-
action is treated by the unitary symmetry scheme and
no other prediction than the rate can be made. In this
respect our calculation is similar to that given in Ref. 7,
that is, the strong interaction is handled by the use of
dispersion relation techniques. However, there is a basic
difference between our paper and Ref. 7. In Ref. 7 the
E,4 rate is related to the E+K~ 2s am'plitude while
in this paper it is related to the process (ev)+E —+ 2s.
The numerical value for the E,4 rate given by Ref. 7
is 3.5 times smaller than the experimental rate even
when as large a scattering length as ne=2. 5(h/m c)
is used. Furthermore, the Born term for the integral
equation E+K~ 2s behaves at in6nity as lns (to be
contrasted with (lns)/s in our case); therefore a cutoff
has to be introduced in their numerical procedure. It is
not clear how the results given in Ref. 7 depend on the
cutoff.

Finally, we would like to discuss the possibility of
time-reversal invariance violation as suggested by the
experiment of Christenson, Cronin, Pitch, and Turlay"
(CPT invariance is assumed). We shall assume that T
violation, if it exists, is connected with the weak current
involving strongly interacting particles. Instead of
using Eq. (2.8) we now can write:

(2qre2qs 2p')'~'(27r, out
I
7

I
E)

~ae(s) «(eg qts)„+h(s)e'"~(q +res)~ &

where we have made the S- and I'-wave approximation
and neglected the s dependence of the Born cut. The

'7 N. Cabibbo and A. Maksymowicz, University of Cali-
fornia Radiation Laboratory Report UCRL-11437 1964) (to be
published).

J. H. Christenson, J. %. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Letters 13, 138 (1964).

angles yo and y~ are due to T violation. The strong
pion-pion interaction is assumed to be T invariant;
therefore ae(s) = f/De(s) and br(s) =g/Dt(s) where f
and g are real. (It is always possible to make this
separation because the Born cut is separated from the
final-state pion-pion scattering cut and hence the
amplitude can be written as the product of the two
cuts. ) Furthermore, since q&e and yt are associated with
the Born amplitude, they depend weakly on s and do not
have the threshold behavior of 8's. In our calculation,
the presence of T violation would make P(0) as given by
Eq. (3.7) complex. Since our 5 and P wave a-mplitudes
are both generated by P(0), we have q s——q &, therefore
our calculation would not be affected.

I et us now entertain the possibility that p04 y& and

ye —
q t is large" (our model is unable to allow for this

possibility). It has been pointed out that it is possible
to measure the difference in the phase of co and b~,

namely bo and 8j, by measuring the up-down asymmetry
of the positron and the backward-forward asymmetry of
the pions. '~ If there were a T violation, the measured
phase angle would be p= bp —3t+ pp pt. In principle,
it is possible to detect the presence of po and p& by
selecting events which are suKciently close to the two-
pion threshold in order to make bo

——b~
——0. However,

phase space is unfavorable for this choice. With a very
large number of events an extrapolation procedure to
threshold may be made, but this is out of the question
at this moment. At best we can hope for some meas-
urernent of p averaged over the two-pion energy. If T
invariance holds, we do rot expect @ to be near —,'s . This
is so because most of the pions have small relative energy
(experimentally the two-pion spectrum peaks at a
total energy of 300 MeV) and it is not possible for the
S-wave phase shift 80 to grow from zero at threshold to
a value near —,'m in a small energy interval without in-
troducing a strong variation in the form factor I/De(s).
(It is a good approximation to put 8&

——0 in the physical
region in E,4 decay. ) A large averaged value of 8& can
come about either if there is a two-pion resonance of
large width at an energy near 300 MeV, or if o.o is much
larger than 1. The former is ruled out by the experi-
mental data, while the latter would distort the two-
pion spectra by a factor of

and is also in contradiction with the experimental data
of E,4.

Jt/ote added il proof The existen. ce of the ~ resonance
in the Ex, T= ~~, S state channel has been confirmed by

~'The effect of CP violation may not be large in weak inter-
actions: Tran N. Truong, Phys. Rev. Letters 1B,358a (1964). For
other discussions of the experimental results of Ref. 28, see J. S.
Bell and J. K. Perring, Phys. Rev. Letters 13, 348 (1964); T. T.
Wu and C. N. Yang, i'. 13,380;(1964);R. G Sachs, ibid 13,.286.
(1964); N. Cabibbo Phys. Letters 12, 137 (1964); J. Bernstein,
N. Cabibbo, and T. D. Lee, ibid. 12, 146 (1964); M. Levy and
M. Nauenberg, ibid 12, 133 (1964)..



STU DY OF E, 4 DECAYS

M. Ferro-Luzzi et a/."They find a mass of 725+5 MeV,
and a full width I"(30 MeV.

We hence have calculated the possible ~ contribution
to our Born terms. We again make use of a Goldberger-
Treiman type relation to determine the (s~ J„"

~

s.) ver-
tex. The position of the equivalent left hand pole —s„
for ~ is soinewhat nearer the physical region than for
E* (sv = 2M„s s, c—ompared with 2M*'—I for K*).This
implies that the enhancement factors are slightly
smaller for the ~ contributions than for the E*contribu-
tions. Disregarding this small variation in the Born term
denominators, we And that the Born terms arising from
~ are related to those arising from E* exchange by

(2."'/2x*&'&) = (A„&'&/Ax*&") 0.12(l'./rx. )

(j3„io)/g3 (o)) = (j3 i )/ j3 ( )) 0 25(1'„/I' )
Recalling that in all cases the largest contribution to

the rate arises from A&", we see that including the K

makes essentially no change to our best value of no.
Even as regards the various spectra and asymmetries,
which do depend on 8"), the ~ contribution is small.

This has the further attractive feature that our model
does not depend crucially on the Goldberger-Treiman
type relation for (s~7„"~s.), provided it gives a result
correct to within a factor of 2.

Finally we should emphasize that our use of the
Goldberger-Treiman type relation for (%*

I
J„"

I rr), even
if it ultimately proves to be inapplicable, only affects our
calculation of the over-all rates, and hence our best choice
for no. The spectra presented for various choices of ao
are irsdependertt of the particular value of (K*~J„"~s.).
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APPENDIX A

In this Appendix we wish to discuss the ambiguity of
the Muskhelishvili-Omnes equation and the validity of
our method of obtaining the solution to the integral
equation.

1. The Ambiguity of The MuskheHshvili-
Omnes Equation

We dehne

X(v) = a (Aia)

D(v) = 1jab(v)+bv ia$v/(v+ 1))i~—sg(v) (A1b)

A(v) =
t /(v+v1)$ ~ e's sinb=X(v)/D(v) (Aic)

"M. Ferro-Luzzi, R. George, Y. Goldschmidt-Clermont, V. P.
Henri, et al., Phys. Letters 12, 255 (1964); which also contains
earlier references,

where s= 4(v+1). The scattering length approximation
is obtained by putting b=0. Equation (4.6) can be re-
written in terms of the Ã and D functions

c D(—s,)
F(s,s„)=

s+s, D(s)
(A3)

which is identical to Eq. (4.7).
For the resonant pion-pion interaction, the situation

is di6'erent however. Instead of arriving at Eq. (A3) we
obtain

c D( sv) cbD(0)—
F(s,s,)= +

s+ sv D(s) D(s)
(A4)

which corresponds to adding a polynomial of zero de-
gree multiplying 1/D to the solution of (A3). This
comes from the well-known result that the solution (A2)
is defined within a term P„(s)(1/D(s)j, where P„(s) is a
polynomial of Nth degree. The extra term in Eq. (A4)
has its origin in the approximation that the resonance is
of the kinematical type, that is, the resonance is not
driven by the left-hand cut but by a subtraction. The
pion-pion amplitude in this case behaves as 1/v as
v ~~ and thus 8(~ ) = rr. Instead of choosing the phase
shift as given by Eq. (A1), we can make the pole ap-
proximation for Ã, and the mm. amplitude then behaves
as 1/lnv. In this case it is simple to show that formula
(A3) is reproduced. This problem does not arise in the
nonrelativistic case because there the phase shift is well
defined, that is, the function D(s) which is the inverse of
the Jost function can be written in the unsubtracted
form and D(s) -+ 1 as s-+~. Our a@sais as stated in
the text is inspired by the situation in the nonrelativis-
tic theory where the solution is unique. The applica-
tion of our assets eliminates the possibility of choosing
the expression (A4) as the solution to the integral equa-
tion. In place of this expression we must choose solu-
tion (A3).

2. Validity of Our Approximate Solution of
the Integral Equation

We note that the inhomogeneous term in the integral
equations behave at worst as lns/s; therefore the in-

tegral equations converge and there is no need to make
a cutoff. Because of this good behavior, the approxima-
tion made in Sec. IV is an excellent one. We wish now
to calculate the higher order terms in the power series

C

F(s,s„)= —+
s+s, s.D(s)

,L(s' —4)/s'3'" V(s')D(s')
X ds' . (A2)

4 (s' —s)(s'+s )

Using (A1a), (Aib), and (Aic) in Eq. (A2), after some
algebra we obtain the following expression for the
amplitude in the scattering length case,
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expansion of Qp(x(s)) in the integral equation. Typically
we must show that the higher order terms in the ex-
pansion for B(s) contribute very little to the integral
equation, where

cgp(x(s))
B(s)=

c 16p'I7'
1+ + . (AS)

s+s (s+s )'
Here x(s)=(8—s—2M*')/4pq. We must show that
G(')(s)))G(')(s) for physical values of s in E,4 decay,

found that G(')(s)((G(')(s) for all physical values of s
in E,4 decay.

APPENDIX 3
In this Appendix we present a diferent approach for

calculating the E,4 decay when 0 dominates the pion-
pion 5-wave interaction. The decay is due then to the
(oIA„IE. )J„ interaction, where J„ is the V-A leptonic
current. Brown and Faier' have remarked that for equal
strengths of the (o I A„IE) and (OIA„I E) currents one
obtains the correct rate for E,4. We proceed to calculate
(0 I A„IE) by using again the method of Ref. 10.

One has generally

G(')(s) =
s+s),

2(z,z»)'&p(~
I A„IE)

= (p»+ p.)fi($)+(p» p.)f2(—$), (81)
~up (s)—up (4)

1 (s—m»')'(s —4)
G(')(s) =——

3 s(s+s,)'
~up (s)—up (4)

+——
3 7r

(s' —m»') '(s' —4)
ds'

s —s—ze s s sp

ds
4 S —S—Z6 S Sg)

Xe "p(")+"o(')e"p(")sinbp(s), (A6)

where
s=(p» —p.)'= (p,+p„)'=k'.

If we take the divergence of (81), we obtain

zB"2(E.E»)'"(a
I A„IE)= l((s)

= (m»' —m, ')f,(s)+sf, (s) . (82)

Assuming for the region of S=O that the second term
can be neglected and writing an unsubtracted disper-
sion relation for X(s), one has, if one retains only the
E-pole term

We And

)&e "p")+ p( )e'"(")sinlp(s'). (A7)

G(')(s) =
s sp

(AS)

1 (s—m»P)'(s —4)

3 $($+$&)

where

n P+—+ +s+s„s (s+s„)' (s+s„)'

To evaluate (A7) it is convenient to decompose into
partial fractions the inhomogeneous term

l((0) = (m»' —m, ')fi(0) =
g. »»G( m»), (83)

where G(m»') is defined by the matrix element for E
decay

v'2~»'"(OIA~IE)=(p»)P G(m»') (84)
Hence

fi(0) = (g,»»G)/(m»P m) — (85)

If we use a unitary symmetric coupling to relate oEX
coupling to axw, i.e.,

go(pp pp+2EE+r)r)),
one has

fi(0) = (2+~)m.G

'l+~ —5$ m~ —m "'
(86)

4t m»')

3& s„'i
y = ——',(4+2m»P) —(-'+P)s„=—55,

(A9)

()= (s„—m»')'(s„—4) =2130.
3sy

Using Eqs. (4.4) and (4.S), we arrive at

~up (s)—up (—sy) ~up (s)—up (0)

G(')(s) =n
s+s„ s

eup (s)—up( —sp) ) g ()2 alp� (8) up ( sy)

(A10)8$„$+s„) 2 8$„' s+s„
By using the various forms for the expl(s) factor it is

by using" (g, ,)'/4s =0.9 for m, =400 MeV and
I',=100 MeV. If one compares (86) with the require-
ment of Brown and Faier' one finds that f,(0) is too
large by a factor of 14.5 to reproduce the experimental
rate. Hence, we obtain again that a 0 would give a rate
200 times too large, in somewhat surprising agreement
with our calculation in Sec. V."

A similar procedure can be used to estimate the eBect
of p in the P wave. However, as our knowledge of the
pKE coupling is nil, we feel that the treatment we have
chosen is more reliable. Nevertheless, if one uses again
unitary symmetry to relate g,zz to gz*z one obtains
a result comparable to the one obtained in Sec. V.

"If, instead of assuming e was an SU3 singlet, we had made
some other choice, the rate would not be affected by the necessary
2 orders of magnitude.


