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introduction), Martin' has shown that, in some cases, all
partial-wave amplitudes become uniquely determined
by the spectral functions. However, even in these cases
he is not able to conclude that the s- and p-wave physi-
cal amplitudes agree with the partial-wave amplitude
analytically continued from high l. Our example, under
the assumption of an explicit form for the high mo-
mentum-transfer has been explicitly shown to have this
property.

As a anal remark, we mention the fact' that if the
asymptotic behavior of the amplitude is of polynomial
type, then it would be impossible to have agreement
between the interpolated and the physical partial-wave

amplitude. It is clear that terms of polynomial type
introduce Kronecker deltas into the amplitude which
give contributions at discrete values of angular mo-
mentum, which contributions cannot be reproduced by
a smooth connection with higher angular momenta.
This gives the important result' that MASD forbids
polynomial asymptotic behavior of the scattering ampli-
tude in t.
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For a certain wide class of kernels involving trilinear coupling of scalar particles, the absorptive part of
the Bethe-Salpeter amplitude for forward scattering is bounded from above and below. The bounds are ex-
pressed in the form B&s &&~A(s) &~B&S ', where s is the squared c.m. energy and B& and B2 are positive con-
stants. Expressions for the exponents aI and u2 are given as functions of the coupling constant g. For the
straight ladder model, aI and a2 coincide for all values of g, the common expression agreeing with an exact
result of Nakanishi. For the more complicated models, aI and n2 do not in general coincide. However, in the
strong-coupling limit g ~~, we 6nd that a2/al —+ 1; moreover, the common asymptotic behavior
~I 2

—+, „g/Arm is the same for all the models, including the straight-ladder model.

I. INTRODUCTION

ISING techniques discussed in two earlier papers, "
we consider here the problem of setting upper and

lower bounds on the absorptive part of the forward
elastic scattering amplitude for a certain wide class of
ladder-like models. Ke deal with theories involving
scalar particles which couple trilinearly.

In general, the absorptive amplitude A satis6es a
Bethe-Salpeter equation, as symbolized in Fig. 1. For
an inclusive treatment, one would have to take for the
kernel E a sum over all possible irreducible diagrams;
and for the Born term A~ g, similar sum, evaluated on
the mass shell k'=0. But as we shall understand the
term here, a particular model is characterized by the

FIG. 1. Notation
for the integral equa-
tion.
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FIG. 2. Examples
of irreducible dia-
grams. (c)

choice of a particular one of the irreducible diagrams
for the kernel E and corresponding Born term Ag. The
class of such models which will come under discussion
here is characterized by the examples shown in Fig. 2
for the irreducible kernels. The heavy lines (spinless
"nucleons" ) correspond to particles of mass m, except
for the external nucleons which are taken, for reasons
of kinematic simplicity, to be massless. The wavy lines
represent exchanged particles ("mesons"). In general
terms, the class of irreducible diagrams which we con-
sider consists of those in which each wavy line joins two
solid lines, without further connections (no loops or
self-energy and vertex corrections).

Insofar as the kernel E is concerned, the exchanged
particles are taken to be massless. But in the Born
term A&, which is described by the same diagram as for
E, we suppose that owe of the exchanged particles has
a Gnite mass p. Although we could set @=0 without
embarrassment insofar as the absorptive amplitude is
concerned, we would encounter infrared divergence
troubles for the real part of the amplitude. In order to
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ng, ns~, „(g/arm). (3')

This limiting behavior is common to all of the models
under discussion, and since as/o. q~ 1 in the strong
coupling limit, we conclude that the leading term (3')
is in fact exact in this limit. It of course coincides with
the exact result for the straight ladder, Eq. (2).

At the end of the paper we make a few comments on
the problem of setting bounds for the amplitude gen-
erated by including the sum of all irreducible graphs of
the described class in the kernel.

II. PRELIMINARIES

In the notation of Fig. 1, the Bethe-Salpeter equation
for the o6-mass-shell absorptive amplitude takes the

3 The literature can be traced from Ref. 1.'
¹ Nakanishi, Phys. Rev. 1M, 31430 (1964).

deal with models free from this disease in any of their
parts, we retain this one finite mass and drop all
further discussion of the real part of the scattering
amplitude.

The simplest of the models is that corresponding to
the kernel of Fig. 2(a), which generates the straight-
ladder diagrams. It has been widely discussed in the
literature in various limits and approximations. ' In
particular, Nakanishi' has recently obtained an exact
solution to the problem for the case where the ex-
changed particles (all but one of them, as above) are
massless. For very large scattering energy s'/', the
amplitude grows like s . According to Nakanishi, the
exact expression for the exponent is given by

-=—:+L-:+(g/4--n", (1)

where g is the coupling constant. An upper bound on n
which we had earlier obtained happens to coincide
exactly with this result. ' For later reference, let us note
that the first two terms in an asymptotic expansion for
the strong coupling limit are given by

n ~, „(g/4s.m) —s+ (2)

In the present paper we consider the more general
class of ladder models which has been characterized
above. For each model we seek both an upper and a
lower bound on the forward scattering absorptive
amplitude, in the form of expressions which again grow
like s for large energies. In particular, we are con-
cerned with setting bounds on the exponent n. For this
more general class of models, exact results are of course
not available for comparison. However, the following
remarkable result emerges from the present analysis.
The absorptive amplitude A (s) is bounded in the form

Bys~~( A (s)(Bss~s (3)

where Bj and 82 are positive constants and the ex-
ponents n~ and 0,2 are certain explicit functions of the
coupling constant g, 0,2&0.~. In the strong coupling
limit we find that ns/nq —+ 1; and the leading term in
the asymptotic expansion is

where P= 0 is held fixed at its physical value. In terms
of the scalar invariants Ps, P's, k'=0, and

~= (p+k)', ~'= (p'+k)', y= (p' p)'—,
this can be written

A (s,p' k') =A»(s, p' k')+ dp dS
32s' s—p'

A (s',p" k')X, K(y,p',p")dy. (&)
(ms p&s)2

At the end, the variable ps is to be set at its physical
value p'= 0.

For a given irreducible diagram involving the ex-
change of n massless mesons, the kernel E has the form

g2
—n—1

E=2xg'
(2s)'

d'q& d'q„b(qP) b(q„')

(ep —pp)(m' —pss) (m' —p,„ss)

X&(p—p' —Q q,), (6)
1

where the q, are the momenta of the exchanged mesons
and the p; are the momenta of the intermediate nu-
cleons. The Born term is A» ——s'K, with p"=0; but here,
as mentioned, we take ore of the exchanged mesons to
have finite mass p.

Introducing the new variables

x= —p' N=S—p,
x'= —p" I'= s' —p",

we find that Eq. (6) can be rewritten

A (N, x) =A»(u, x)+ dx'
32Ã p Q g~~/~

where

A (I',x')
X

'
K(y,x,x')dy, (8)

(nP+x')' s

(x x)
ye= (~—I')

I —,——
I

~

ku' ll
The fixed quantity k'=0 is not displayed in the above
notation.

It is out of the question to compute exactly the
appropriate kernel function for each model, and to
solve the corresponding integral Eq. (8). Instead, we
seek bounds on the absorptive amplitude. Ke proceed
from the observation that the kernel X is positive
definite and that Eq. (8) is of the Volterra type. Thus,
as discussed in the earlier papers, the amplitude A is

form
d4p' A (p', k)

A (p,k) =A»(p, k)+ K(p,p'), (4)
(2s )4 (m' —p")'
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minorized (majorized) by any trial function A which
satisfies an equation analogous to (8) in which there
appears a minorized (majorized) kernel E and minor-
ized (majorized) Born term As. Notice that Aii is just
equal to 2E'; the prime reminds us that for the Born
term the kernel is to be computed for the situation
where one of the exchanged particles has finite mass p.
In effect, therefore, we minorize A with a function A»
for which

A i(l,x) &~ —',Ei'(N, x,0)+ dx
32K ~2 Q ~~2(~

gi(N x ) 30

Ei(y,x,x')dy, (10)
(m2+x')2 o

where E»&&E, E»'~&E'; and we majorize A with a
function A2 which satisfies a sin1ilar equation with the
inequality sign reversed and with majorized kernels
E,&E,E,')E'.

Our first task. will be to seek tractable bounds on the
kernel E for the general models under discussion. In
Eq. (6) the denominators D;= m2 P,2 vary in —a corre-
lated way in the course of integration, the correlation
depending on the details of the diagram in question.
However, we can minorize E(y,x,x') by replacing each
denominator by the maximum value which it reaches
for fixed y, x, x'. Similarly we majorize E by replacing
the denominators by their smallest values. Now a
typical momentum p; in Eq. (6) can be written

yn 2

( g
2n 322r3 yn 2—

(12')
(42r (23—1)!(22—2)![D;„(y,x)x')$2n '

In connection with the integration over the variable
y in Eq. (10), and the corresponding integration for the
majorizing trial function A2, we observe that D, is
biggest when y is at its maximum value yo,' and D;„
is smallest when y= yo. Therefore,

VO y" '
y

n—1 2)
[D . (y,x,x')]2" ' n 1[D—,„(yo,x,x')]2n—2

alld

WO yn 2
y n—1 2

[D;.(y,*,x') =] ~—1 [D.,„(y„x.x)y.—'

where

(13')

nominator functions. The integration which remains to
be carried out corresponds to that required for the
determination of the phase volume of a system of n
massless particles at squared barycentric energy y.
Kith E»&&E~&E2, we then find

Ei(y,x,x')

( g )2n 32~3

(4irl (23 1) (23 2) [D~nn(y x x )$
E2(y,x,x')

where

p'=P Qi=P +Q2— D . (yo, x,x') =m'+x'(I/I'),
D i (yo,x,x') =m'+x(N'/I).

(14)

(14')

Qi=Z n Q2= Z V'
j=» j=i+»

With Qo=pio Q"=p22 we then find

D;=m' —(p —Qi)'
=-+*-."+(1/2.)(.-*+*)(y+."-.")

—(cos8/2y) [(y+x' —x)2+4yx] "2

XL(y+ui' W2')' 4yl i'3'I'—, —

where 8 is the angle between the vectors p and Qi in
the center-of-mass frame y —p'=0. For given values of

y, x, and x', the quantity D; is largest when cos8= —2

and when p, » and p2 are at their smallest possible values,

p»
——p2

——0. Similarly, D; is smallest when cos8=2 and
agMn p»= @2=0.Thus,

D;&D =m'+-', (y+x+x')
+-',[(y+x+x')' —4xx'J", (11)

and

D,&D;„=m'+-', (y+x+x')
—-,'[(y+x+x')2 —4xx'$'~2. (11')

Bounds on the kernel E of Eq. (6) can now be ob-
tained by the use of these alternative limits on the de-

D 3 (y x, x'=0)=m2+y+x,

Dxnin (yyx~ x = 0)=m'.

(15)

(15')

Furthermore, since the phase volume is made larger
when the mass p is neglected, we can in fact simply
take Eq. (12') as our upper bound for the Born term E'.
To obtain a lower bound, however, ee n1ust replace
Eq. (12) by one in which the phase volume reflects the
fact that one of the particles has finite mass p. Minor-
izing the resulting expression further, for later con-
venience, we then adopt the bounds E»'~& E'~& E2', with

Ei'= Ei[1—(p2/y) g"-' (16)

(16')E'=E .

Ke shall exploit these inequalities in order to simplify
the arithmetic of the bounding equations for A» and A 2.

Concerning the Born term Ag= —',E', we deal with a
similar kernel and similar approximations, except that
here one of the exchanged particles is taken to have
finite mass iii. We can still exploit Eqs. (11) and (11')
in order to set lower and upper bounds, since the neglect
of this finite mass acts in a direction which conforms tp
the inequalities. The Born term is evaluated at x'=0,
and we note that
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where e= f1/f(n) j(g/4rrm)'" —1 This last inequality is
of theform X'R" '—eR +"~(8, where R- I/(I+ m')(1.
Thus, for any e&0, no matter how small, one can choose
c(c) suKciently large so that the inequality (26) is
satisied for all x and I in the range under discussion.
We then conclude that the trial function (20) provides
a lower bound on the absorptive amplitude for any n
arbitrarily smaller than the largest root a of Eq. (25).
Finally, we remark that the physical amplitude, on the
mass shell, is obtained by setting x=0. Then I
=s+x-+ s, and we conclude that the physical ampli-
tude is bounded according to

A(s) &~At(s)=Bts ', (27)

where n& is arbitrarily close to 0. and 8& is a constant.
For small values of g (notice that a ~ —2 if n) 1),

we have no reason to think that this lower bound on
the exponent is particularly realistic in the general
case. ' However, for the special case n= 1, which corre-
sponds to the straight ladder model, the solution of
Eq. (25) coincides precisely with the exact solution,
Eq. (1), obtained by Nakanishi.

Moreover, for any of the models (n arbitrary) we
observe that in the strong coupling limit

n (2n+1)
f(n)~ct'" 1+ + . .

hence

(28)

Thus, for all of the models, the leading term in the
strong coupling limit is the same quantity, g/4rm; and
this coincides with the exact leading term for the
straight ladder model.

IV. UPPER BOUND

As(g, x) =c"n~(ms+x) —& (29)

where we are now interested in Gnding the smallest
value of 0. for which the majorizing equation is satisfied,
with c" and p suitably chosen. In terms of a variable
of integration z=g'/u, the majorizing equation then
reads

To obtain an upper bound A2 on the absorptive
amplitude, we reverse the inequality direction in Kq.
(10) and employ the majorizing inequalities of Eqs.
(12'), (13'), and (16'). We shall majorize further by
extending to zero the lower limit on the I' integration.
The trial function is taken to be

1 00

(ms+ x)—p ) gz za—s+1(1 z)n —t (m2+xz) —sn+2 dx~ (x& xz) s—1 ( m+sx)

c) (n x) n—2N—~ ) dz za n+1 (] —
z) n 1(m2+x—z)

—2n+2 gx~ (x~ xz) n t (ms+ xi)—P—2 (30—)
8$4n—4

tr —n+2=P&~0. (31)

Choosing c' small enough, we require now only that the
left side of Eq. (30) shall be nonnegative for all x&~0.
With the parameters tr and p related according to

~ W'e know, in fact, that the amplitude behaves at least like
s ' (hence e&~ —1), independen, 't of g. This follows from the study
of the large-s behavior of the type of nonplanar graphs associated
with iterations of our irreducible kernels (I)1). For the asymp-
totics of nonplanar Feynman graphs see G. Tiktopoulos, Phys.
Rev. 131, 23'j3 (1963).

We are concerned with x and I in the range: 0~& x~& I,
I&~ p'. The quantities c' and X are again given by Eqs.
(19) and (19').

One now Qnds that the right side of Eq. (30) can be
made negative for all x and I in the range of interest,
provided that p(~n —n+2 and provided that c' is
chosen small enough (the largest permissible value of
c' depends on )i, n, P, n but is of no interest here). To
obtain the smallest value of n consistent with the in-

equality (30) we shall in fact take

where

1 (n —1)!'
X (m'+ x')-~-'=

h(n) m'"(m'+x) &

h(n)=(n+1)ct . (n —n+2)(n —n+3)
X (n —n+ 2) ~ (n —2n+4) . (33)

The majorizing equation is therefore satisfied for all
0.&~~2, where n2 is the smallest root, consistent with
p= a—n+2 )~0, of

h(n) (g/4rrm)'". — (34)

For the physical amplitude, on the mass shell, we have

A (s) ~& Bss", (35)

where Bs is a constant and mrs is given by Eq. (34).
For the special case n=1, which corresponds to the

straight ladder model, the solution of Eq. (34) gives an

Eq. (31), we 6nd
1 OO

jz sa n+1(1 z—) n 1(m2+xz) —2n+2 — jx~ (x~ xz) n1—
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upper bound 0,2 which coincides exactly with the lower
bound u1 obtained earlier, both agreeing with the cor-
rect value of the exponent obtained by Nakanishi. For
the general model, we observe that in the strong
coupling limit'

so that n~ rt't'(g/4srm) in the strong coupling limit.
This shows that for the amplitude A&,& generated by a
kernel including all irreducible graphs of all orders the
exponent 0, must grow faster than linearly in g. Since,
dearly, a lower bound for this kernel is

g
ns ~ + (I—-,')+

g-" 4~m
(36) m g ~2n 1 yen 1—

&&P(n —1)!X32~s —
I

n=l 4sri' (rt —1)!D, '"—'

=2srg'expL(g/4sr)'yeD .—s),

a minorizing integral inequality for A&,t will then be

A ...(u,x) (srg'5(s —ts')

)gy' 1 -pg~' (u-x)—
+1«'I —

I

—exp I

—
I

&4sr) (ns'+u)' &4sr) (ns'+u)'

dx'
E4% ) o~ u e(qg'/~) (ns +x )

—
( g )' (u u') —(x'/u' x/u—)-

Xexp
t 4rrl (nt'+x'u/u')'

The leading term in n2 is identical to the leading term
for n1, i.e., the ratio of upper to lower bound on the
exponent approaches unity in the strong coupling limit.
So the correct exponent is fully determined as regards
the leading behavior in the strong coupling limit. The
result, in this limit, is common to a/l the models under
dlscusslon.

Finally, let us briefly consider including more than
one irreducible graph in the kernel. For instance, we
can include all such graphs of the same order 2e. It is
easily seen that there are at least (st —1)!irreducible
graphs of order 2rt (within the class considered in this
paper). We can, therefore, employ the procedure used
in Sec. III for the 2nth order kernel, the only difference
being a factor of (rt 1)!. The lo—wer bound on the
corresponding amplitude will then be of the form s with

f(cr) = (rt —1) I (g/4srnt)sn

' For n&1, we do not expect a2 to be a good approximation to
the true exponen't for small values of g. In fact in the weak cou-
pling limit we find o,2 ~ n —2, whereas one expects that ~ —& —1.
More generally, it is plausible that a~&el. where 0.1,= ——,

'
+f-',+ (g/4v. m)'J~' is the known exponent for the straight ladder
model. At least for a subclass of our models, one can in fact show
rigorously that the forward absorptive amplitude is everywhere
bounded from above by that of the straight ladder.

One can obtain a lower bound on At, ~ of the form
ua(x+m') t' in which cr grows quadratically with g in
the strong coupling limit. However, we have no reason
to think. that this bound cannot be considerably im-
proved. The point is, of course, that the exponential
kernel is too complicated to permit one to carry out the
integrations even for the simplest kinds of trial functions,
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Corrections to the Octuplet Spurion in the Nonleptonic Decays of the Hyperons
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Corrections due to the 27-piet spurion and the second-order electromagnetic effects are calculated to the
octuplet spurion in the nonleptonic hyperon decays. The 27-piet spurion predicts a relation among small
deviationsfrom the tsi= ', rule, namely ((h!p-rr )+v2(h!nm'))= —((" !hn )+K( '[hn')) for theparity-
violating amplitudes. This holds as it stands if the second-order electromagnetic effects are introduced on
the assumption of the octuplet tadpole mechanism. A test of this relation, although still not possible with
present experimental data, has a deep significance for the structure of the weak interactions.

C. IN TRODUCTION

"NITARY symmetry' ' predicts a relation

2(=. I& )—~3&~'IP ')+(AIP )=o

among the parity-violating amplitudes of the non-
leptonic hyperon decays on the following assumptions4:

' Y. Yamaguchi, Progr. Theoret. Phys. Suppl. (Kyoto) ll, 1, 37
(1960).

~ Y. Ne'eman, Nucl. Phys. 26, 222 (1961).
3 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
e M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).

(a) The strong interactions are fully invariant under
SU3.

(b) The weak interactions are of the current X cur-
rent type' ' and are CP-invariant.

(c) Among the spurions arising from the current

'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

For its unitary symmetric version, see, for example, S. Okubo,
Progr. Theoret. Phys. {Kyoto) 27, 949 (1962);N. Cabibbo, Phys.
Rev. Letters 10, 531 (1963).


