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I

To describe a state of I particles it is necessary to construct a matrix element or wave function from the
momentum vectors of the n particles. It is usually possible to write down a simple function having the correct
angular momentum and parity. It is not clear in what sense the choice made is general. This is in contrast to
the two-particle states, where the spherical harmonics form a complete orthonormal set over the phase space.
The spherical harmonics are homogeneous polynomials in the components of the relative momentum of the
two particles. It will be shown that homogeneous polynomials in the n-1 relative momenta of n particles
entering an e-particle state, with a correction term for relativistic kinematics, form a complete orthonormal
set of functions over the I-body phase space and provide a basis for a systematic classification of n-body
states. There are some new quantum numbers (degeneracy indices) that enter and may or may not have
physical signiacance. The application of these notions to co decay is brieQy considered. The basis of this
classilcation is the determination of a larger invariance group than the rotations for a system of free particles.
The Lie algebra of generators of this group furnishes a complete commuting set of operators, and it is ex-
hibited. The eigenfunctions of this set are given.

I. INTRODUCTION
' "N treating several particles covariantly, the usual

- approach is to combine a pair and fix its mass and
spin. This pair then behaves under Lorentz transforma-
tions like a particle and the process may be iterated to
give a description for any number of particles. ' There
is the problem of what order the particles should be
combined in, and it is possible to introduce recoupling
coefficients to relate the alternatives. This process
seems unnatural when the particles enter symmetrically
as, for example, do the three pions from ~ decay. Koba
developed a method for treating three- and four-particle
states more symmetrically with nonrelativistic kine-
matics. ' The generalization of this method to the rela-
tivistic case is given in the following sections. More
emphasis will be placed on the underlying group-
theoretical notions than was done in Ref. 2.

In a relativistic situation, it is convenient to treat
the particles in a 6xed coordinate system (center of
mass) and then construct the general state by making
a pure Lorentz transformation. The essential result is
that an arbitrary Lorentz transformation entails only a
rotation on the center-of-mass states. ' These rotations
are called the "little group. "For several noninteracting
particles, the little group is a subgroup of the invariance
group. It is easy to see that the nonrelativistic, non-
interacting Hamiltonian is invariant under phase-space
rotations, as well as the usual spatial ones. This wider
invariance provides the basis for Koba's classification
of the states of several mesons. It will be shown that the
same group exists in the covariant problem.

The work is carried out in momentum space in
contrast to Koba's work, which was done in coordinate
space, for two reasons. First, practically, one wants to

plot or similar diagram for more than three particles.
Secondly, the wave function is much more complicated
in coordinate than in momentum space. In an Appendix
the coordinate-space treatment of the two-body problem
is given.

The states considered in the following sections are
always represented as linear combinations of plane-
wave states. This again is for mathematical convenience
and ease of physical interpretation. The experimentally
observable quantities are the distribution of plane waves
in a state. The function specifying the linear combina-
tion is called the wave function, and its determination
is the object of this work. The three-particle state is
treated explicitly for definitiveness, although some
proofs are given for e particles. The generalization to n
only requires some notation.

II. WAVE FUNCTION

A linear combination of three plane-wave states is
sought that will transform according to an irreducible
representation of the Lorentz Group. The plane-wave
state of a particle with mass m, momentum k, and
energy to will be denoted by ~kto). Under Lorentz
transformations, they behave like

I, ik, to) = ik'&o'),

where k„'=L„„k„.The two L's should not be confused;
the one that occurs in Eq. (1) is an operator in Hilbert
space, L„„is a four by four matrix.

The required state f is given by

d'khdsksd'k~(kh)ks)ks)
~

khrrth)
~
ksrrts)

~
ksrrts) (2).

dhsplay the results as a denshty dhstrhbuthon on a Dahtz

*Supported inpartby the U. S. Atomic Energy Commission. from hat for Ik&M):
' A. J. Macfarlane, Rev. Mod. Phys. 34, 41 (1962).
'Z. Koba, Acta physiol. polon. Suppl. 22, 103 (1962); M. Ihfr= (d khd ksti ks+(kh&ks, ks)L

~
khtoh)1 ~kstos)f (ksto) (3)

Grynberg and Z. Koba, Acta Physiol. Polon. 23, 501 (1963).
~ E, P, Nigger, Ann. Mg, th. . 40,, j.39 (j.939). The function Ji depends on 12 variables, but seven of
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them are immediately fixed by noting that the state
must have an energy-momentum four-vector E„, and
the mass of each particle is fixed. Thus P may be written

dbms, d'ksd4ks5 (hi+ As+ ks—E)

X&p is—~is)&(4s—~ss)~(~ss —~ss)

Xf(&Ps&s)
~
&t»)

~
4~s)

~
&s~s). (4)

The domain of integration is just the usual three-body
phase space. For e particles, the analogous integration
would be carried over the e-body phase space. In
general, n masses of the single-particle states are fixed,
and the four variables that describe the energy and
momentum of the e-body system. Since there are 4&z

variables, the remaining integral is over Be—4 variables.
Returning now to the three-body case, integrate out

all the 8 functions except the energy-conserving one.
The state is described by two momentum vectors y, q;
they may be two of the original three or some convenient
linear combination. Dalitz4 and Koba' have used

p= (pi —ps)/2'",
q= (p +p —2p )/6'",

and these will be convenient for illustration.
The argument of the energy-conserving 8 function

may be considered as a multiplication operator (R in a
Hilbert space. In the nonrelativistic theory, this (R

would just be equal to H —E, the Hamiltonian minus
the energy. The wave functions are the solutions of
(II—Eg =0. In the covariant theory, the solutions of
61/=0 will again be the wave functions, although the
operator is more complicated. If the substitution of
Eq. (5) is used for equal masses, the operator (R is given
in the center of mass by

(4tl2 t/2

+i +ms —M (covariant),

/R= (p /2m) E,—and the equation is

/RE= L(ps/2~) —E]p=0.
The solution is P~t (p,p, t/) =5/(p'/2m) —E]l'& (g, y).
The choice of Y& is made because (R is rotationally
invariant. That is, the operators L„L„,L, commute
with' (R and the solution is a simultaneous eigenfunction
of L and /R. The L's have the property PL, (R]=0 for
this problem. In the more general case, operators K
such 'that $X,(R]=0 are found and used to classify the
solutions. Mathematically, the operators K are said
to form a Lie alegbra. They are the infinitesimal
generators of the invariance group of the function (R.
That is, they generate inFinitesimal coordinate trans-
formations that transform the surface S equals a
constant into itself.

III. LIE ALGEBRA

Consider a function of n variables F(xt,xs, ~,x„).
The problem is find a set of operators 3C, such that

t X„F]=0 (commute with the Hamiltonian),

LXa Xb]=Cab Xc (form a Lie algebra), (7)

X,t= X, (Hermitian).

For the case when Ii is a sum of squares,

F=xts+xss+ +x '

there are e(e—1)/2 operators

L b= s(x 8/B—xb xb8/Bx—)

with the commutation relation

[Lab)I cd] 4 (LcLbd+ 8bdLac+ badLcb+ f/bcLda) ~ (8)

This is a simple generalization of the known properties
of the rotation group to the orthogonal group in n
variables 0„. For F equal to a sum of squares, the
orthogonal transformation moves a point of the surface
F= constant to another point on that surface. If F is
more complicated, a rotation will move a point off the
surface P=constant. This may be compensated by
making a rotation followed by a radial displacement.
The simplest rotations are those about axes such that
only two variables change:

/R= 3m+ + —M2' 2m
(nonrelativistic), (6)

x' =x;coso—x;sino,

x =x; sin0+x; cose,

x,'=x„spaz or g.

where M is the mass of the three-particle state. The
solution of the equation (RQ=O involves the energy-
conserving 8 function times a function of the remaining
variables. The invariance properties of the operator (R

suggests ways to choose this function. For example,
for a single nonrelativistic particle, the operator (R is

' R. H. Dalitz, Phil. Mag. 44, 1068 (1953);Phys. Rev. 94, 1046
(1954).

Stated in terms of differentials for a small 8,

x '=x —x do

x =x,+ d8x,

At the new point x', the function F has changed to

F' =F+dF =F+[x;(BF/Bx;) x, (BF/Bx;) ]d8. —
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In terms of Cartesian coordinates, dx, =x„dr/r. The
combined displacements give

dx, = (—x; —Rx~)da,

dx; = (x;—Rx;)da,

dx, = —Rx,dg s/i, j,
where R= (x,BF/Bx, x,BF/—Bx,)/P, (x,BF/Bx.) The.
change in an arbitrary function 6 under this coordinate
transforma, tion is given by

BG BG (dx,
dG= Q dx. =Q ~

da
ax. ax. k da

where
=i ;;Gde,

z,,= (—i) g, (dx./da) (8/Bx, )

f 8 8 8
= (—i)~ x, —x, +iRx.

& 'ax; 'ax; ax.

=L;;+iRx.(Blax.)
=L;, QRxp. . —

The 2 b satisfy the same commutation rule as L,b and
they commute with Ii, the first two requirements of
Eq. (7), but they are not Hermitian. The Hermitian
conjuga, tes of z, b is given by

Z.gt=L, g' —Q p. tx, tRt
=L.g p.x.R-
=L.g Rx.p,+i (8/Bx, )—(x.R)
=2, t,+i (8/Bx.) (x,R) .

If 2 b is separated into a Hermitian part X,b and an
anti-Hermitian part 3 b, both parts commute with Il,
and they are given by

3C.b= Z. t,+ (i/2) (8/Bx, ) (x.R),
A. b

———(i/2) (8/ax. ) (x.R) .

The 3C b satisfy the same commutation rule as do the
2's. This may be seen by taking the difference in the
commutators for 2 and Zt. The commutator for 2
written in terms of 3C and A is

[3C.„3C,.]+[3C.„a,.]+[a.„3C,.]+[a.„a„]
=i (5„3cgg+ by g3C„+h, AC, g+b gPCg, )

+i(4.~ca+»a~- +4M.s+ B.t3C~.).

To return to the surface Ii = constant, it is necessary to
make a radial displacement such that

dF = (x—;(BF/Bx;) x;—(BF/Bx;))da,

but for a radial displacement dF = (BF/Br)dr, so that

x; (BF/Bx,) x; (—BF/Bx;)
dr = —— -de.

8F/Br

The term [A,t„ll.~] vanishes. Under Hermitian con-
jugation, the equation splits into two parts: odd and
even. The odd pa,rt is just the required commutation
relation for the K's.

From the set of operators L;; or 3'.,; it is necessary to
choose a complete commuting set. The larger the num-
ber of particles the more complicated this set will be,
and unlike the two-particle case there is more than one
choice. The number of operators required is 3e—4,
since there are that many variables that are not 6xed
by 5 functions. In the three-body case, it has been
conventional to take J„', the angular momentum associ-
ated with the 1—2 pair in Eq. (5); J,', the angular
momentum of 3 relative to the 1—2 center of mass; and
J' and Js, the total angular momentum and its s corn-
ponent. In addition, Koba introduces an operator A

which is the sum of the squares of the 15 possible L,b.

This same set will be satisfactory in the relativistic
problem, since the L's and K's have the same commuta-
tion rules.

The eigenfunction of the set of L's are like the
spherical harmonics; they depend on the angles of a
point not its radius. It is easy to see that the same
functions are eigenfunctions of the analogous set of 2's,
since the difference between the L's and g's is in the
term P x, (8/Bx, ), but this is just r(8/Br), and vanishes
for a function of the angles. To find eigenfunctions of
the K;;, one further modi6cation is necessary. The
eigenfunctions of the sets L and 2 are not orthogonal
with the integral J'd"xb(F). If a change is made to
polar coordinates, this integral becomes Jr" 'drd'Q 6 (F),
where dQ stands for the (e—1)-dimensional polar
coordinates. If the 8 function is used to do the radial
integration, the integral becomes

dQ r" '(F) (dF/dr) .—

Since the eigenfunctions of L are orthonorrnal with the
integral dQ, it is suggested that the eigenfunctions of
the set 3C will be those of L divided by $r" '(dF/dr)]'~'.
If y~ are the eigenfunctions of the set of operators L,,
then

where 3 and 8 stand for a set of rI,—1 indices. The
functions

4~ = ([x.(BF/Bx.]/~") v ~'" (10)

To summarize the results of this section, if F(xq x„)
=constant is the energy-conserving surface, then the

are orthogonal with the integral (9). It is further true
that the functions Pq are the eigenfunctions of 3C. This
follows from the equation

x.(BF/Bx.)) 'I' (x.(BF/ax. ) 'I'

r" i k r"
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operators
I../I' i 8 ( I.F ~

r p+-
(r pF) 2 c/x. k r yFi

On the basis of the preceding discussion, it seems
reasonable to include the relativistic correction. The
function (R is given by

commute with Ii and are the Hermitian generators of
the Lie group that commutes with F. The function 1P~

(x (BF/Bx,))'/2

rn

are the simultaneous eigenfunctions of a complete set
of operators, if q ~ are the eigenfunctions of the
analogous set of operators for the orthogonal group.

IV. APPLICATION TO u DECAY

One of the great advantages of the Koba wave func-
tions is that they can readily and naturally be classihed
according to permutation symmetry. This is true for
the same reason that the spherical harmonics have this
property for two-body problems. The Koba functions
with index A are homogeneous polynomials of degree A.

in the components of the vectors p and q, divided by
the radius (p'+ q') ~/2 to make them dimensionless. The
spherical harmonics of order l is a homogeneous
polynomial of degree / in the components of the single
vector describing the two-body system. The Koba wave
functions resemble the spherical harmonics in another
respect that makes them useful for treating collision
phenomena. A partial-wave expansion is useful, because
at moderate energies only the lower partial waves are
expected to contribute significantly. This is because
the wave function behaves like (kr)' at the origin. In a
similar way, the exponent index h. measures behavior
at the origin of the wave function. For the three-body
problem, the origin means the vanishing of the quantity

R= L(ra —r2)'+(r2 r2)'+ (r2—r1)'J";
at the origin the Koba wave function behaves like
(KR)~. A generalized partial-wave expansion that uses
A. as the principal index may be justified in problems
with a low Q value.

In the case of co decay, an antisymmetric spatial wave
function is required since the isospin is 0. In Koba's
table the first antisymmetric functions occur for A=2
and has J=1. It is easy to construct in terms of the
three momenta p~, p2, y3.

p = (p1Xp2+ y2X p2+ y2X y2)/&
= (px q)/(p'+ q') .

The equality is always up to constant factors. The
constant E is given by

&= (P.—P2)'+ (P2—y2)'+ (P2—P1)'

in terms of the three momenta. This is the same as the
matrix element used in the original discussion of eu

decay. '
'M. L. Stevenson, L. W. Alvarez, 3. C. Maglic, and A. H.

Rosenfeld, Phys. Rev. 125, 687 (1962).

(R= M1+C02+M2 M
(y2/2+ y, q/31/2+ q2/6+m2)1/2

+ (p'/2 —p q/3'/2+ q'/6+m')'"
+ (2q'/3+ m')'/' —M

The correction factor C is (pBR/8p+qBR/8q)'/2/
(p'+q')'/' In terms of the co's& this is

C= t M—m2 (1/co1+ 1/a 2+1/(o2) )'/2/

(~ 2+~ 2+~ 2 3m2)8/2

where a numerical constant has been dropped. This
factor is almost constant over the Dalitz plot and should
make no change in the earlier analysis. The ratio C at
the center to C at the edge of the Dalitz plot is

/3q2/2)M —my'/2 M+m q

(2i E M i M+3mi

For a nonrelativistic case, 3f=3m, and this factor is 1;
for the extreme relativistic case, M/m infinite, the
ratio is (-,')'".

The second antisymlnetric state is a h.=J=3
state. It is easy to write down in terms of the three
momenta y~, y2, p3 as a third-rank tensor. To avoid
subscripts, a, b, and c are used, for y1, y2, and p2.

tP;;/, =a,a;b/, +b,b,c2+c;c;a/, a,a;c/, b,b—;a2 c,c—;b/, —
+a,b;a2+b, c;bq+c,a,c/, a;c;a2 b—;a;b/, c—,b;c/, —
+b,a;a2+c~b, b/, +a;c;c/, c;a,a/, a—,b,b/, b—,c;c/, —
——,'(c'—h2+2a 1—2a.c) (bga/+8;2a, +5;2a;)
—x1(a2—c2+2b c—2a b) (8, b2+8;2b;+5;2b;)

—-'(b' —a'+2a c—2b c) (b;;c/, +8;2c;+8;/,c,).
The identification of the tensor indices with the s
component of angular momentum is dificult but un-

necessary. Since the co sample is unpolarized, the
required quantity is the average over the magnetic
quantum number which is P@/,$@/,. After some calcula-
tion, this is, except for numerical factors,

»(y1'+P2'+P ')
—1o9(p 'p '+ p 'p '+y 'y '+p 'p '+p*'p '+y 'y ')

42P& 12 P3 ~

which may be compared with the experimental distribu-
tion. The successive states may be tested in the same
manner until one is confident that all reasonable
possibilities are excluded.

V. CONCLUSIONS

The states of nonrelativistic particles may, for some

purposes, be classified by using the invariance of the
Hamiltonian under phase-space rotations. The added
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invariance property can be extended to the relativistic
problem. This leads to a complete orthonormal set of
wave functions. The larger symmetry group is not
implied in any dynamical problem. Thus the quantum
numbers associated with the higher symmetry are at
best approximate. The utility of such quantum num-
bers may nonetheless be high, as, for example, the spin
and orbital angular momentum in atomic physics. The
group that arises here is the e-dimensional orthogonal
group; in problems with spin, the group SU„will arise
in a natural way. It seems reasonable to look for the
origins of unitary symmetries in the approximate
quantum numbers found here.
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APPENDIX: POSITION-SPACE TREATMENT
OF THE TWO-BODY PROBLEM

The equations governing the two-body case are

p12= m12,

p22= m22,

(pl+ p2)'= M,

where p; and m; are the four-momenta and mass of the
ith particle and 3f is the mass of the two-body state.
The p's are now to be interpreted as differential rather
than multiplication operators. If the last equation is
expanded and the first two used to simplify, the result is

401&2 pl p2 g (M ml m2 )

where 40, = («42+m&)'~'. This equation is squared again
to eliminate the radicals; the result is a fourth-order
equation for the two-body problem.

Pl «2 (Pl' P2) +m2 Pl +ml P'4

+ (ml +m2 M')pl «2 M po

po' ——(M4+m14+ m24 2M'm12 —2M'm22 —2mlmm22)/—4M2

The transformation to relative and center-of-mass
coordinates is made with the change of variables

pl ——(&al/M) P+y, P=yl+ «2,

p =( /M)P —p p=( /M)p —( /M)p

where

col ——(M'+ml' —m2')/2M (o2= (M' —ml'+my')/2M;

and these are the center-of-mass energies of particles
one and two. The change in spatial coordinates is given
by

rl= R+ (~2/M) r, R= (~1/M) rl+ (~2/M)ru,

r,= R—(~,/M)r,

The center-of-mass coordinates are P and R, and the

internal coordinates are y and r. Both of these pairs of
variables are canonical, if pirl and «2r2 are canonical
pairs. In these coordinates, the equation becomes

P2«2 (p p)2+ M2«2 P2p 2 p 2M2

The wave function should contain e' '" from general
considerations, ' so that P may be considered a number,
not an operator. The quantity P'+M' will be called 0'.
With these changes, the equation is

p'- (p P)'/0'= po'

A 6nal substitution,

p= p'+[(0—M)/P'M j(P «')P,
r= r' —L(0—M)/P'rg(P r')P,

y'=y+((M —0)/P'0](P p)P,
r'=r+L(0 —M)/PM](P r)P,

reduces the equation to

P =pa~

the nonrelativistic result. The solution to this equation
is

The substitutions used can be motivated most easily
by studying the two-body system in its center of mass
and then making Lorentz transformations. The follow-
ing alternative approach is also interesting. The vector
I' is determined by general arguments about Lorentz
invariance. Thus the forms of pl and pm are

pl= (2+A)P+q,
«2 ——(-',—A) P—q,

since pl+pm ——P. The difference in energy squared is
easily calculated and is needed for the ensuing
argument:

671 —44 2 =0 (co1—402) =2A P+2P ' q+ m 1 —m 2

where &u;= (PP+mP)'12. The choice of A is made so that
441+co2 is constant:

d(401+442) «idyl/&1+«id«2/&2
= (2APdA+2AP dq+P qdA+2q dq)

X (&/~1+ &/~2)+ (F'dA+ P dq) (&/~1—&/~2) .

After substituting the above result for co~—co~, this
becomes

L(20'P —2P')A+ (2Q' —2P')P. q+ (m2' —m12)P)dA

+L(20'—2P)A —2P q—m12+m22)P. dq= o.

The equation is exact and may be integrated; with an
appropriate choice of the constant of integration, A
given by

A =I F'(ml' —m2') —2M'(P q)+2MQ(P q)]/2M'P,

which is the preceding substitution.


