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TasBLE I. The five largest eigenvalues and projections b; for the
scattering of scalar mesons with the exchange of a mass 3u? scalar
meson. The value of so was also 3u?.

Number Eigenvalue b;
1 0.160 —0.334
2 0.00945 0.0283
3 0.00118 —0.00464
4 0.000235 -+0.00106
5 8.19X10°® —0.00028

The fact that the Born terms used in most calcu-
lations have relatively simple structure for s>4u? (for
example the scalar exchange Born term is positive
definite and monotonically decreasing for s>4) means
that only a few of the coefficients ; will be important,
allowing the N function to be represented over a wide
range of coupling constants as a simple function of g2
To illustrate this point the two scalar problem has been
solved for a meson exchange mass of 3u? with 50 mesh
points. In Table I are given the eigenvalues for the five
largest coefficients ;. For the range 0<g?<<5000 the &V
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function is represented by

\() i biUi<S)
TS e,

and D is given by
De=1-3
s)=1-> ——
=1 (1/g2)—>\i

to an accuracy of a few percent. The value of so used
was 3u?.

V. CONCLUSION

The method which has been discussed here produces
solutions to N and D which are explicit functions of the
coupling constant and which, for wide ranges of the
coupling constant, can’be approximated by a small
number of terms.  fn?

The “bootstrap” problem is particularly simple when
this form of the ND~* solution is used as one parameter
is determined directly.
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An attempt is made to continue analytically the partial-wave amplitude for the scattering of two identical
spinless particles in the complex / plane, exploiting unitarity and analyticity properties in s. The Froissart-
Gribov representation for the partial-wave amplitude is known to be holomorphic in the region Rel>« of
the complex / plane provided the absorptive part 4(s,f) of 4 (s,t), the scattering amplitude in the ¢ channel,
is bounded by = for any fixed s. Apart from the above assumptions, two crucial hypotheses on which the
present analysis is based are (i) the possibility of extending unitarity in the inelastic region to complex values
of 7, and (ii) the boundedness condition, viz., that both 4(s,f) and 4 (s,£) are asymptotically bounded by the
maximum of (¢8/s7, s8/i7) if s and ¢ are both sufficiently large with v>0 and 8 < min(1,y). With the help of
the N/D technique it is then possible to continue analytically the partial-wave amplitude up to the line
Rel=p and show that it is meromorphic in the region 8 <Rel L a. The domain of meromorphy of the partial-
wave amplitude obtained by the method of analytic completion is smaller than the preceding one. The
analytically continued partial-wave amplitude is bounded by [Z| /2 for large values of Iml, so that a Regge
representation for 4 (s,#) can be obtained. The N/D method of analytic continuation does not work beyond
the line Rel=—1 even if one assumes 8 <—1. It has also been shown that accumulation of poles at [=—%
near threshold, a feature which has been pointed out by several authors, is also manifested in the analytically
continued partial-wave amplitude.

I. INTRODUCTION

HE purpose of the present work is to discuss the
problem of analytic continuation of the rela-
tivistic partial-wave amplitude in the complex angular-
momentum plane and hence to investigate the singu-
larities which one encounters in such a procedure. In
the case of nonrelativistic scattering by potentials,
Schrodinger equation provides a very convenient frame-

work within which this problem has been tackled.! In
relativistic scattering the absence of a Schrodinger
equation makes the situation very much complicated.
It is, however, presumed that unitarity and the analy-
ticity properties of the scattering amplitude as contained
in the Mandelstam representation play the role of a

! A. Bottino, A. M. Longoni, and T, Regge, Nuovo Cimento 23,
954 (1962).
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Schrodinger equation in the relativistic scattering
theory. Therefore, the question as to how and to what
extent Regge’s results in potential scattering may be
justified within the framework of analyticity and uni-
tarity of the scattering amplitude is of considerable
interest.

The above problem has been recently considered by
several authors.?=® The starting point in these investiga-
tions is the Froissart-Gribov (F-G) representation for
the partial-wave amplitude. In the case of identical
pseudoscalar particles of mass m, the F-G representation
may be written as

2 © 2t
a+(l,s)=-~—~—) dth(1+ 1 2>
2 s—4m

s—4m?) J 4m
X{Au(s,H)+Au(5,0)}

! . d (1 » A 1
S EE—— tO «8,8)
(s—4m?) [;mﬂ Q +s—4m2> (54) W)

where s, ¢, # are the usual Mandelstam variables with s
the square of the center-of-mass energy. In the above,
Aq(s,t) and A,(s,t) denote the absorptive parts of the
scattering amplitude in the ¢ and # channels, respec-
tively. If there exists an a such that for any fixed value
of s

!At(‘gyt)l/ta-‘_e'_)o as t—, (2)
and there is at least one value s’ of s such that
, 3)

where € is an arbitrarily small positive number, then
Eq. (1) defines a function holomorphic in / in the region
Rel>a. In the interesting region Rel/<« where singu-
larities of a;(l,s) are expected to occur, the Froissart-
Gribov representation is not valid. In order to investi-
gate the singularities of a4(l,s) in the complex / plane
one has, therefore, to continue a;(l,s) analytically into
the region Rel<a by exploiting unitarity and analy-
ticity properties in the s plane.

The analyticity properties of ay(l,s) follow directly
from the Mandelstam representation for 4(s,t) and the
known singularities of Q;(z). Unitarity for a4(l,s) when
written in the form?*

Ima(,5) = Q(,5)((s—4m?)/s)"/?
Xd+(l, s+ie)a+(l, S'_ie) y S > 4m?, (4)

gives us a relation between the left-hand (— « <s<0)
and the right-hand (4m2<s< ) discontinuities of
ai(l,s) provided ®(ls) is known. If s is below the
threshold for inelastic processes (i.e., s<16m? in our
case) ®R(/,s)=1. In the inelastic region, however, our
knowledge about ®(l,s) is very limited. Even for
physical values of / the only definite restriction one can

2 S, Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963).
3 G. M. Prosperi, Nuovo Cimento 26, 541 (1962).

4 K. Bardakci, Phys. Rev. 127, 1832 (1962).

& Haridas Banerjee, Phys. Rev. 131, 2810 (1963).

|As" )| /te—e—o as t—o
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impose on ®(l,s) is that ®(l,s)>1 if s>16m?2. It is thus
clear that one can hardly make any progress unless one
is prepared to make some working hypothesis regarding
®(J,s). For our purpose it is sufficient to assume that,
as a function of Z, ®(l,s) is holomorphic in the region of
the / plane in which we are interested. As regards the
behavior of ®(/,s) as a function of s, our assumption is
less restrictive. We need only assume that it is con-
tinuous and is bounded asymptotically by s®-7, where
d is given by Eq. (41) and 7 is a positive number.

We have already noted that unitarity determines the
right-hand discontinuity of a.(,s) provided its left-hand
discontinuities are given or vice versa. It is customary
to regard the left-hand discontinuity or at least some
of its general features such as the asymptotic behavior
in s to be known. In making this approach one is mainly
guided by an analogy with the case of potential scatter-
ing. There one can show that the left-hand singularities
of a.(l,s) are related to those of the Fourier transform
of the potential. In the present investigation there is
another reason why such an approach seems to be
appealing. Under some reasonable assumptions (see
Secs. IT and III) regarding the asymptotic behavior of
the scattering amplitude, one can show that the left-
hand discontinuity has a larger domain of holomorphy
in the / plane than the right-hand discontinuity. It is
then our task to find the nature of the singularities of
the latter consistent with unitarity.

It should be emphasized that any arbitrary asymp-
totic behavior of the left-hand function [i.e., the func-
tion which has only the left-hand discontinuity of
a+(l,5)] is not consistent with unitarity. Indeed, it can
be easily verified that for real / (leaving aside the limit-
ing case where the left-hand function behavies like Ins
for large s) unitarity requires that the left-hand function
must vanish for large s. The boundedness condition

| A(s,t)| <a(8~7/s), (s, ¢bothlarge) (5)

assumed by Mandelstam? just ensures the vanishing of
the left-hand function like s=7 asymptotically. It has
been pointed out? that (5) is compatible with crossing
symmetry only if y=2. In the elastic unitarity approxi-
mation followed by Mandelstam crossing symmetry is
in any case violated and, therefore, the above does not
consititute a serious objection. In our investigation,
however, by allowing ®(l,s) to be different from unity
we have in some sense included the contributions from
inelastic channels. It is, therefore, desirable that we
extend our considerations to a more general asymptotic
behavior of 4,(s,t) consistent with crossing symmetry.
This we have done in Sec. III.

It should be noted that the F-G representation (1) has
a continuous cut — o s+ in the s plane for non-
integral values of /. Several authors?~¢ have pointed

6V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 42, 1260 (1962)
[English transl.: Soviet Phys.—JETP 15, 873 (1962)]; A. O.
Barut and D. Zwanziger, Phys. Rev. 127, 974 (1962).
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out that the cut 0<s<4m? stems from the threshold
behavior of a4(l,s)~(s—4m?)" and can be eliminated if
one considers the amplitude

T(,5)=(1/(s—4m*)as(l,s). (6)

From the point of view of analytic continuation, how-
ever, the amplitude T'(J,s) is not convenient. This is
because the s-asymptotic behavior of 7'(J,s) is now I-de-
pendent. For example, if a4 (l,s) behaves asymptotically
like 577, then 7T'(/,s) should behave like s=*=7. But such
a behavior is, in general, not possible to guarantee in
the process of analytic continuation. In his analysis
Mandelstam? has tried to continue a.(l,s) analytically
strip by strip in the complex ! plane in terms of a
sequence of amplitudes defined by

Tw(l,s)=(s—4m*)~ay(l,s), Y]

where # is allowed to assume successively all integral
values up to #=0. It can be shown that in the common
strip of the ! plane where both 7,_i(J;s) and
(s—4m*) T, (l,s) are defined and where, therefore, they
should be identical in order that Mandelstam’s method
should work, the agreement of their asymptotic be-
havior cannot be guaranteed. It is, therefore, not sur-
prising that on the basis of the boundedness condition
(5) Mandelstam was led to conclude that a.(l,s) is
meromorphic in 7 if Rel> —+ and that there is a fixed
pole at /=1—+ which contradicts our result (see Sec.
IIT). In our analysis (Sec. II) we shall analytically
continue a4(/,s) with the help of an auxiliary amplitude
of the form

®(L,5)=(f1,5)/ (s—4m*)Das(l,5) ®)

where f(l,s) (i) is an entire function of /, (ii) behaves like
st asymptotically, and (iii) is analytic on the physical
sheet of the s plane except for the cut — o« <s<0. The
exact form of f(J,s) will be given in Sec. II. The im-
mediate advantage of our method is that it avoids the
strip-by-strip procedure of Mandelstam. It will be
shown in Sec. III that if the boundedness condition (5)
of Mandelstam is strictly valid, then one can analytically
continue ®(J,s) and hence a4 (l,5) only up to Rel>1—y
in the complex [ plane.

In Sec. IV, following Bardakci,* we have also obtained
a domain of meromorphy for a.(l,s) by applying the
tube theorem for analytic completion of meromorphic
functions. The domain thus obtained is, however, found
to be smaller than that derived by the N/D method in
Secs. II and III. Finally, in Sec. V, we have pointed out
that if one makes stronger assumptions regarding the
asymptotic behavior of the scattering amplitude A4 (s,)
and the absorptive part in the ¢ channel 4,(s,t) it is
possible to extend the domain of meromorphy of a.(/,s)
only up to the line Re/=—1 and the N/D method of
analytic continuation does not work for Rel<—1. It
has also been shown that the analytically continued
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partial-wave amplitude exhibits the feature of clustering
of poles near /=—% at threshold.

II. FORMULATION OF THE N/D EQUATIONS

It has already been pointed out in Sec. I that the F-G
representation has a continuous cut for nonintegral
values of [ from — o {s<+ . If, in order to eliminate
the kinematical cut 0<s<4m?, we choose the repre-
sentation (6), we find that the s-asymptotic behavior of
T(l,s) is I-dependent. From the point of view of analytic
continuation, such a behavior of T'(l,s) is very incon-
venient. Hence, we need a function which (i) eliminates
the cut 0<s<4m? from the F-G representation i.e.,
keeps a gap between the left- and the right-hand cuts,
and (ii) maintains the s-asymptotic behavior of the
F-G representation. In order to do this we choose an
auxiliary function ®(l,s) defined by

/s (dm2)1/2
\/S— (4,}”2)1/2
=[V/s+@m*) 2 Y ar(l,5)/ (s—4m?)Y). (10)

From Eq. (9), it is clear that ®(J,s) has the same
s-asymptotic behavior as a(l,s). Moreover, if we choose
the branch cuts for [4/s+ (4m?)/2]2* from — e Ls<0
and for (s—4m?)~! from — o Ls<4m?, then in the
s plane ®(J,s) will have no kinematical cut from
0<s<4m?. Further, the presence of the factor
[v/s+ (4m*)/2 ]2t in (9) introduces no extraneous pole in
a+(l,5) because [1/s+ (4m?)/2]? never vanishes on the
physical sheet.

It is interesting to note that the l-asymptotic behavior
of ar(l,s), i.e.,

cord AL,
where
)

also indicates the need of a factor of the form
{[V/s+@m2) V2] /[\/s— (4m®)/*]}t in the representa-
tion of a4(l,s). Representation (9) has been used by
several authors, in connection with the various prop-
erties of the partial-wave amplitude. In his modification
of the Regge-pole formula, Khuri” has used this repre-
sentation in order to exhibit the correct ¢-plane cuts of
the total scattering amplitude. More recently, repre-
sentation (9) has also been used by Kreps et al.® in con-
nection with the problem of =7 scattering.

We now discuss the analytic properties of B(/,s) in the
s plane. It is evident from Eq. (9) that the analytic
properties of ®(/,s) depend upon the Q; function and

cs(z,s>=( )la+<z,s>, ©)

(12)

7 N. N. Khuri, Phys. Rev. 130, 429 (1963).
8R. E. Kreps, L. F. Cook, J. J. Brehm, and R. Blankenbecler,
Phys. Rev. 133, B1526 (1964).
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A(s,p), where 4,(s,t) is given by the following subtracted
dispersion-relation:

A,(s,z)ze /4 : du psl) s _Ii+z 571, (t))

(u—s) u¥ 1

1 ]
L
T J 4m?

p(u,t) (4m*—s—1)¥
(u+s+i—4m?) u¥

N
+;(4m2—s—t>n-lf,.(t>>, (13)

=¢(s,0)+op(dm2—s—t, t).

In the above, ¢(s,t) and ¢(4m?—s—i,t) are the con-
tributions coming from the direct and the crossed
channels, respectively. For the pseudoscalar equal-mass
kinematics, as is the case here, the spectral function
p(u,t) represents a real symmetric function of its argu-
ment and is given by

p(u,t) = (u,t)0(u—4m?)0(t— 16m?u/ (u—4m?))
+o(t,u)0(t—4m?)0(u— 16m2/(t—4m?)), (15)

where 0(x) denotes the step function and o(#,t) is a real

(14)

l,S)—

fil (s-—4m2!’+1|_ sinl

i) 2(|s|—i—4m2)l|‘ sin21£/4'"2“8P<1+ 2t
)= (0

’ ]s—4m2]‘+1l_ sinml T —am

(Is|+4m

f3(l)s)

|s—4 s—

—2sin2l¢ Q,(— 1—
4m —s

2t
4———|z+1c 215/ Qz( 1— " )p(4m2—s—t 5)0(—s)dt,
m?
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function of its arguments. For the analytic properties
of the Qi(z) function we use the following formulas®:

Qu(—sTFie)=eximHDQ (3-43¢) for [z]>1, (16)
and for |z]| <1,
sinmlQu(z=tie) =3n[eTi"'Py(z)—Pi(—2)]. (17)

We now proceed to calculate the discontinuity of
®(l,s) across the left-hand cut. We can write Eq. (9)
using Eq. (6) in the following form; i.e.,

®(Ls)=/s+@mH) )T (l,s).
It follows from Eq. (18) that
®(, s+ie)— B, s—ie)

= [si9) > 4m) TEPLTA, s+i)— TG, s—ie)]

+{[(S+i€)l/2+ (%2)1/2]21_ [(s___,ie)l/2+ (m?)l/Z]Zl}

(18)

XT({, s—ie). (19)
Using Egs. (16) to (18), we obtain that
®U, s+ie)—®B(, s—ie)=2i 3 fi(ls), s<0, (20)

k=1,2,3
where

(|s| +4m®)r sin2lg pime—s 2t 2lg—ml) [rmr—s 2t
[
/ Pl(1+ )dt-—w sm—————/ P,(-l— )dt
s—4m? sinarl am? s—4m?

00

: 2>dt:|¢(s,t)0(—s) . (21)

S—am

(2ig—mxl) [im*—s 2t
)dt—w sm———————/ P;(—l— )dt
sinml 4m? s—4m?

w 2

—2sin2l¢ Qz(—l— s )dt:|<£(4m2—s—t,t)0(—s), (22)
dmis s—4m?

(23)

(24)

E tan l(l I/4m2)1/2

and ¢(4m2—s—t, t) denotes the real part of ¢p(4m?—s—t, t) defined by Egs. (13) and (14). The limits in the case
of f3(l,s) are in fact determined by the support properties of the spectral function p(u,t) (see Eq. 15). Having ob-
tained the left-hand discontinuities, we define the left-hand function as

F(lrs)= Z Fk(l7s)) (25)
k=1,2,3
where Fi(l,s) is defined by the Cauchy integral formula
L ro fulls)
Fu(l,s)=— / ——ds (26)
T)ow 8'—s

In Eq. (26), subtractions are implied if necessary.

9 Bateman Project Staff, Higher Transcendental Functions (McGraw-Hill Book Company, Inc., New York, 1964), Vol. I, p. 140.
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Following the procedure given by one of the authors,> we finally obtain the explicit form of F(l,s), i.e.,

4 (/s (dm2) 12yt
F(l,s)="F1(, S)+;W/4m’d¢@z<1+

0 (1 2t )
l

i
] s—4m?

+43 s"“/ fa(®)

¢
2>¢~(4tmz—s—t, 1), (27)

—4m
where

=t of

p(u £) SN[(\/5—|— (4m2)1/2)2

WuA-(4m?)1 /2y (H 2 )]
(u—s) uVL  (s—4m?)H! (u—4m?)H1 ! Iu—élcm2

(\/s+(4m2)1/2)2‘ (

2t

1+ ) . (28)
—4m?)H1 s—A4m?
The first and the second term on the right-hand side in Eq. (27) will be referred to as the direct-channel and the
crossed-channel left-hand functions, respectively. In order to check that F(l,s), as given by Eqgs. (27) and (28),
satisfies all the requirements of a left-hand function, it is interesting to note that our F(J,s) has no right-hand cut.
The discontinuity of F(/,s) across the left-hand cut is the same as that of the auxiliary partial-wave amplitude
®(l,s). This will be clear if we write Eq. (27) in the form

+ 47712 1/2)2! 0 2t
F(l,s)=4M f; , dt Q,(1+S_4m2)At(s,t)

(s—4dm2)H1

el

The most significant feature of our representation for
F(l,s) is that its l-asymptotic behavior can be easily
examined, owing to the presence of Q; functions with
argument positive and greater than unity. Indeed, for
|z| >1, we can use the following formula?;

1 1/2
Qz(z)“'(z—ﬂ.l)
xexp{(ﬁr%)(:i;jjz—1)1/2]}, 7], (30)
and obtain that
| F(s,l)| <constant|l|~1/2, |l|—>w. (31)

This asymptotic behavior will be true throughout the
domain of validity of the representation (27).

We now start the formulation of the N/D integral
equation for ®(/,s). The unitarity relation for ®(l,s)
(for s 2> 4m?) is given by

®(, s+1ie)—®B(l, s—ie)

=¢(1,5)B({, s+ie)B(, s—ie), (32)
where dm\12 (s—4m?)}
S—am S—
¢(l,s)=( : ) (\/s+(4m2)1/2)2’m(l’5). (33)

In the elastic unitarity approximation ®(J,s)=1. We
make the usual N/D ansatz for ®(,s), i.e.,

(B(l>s) = N(l,s)/D(l,s) ) (34)
where N(l,s) has the left-hand cut (—» <s<0) and

p(u,t) sV (n/ut (dm2)1/2)2 2
(u—-s) u” (u—4m?)H1 Ql<1 I u—4m2)' @)

D(l,s) has the physical cut (4m?<s< ). N(l,s) and
D(l,s) satisfy the following integral equations:

2 fuls)
1 o k=1,2,3
N(ls)=— ds’ D(l,s"), (35)
TJ s'—s
and ) )
© ¢S )N,
Dlg)=1—- / gy 2EONED
™ J 4m? S,'—S

Eliminating D(l,s) from Egs. (35) and (36), we obtain

F(l,s")—F(l,s
N(l,s)=F(,s)+- / —-—(—s—)——(a—)

)

Xo(l,s)N(Q,s)ds'. (37)
Our problem now is to investigate whether the integral
equation (37) is nonsingular. Equation (37) would be
nonsingular provided

/ |F(s)|*ds< o (38)
and "
N F(l,s")—F(l,s)|*
/ / dsds’|(l,s") ———"" <. (39)
am? J 4m? S,—S

In the following section, we show that conditons (38)
and (39) are indeed satlsﬁed provided one makes certain
assumptions regarding the asymptotic behavior of
A(s,f), the total scattering amplitude, and A4,(s,s), the
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absorptive part in the ¢ channel. Once it is proved that
the integral equation (37) is nonsingular, we can con-
clude® that if the resolvent exists for at least one value
of ] then the solution of the integral equation is a mero-
morphic function of /. The poles of N(J,s) in the complex
1 plane are independent of s and cancel in ®(J,s). Thus,
in the / plane, the poles of ®(J,s) and, therefore, of a(,s)
are to be identified with the zeros of D(l,s) which are
s-dependent. Since F(l,s) is bounded by |Z|~'/2 asymp-
totically, it is quite clear from Eq. (37) that the same
bound holds for the kernel and therefore for N(l,s). It
follows that the analytically continued partial-wave
amplitude is bounded by |?|~!/2 asymptotically so that,
by making use of the Sommerfeld-Watson transforma-
tion! and the fact that a;(/,s) is meromorphic, one can
obtain the Regge representation for the total scattering
amplitude A(s,t).

III. DOMAIN OF MEROMORPHY OF THE
PARTIAL-WAVE AMPLITUDE OBTAINED
BY THE N/D METHOD

Our subsequent discussions are based on the following
ansatz regarding the asymptotic behavior of A(s,t)
and A(s)t):

tB sﬁ

A(st), Ay(s,)<n max(—— , —~) , s, t>R, (40)
LA 24

where v>0 and 7, R are sufficiently large positive
numbers. It is now possible to show (see Appendices A
and B) that if B<min(l,y) there exists a left-hand
function F(l,s) such that (i) F(l,s) is holomorphic
for Rel>max(8, —v), and (ii) asymptotically F(ls)
vanishes, i.e., as s —

|F(l,5)| <constantXs=?, §>0. (41)

The above properties of F(l,s) are sufficient to
guarantee that the integral equation for N(J,s) is non-
singular. We first remark that if 6<%, F(l,s) would not
be square-integrable so that condition (38) would not
hold. In order to get around this difficulty we divide
the integral Eq. (37) for N(l,s) by s/2— ¢ and obtain

F(l,s)
Mts)= sl/2— 5+t
1 0 S, 1/2 — 6+e
+- / K(s,s") (——) M(l,s)ds', (42)
T J am? s
where
M(l,s)=N(l,s)/st/20+e (43)
and
F(l,s")—F(l,s)
K(ss)=———
s'—s
(s'— dm2)t+1/2
R(l,s"). (44)

S'12(\ /s + (4m?)1/2)2
10 J. D. Tamarkin, Ann. Math. 28, 127 (1927).
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The inhomogeneous term in the integral equation for
M(l,s) is clearly square-integrable. Thus, in order to
show that Eq. (42) is nonsingular, we have only to prove
that the integral 7, defined by

[ e e
[ sl

(S’_4m2)l+1/2 2 s’ 1—25+¢
<—) [®@,s)|2, (43)
s

X S12(y/ 5"+ (4m2) 122
should be convergent. If we now assume that

|®R(1,5)| < constantX s5-7, (46)
where 7 is a positive number, and substitute s'=M\s
we obtain

00 00
I =~ constant X / s f
4m? 4m?/s

since we can always choose €. It follows that M (J,s)
and, therefore, N(l,s) is a meromorphic function of .
We have thus shown that if A(s,f) and 4.(s,t) obey the
boundedness condition (40), then a(l,s) is a mero-
morphic function of / in the domain Re/>max(8, —v).
The restriction Rel/>max(8, —y) comes through the
fact that our representation [Eq. (27)] for F(l,s) breaks
down if Rel<max(B, —v). If §>1, instead of Eq. (42),
we can consider the integral equation (37) for N(l,s)
directly and show that it is nonsingular. Our conclusions
would be the same as in the case already considered.
It may be noted that in contradistinction with the
boundedness condition assumed by Mandelstam,? viz.,

N1
A—1

l N=2rH2e g\ < oo

[As,) | <m=7/s, |s], [t|>R, ®)
where >0, condition (40) is consistent with crossing
symmetry and the former is only a particular case of the
latter. On the basis of the boundedness condition (5)
Mandelstam has claimed that a,(/,s) is meromorphic in
the domain Rel/>—8, where d=min (y,3). Condition
(5), however, implies the existence of a singularity of
a4(l,s) on the line Rel=1—+v and since this lies within
the domain of meromorphy the singularity must be a
pole. But this is not possible. In order to see this we
consider the equation for D(l,s),

1> k(s)
D(l,s)=1—— ds ——N s,
T J 4m? S -—s

where k(l,s) is bounded for large s. Let us first assume
that N(l,s) is bounded on the line Re/=1—+. Since
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Refll=« < 8
| A

Rel-p
Rei- S=o S=R

Fi1c. 1. The shaded triangle ABC is the convex hull of the base.
The partial-wave amplitude is meromorphic in the tube with base
ABC.

N(l,s) is the solution of a nonsingular integral equation
it must vanish asymptotically. It follows that on line
Rel=1—+, D(l,5s) asymptotically tends to unity and,
therefore, a4(l,s) cannot have any pole on that line for
large s. If, however, N(I,s) has apole at, say, I=1—y-i¢
then in its neighborhood a(l,s) would behave as

ay(L,s)= f(s)/[(I—1+v—i8)—(s)],

where f(s) and ¢(s) both vanish asymptotically. Again
we conclude that ai(/,;s) cannot have a pole at
l=1—~+1¢ for large s. According to our results, how-
ever, a4(l,s) can be analytically continued by the N/D
method only into the region Re/>1—+v and it would be
meromorphic there. Thus, the above difficulty does
not arise.

IV. DOMAIN OF MEROMORPHY OBTAINED BY
THE METHOD OF ANALYTIC COMPLETION

Apart from the N/D technique, the only other
method which has been employed so far in connection
with the analytic continuation of partial-wave ampli-
tude is analytic completion with the help of the tube
theorem.* We shall now show that the domain of
meromorphy of a.(l,s) obtained by this latter method
on the basis of the assumptions already made in the
present investigation is smaller than that obtained in
the preceding section.

We begin by quoting the definition of a tube.l:12 A
tube T in the space of two complex variables z;=x;+14y;,
Z2=1%9+1y; is the set of all points which can be repre-
sented as (21,22) CS, — % <yy, y2<+ o, where S is any
set in the two dimensional space of (x1,%3). S is called

11 Wightman’s lectures on analytic functions of several complex
variables, in Relations de dispersion et particules élementaires
(Hermann et Cie, Paris, 1960).

28, Bochner and W. T. Martin, Several Complex Variables
((:I;Irince‘gon University Press, Princeton, New Jersey, 1948),
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the base of the tube 7". The tube T is connected if .S
is connected and the convex hull of a tube is the tube
over the convex hull of the base. The tube theorem?!?
now states that the holomorphy envelope of a connected
open tube is its convex hull. In other words, if wi{x:’,x2"}
and ws(x,”,x5"'} are two points of S, then any point lying
on the line Aw;4(1—\)ws, 0<A<L1 is also in S.

In order to apply the tube theorem we first construct
the function

1 s [® ' —4Am2\ 12
e
®(,s) 21 J sme 5’3

y (\/s’— (Am2)L2\t R(1,s")
s+ (4m2)1/2>

which is free from the unitarity cut. In the above we
have assumed that ®(J,s")/s’ vanishes asymptotically.
If ®(l,s) is holomorphic in a certain domain, H(l,s) will
also be holomorphic in the same domain except for the
poles due to the zeros of ®(l,s). From our assumptions
[Eq. (40)] about the asymptotic behavior of 4(s,t) it
follows that H(J,s) is meromorphic in a tube domain
given by the connected set of points {Rel>a, Res>0}
and {Rel>B, Res>R}. If, following Bardakci,* one
assumes that the tube theorem can also be used for
analytic completion of domains of meromorphy, one
can conclude that the domain of meromorphy of H(l,s)
and, therefore, of ®(l,s) includes the set of points
{Rel=\(a—B)+8; Res>(1—MR} with 0<\<1 and
Im/, Ims arbtirary. Diagrammatically these points
define an open tube with the triangular base 4ABC in
Fig. 1. Clearly, the domain of meromorphy thus obtained
is smaller than the domain {Re/>g, Res>0} obtained
by the N/D method in the preceding section. It should,
however, be pointed out that we have not fully utilized
in the analytic completion procedure all the assumptions
needed in analytic continuation by the N/D method.
Moreover, the latter procedure does not work at all
unless B<min (1,y), whereas it is always possible to
obtain a domain of meromorphy larger than that of
holomorphy for the partial-wave amplitude provided
only f<a.

We would like to remark that the use of the Froissart
bound for 4(s,) in the procedure of analytic completion
with the help of the tube theorem, as done by Bardakci,*
cannot be justified rigorously. A Froissart bound, or an
extension thereof,3* for the absorptive part in the
¢t channel is valid only if cosf, where 6 is the corres-
sponding angle of scattering, is restricted to lie within
the Lehmann ellipse. This means that Ims cannot be
arbitrary; in particular, if we take O<Res<e then
|Ims| <8m?. It follows that the region where ®(l,s) is
holomorphic for Rel>1 cannot form a tube domain, and
hence the tube theorem cannot be applied unless some
extra assumptions regarding the validity of a Froissart
bound outside the Lehmann ellipse are made.

H(ls)=

C)

s'—s
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V. CONCLUSIONS

It may be argued that if in our ansatz (40) for the
asymptotic behavior of 4 (s,t), 8 is assumed to be nega-
tive it may be possible to extend the domain of mero-
morphy of a4(l,s) to the left half of the complex / plane.
Indeed, in our investigations the only restriction im-
posed on 8 was 3<min(1,y). Thus our conclusion that
a4(l,s) would be meromorphic if Re/>g will remain true
even if B is negative, unless the integral equation for
N(l,s) ceases to be nonsingular for reasons which were
not relevant for positive values of Rel. It may be easily
verified that so long as Re/>—1, F(l,s) is holomorphic
in 0<s<o and behaves as s~ (see Appendix B)
asymptotically. Thus, the kernel of the integral equation
for N(l,s) remains square integrable. But at Rel=—1,
(i) F(l,s) and, therefore, the kernel develops a fixed pole
due to the poles of the Q; functions at the negative
integral values of 7, (ii) the kernel ceases to be square-
integrable due to the presence of the factor (s'—4m?2)+1/2,
Thus, even if 3< —1, our method of analytic continua-
tion does not work beyond the line Re/=—1 and there
will, in general, be a singularity of a,(J,s) other than a
pole at /=—1. Since there is a unique correspondence
between singularities of a.(/,s) in the ! plane and the
asymptotic behavior of A4.(s,f), consistency demands
that, in general, 8 cannot be less than —1, This is in
agreement with the observations of Gribov and
Pomeranchuck.!?

Apart from singularities at negative integral values of
I, several authors!4 have discussed the accumulation of
poles of the partial-wave amplitude near /=—3 at
threshold which is essentially of kinematic origin.!
From the above discussion it is, however, clear that if
B< —%, nothing becomes wrong with N(l,s) at I=—%
and s=4m? except that it may have a fixed pole at

= —3%. In that case D(J,s) will also have a fixed pole at
l=—1% and this will cancel in N/D. In any case, in the
neighborhood of the threshold D(l,s) may be repre-
sented by
D(l,5)=1—(s—4m?)"+/2y(1) ,

where ¢(J) is at most meromorphic in / near /=—3%. If
¥()) is bounded and nonzero at /=—%, the zeros of
D(l,s) are given by

I=—1+4a/In(s—4m?)+2imn/In(s—4m?), (48)

where a=—Iny(—3%) and m is any integer. Equation
(48) clearly shows the accumulation of zeros of D(l,s),
i.e., poles of a.(l,s) near I=—% at threshold. It is also
easy to convince oneself that clustering of poles around

13 V. N. Gribov and I. Ya. Pomeranchuck, Zh. Eksperim. i Teor.
Fiz. 43, 1556 (1962) [English transl.: Soviet Phys.—JETP 16,
%098331963)] ; P. G. O. Freund and R. Oehme, Phys. Rev. 129, 2361

1963).

4 B, R. Desai and R. G. Newton, Phys. Rev. 130, 2109 (1963);
V. N. Gribov and I. Ya. Pomeranchuck, Phys. Rev. Letters 9, 238
(1962) ; B. R. Desai and B. Sakita, Phys. Rev. 136, B226 (1964).

15 M. Froissart, Proceedings of Seminar on Theoretical Physics,
Trieste, 1962.
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= —} at threshold remains true even if ¥(J) has a zero
or a pole at [=—1%.

In conclusion, let us summarize our results. From the
validity of the Mandelstam representation with a finite
number of subtractions for the total scattering ampli-
tude one concludes that there exists a domain of holo-
morphy of the form Rel>a of the relativistic partial
wave amplitude a,(/,s) defined by Eq. (1). Using the
tube theorem for analytic completion it is possible to
prove that a.(l,s) is meromorphic in a larger domain if
in addition to condition (2) one also assumes the
boundedness condition (40) with 8<a for the asymp-
totic behavior of A,(s,). For the N/D method of
analytic continuation to work, one has to make use of
the boundedness condition (40) with the further re-
striction B<min(1,y). The domain of meromorphy
Rel> g obtained by this latter method is larger than the
corresponding domain obtained by using the tube
theorem. It should be emphasized that the mere exist-
ence of a domain of meromorphy Rel/> g in the complex
l-plane is not of much physical interest unless one can
at the same time show that the analytically-continued
partial-wave amplitude is bounded asymptotically in }
in this domain. The above requirement for the partial
wave amplitude is guaranteed in the N/D method of
analytic continuation.
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APPENDIX A

In this appendix we shall prove some results which
will be used in Appendix B.

From

A(s,t)=Red (s,t)+imp(s,t), (A1)

it follows that if, for s,t>R, A.(s,t) is bounded by
max(sf/t7,18/s7) then p(s,t), being its imaginary part,
cannot behave worse than max(s?/7,t8/s7) for s,t>R.
Thus, we obtain

R
p(s,l)Smax(—— , —) , St>R. (A2)
s
According to Eq. (14),
At(s,t)=¢(s,t)+¢(4m2—~s—t, t) ’ (A3)

where, for t> R, ¢(s,t) is given by

1 t , 1 © , v ’
o(s,1)=— / - t)du+_/ Al S_d“+% s,

T Jgm?2 U—S T u—s u? 1
(A4)
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with and
- . 1 r® ()
Substituting (A2) in (A4) we get, after some lengthy - »
but straightforward calculations, 7 J am? tF 51— dm?
# 4m?—s—1)P
L 1% p(u,) #osh +maX( ) ( ) )
B(s,t) =~— / du+maX(-—,—> (4m2—s—1)7 £
TJgm? U—S sY .

N
+3 sv1f,(f), for s,t>R, (AS)
1

+I‘v:(4m2——s——t)”‘1f,.(t), for s,t>R. (A6)
1

Substituting (AS) and (A6) in (A3), we obtain

1 7% o(u,t) 1 B o(u,t) B 58 P (Am2—s—1)P
Ay(s,t)=~ [— / du+— / ~——————du]—|—max(— s —) +max( , )
T Jam? U—Ss w J am? - s+t—4m? ST (4m?—s—1t)7 8

+[§1E sn—lf,,(t)-l-g(‘lmz_S_t)n—lfn(t)] . for s, t>R. (A7)

In view of the bound on A4/(s,t), the right-hand side of
Eq. (A7) must be bounded by max(t#/s7,s8/t7) for s,
t>R. As two terms in (A7) are already bounded by
max(s8/17,18/s7) for s, > R, let us consider the first and
the last square brackets in (A7). The first bracket in
(A7) will be written as ®; and the last as ®;, The terms
in ®; cannot cancel with the terms in ®; because they
have different s-asymptotic behavior. We shall now
prove that the terms in the same square bracket cannot
cancel with each other if s> R. So far as ®, is concerned,
this will be clear if we write

1 « 1 B
®r=— 2. / o(u,t)urdu-+
4 2

T n=0 sn+1 m

1 = 1 B
+-2 ————~———~—/ o(u,)urdu. (A8)
m n=0 (dm2—s—1)"F1 J 42
With similar reasoning one can show that the terms in
®: will never cancel with each other. Thus, we get

1 B p(u,t) sf 1P
—/ duSmax(—,——), s, >R, (A9)
4

T J am? U—S tr sY

and,

1 rE p(u,t) R
—/ ————————~du§max(—,—) , s, t>R. (A10)
T J ant s+t —4m? i sY

Let us now consider the terms in ®,. The {-asymptotic
behavior of f,(¢) is independent of s. Therefore, in order
that ®; be bounded by max(s#/¢7,88/s7) for s, >R, fa(t)
must behave either as # or i~7. The possibility that f.(¢)
behaves as ## can be ruled out, because if we consider
the case then s>¢> R in (A7) the left-hand side will be

bounded by s8/¢7, whereas the right-hand side will be
bounded by max(s¥'/i7,s¥'#), which is clearly incon-
sistent. Hence, it follows that f,(f) must be bounded
by 7 and also that N'=p.

Substituting (A9) and the asymptotic behavior of
fa(t) in (AS), we obtain

B8
¢>(s,l)§max(-— , -) , S, t>R. (A11)
s
If we write
1 r® P(”;t)
o)== [ Tarssn, (4
wJam? U—S
where
torialud) 1 ()
qS’(s,t):—f du+—- | ———du
mJp u—s xJ¢ (u—s)ur
14
+> s1f,(1), >R, (A13)
1

it follows from the known asymptotic behavior of f,(f)
and p(u,t) that

B th
¢’(s,t)~max(— , —) , S I>R, (A14)
s
and
¢ (s,)~max(#f~7), t>R and s>0. (Al5)

Let us now consider (A9), which for £>s> R, reduces to

1 1% p(u,t) 18
- / du~—,

T Jam? U—S s

t>s>R. (A16)

This means? that the contribution from the region where
p(,t) behaves as i* is completely cancelled out owing to
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the rapid oscillations in p(%,t). But for s> R we have

p(uyt)

E/R "
T J 4m?2 U—S

U

1 +&

— 5 [ oot om0, (A1)
,Y)n+1 _

where

u=3+y, t=3R—4m?), and y=%i(4m*>+R). (A18)

Thus, we get from (A16) that

1 » 1 +E b
-3 ————/ o(8+, Hordd~—, t>s>R. (A19)
T n=0 (S—’Y)"+1 _t sY

As each term in the left-hand side of (A19) has a
different s-asymptotic behavior, we must have

+£
/ o(3+7, Hordd~tf, I>R. (A20)

-

We now prove some results about the s-asymptotic
behavior of 4,(s,t). The total scattering amplitude 4 (s,z)
is given by

4 (S,t) =¢(s,l)+¢(4m2~—s—t, t) ) (A21)
where
1 A(s' ) Y
Y(s,t)=— / 1 ——dt +Z 1L,(s). (A22)

If we now assume that both A(s,) and A(s,t) are
separately bounded by max(##/s7,s8/t7) for s, >R, we
can set up an equation similar to (A7), with the differ-
ence that A4,(s,t) is replaced by A(s,¢) and p(s,t) is re-
placed by A(s,). Therefore, following the above
procedure, we get

1 R
—/ Ay(s,H)dt~sf, s>R.
™ J am?

(A23)

'‘APPENDIX B

Let us consider the following representation for F(l,s):

F(l’s)= Z Mk(l7s) ’

k=1,2,3,4

(B1)
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where

Myl9)=14 / a8/ (s D)0 (1+S_:m2)—f—r f "

x| a o1+, @2
v [of el 2
—xwofi+——), ®9)
s s 2 o
x[" B o1 ——), @9
s [
x

X $(mi—s—1, t)Qz(H- ) (B)

s—4m?

s =(\/s+(4m2)”2)’ 1 (B6)

/s—(@m?)12) s—dm’

with ¢(s,) and ¢'(s,) defined by Egs. (A4) and (A13),
respectively. Tt may easily be verified that F(l,s) as
given by Eq. (B1) has only the left-hand cut — o0 <s<0
in the s-plane and its discontinuity across this cut is
the same as that of B(l,s). Thus, the above representa-
tion for F(l,5) is a candidate for the left-hand function
to be used in the integral equation for N(J,s). In order
that our discussion in Sec. III should go through, we
also require that (1) F(l,s) should be holomorphic in /
for Rel>max(8, —v); (2) F(l,s) should vanish asymp-
totically as

F(ls)~s=%, 6>0. (41)
We shall now show that our representation (B1) for F(I,s)
possesses the above properties provided g<min(1,y)
with d<min(y—g8, 1—8, 1). This we shall do by show-
ing that the above properties are true for each M(l,s)
(k=1, 2, 3, 4).

(i) Mi(l,s). From Egs. (A14) and (A15) it immedi-
ately follows that the first integral on the right-hand side
of Eq. (B3) is convergent if Rel/>max(8, —v) and
behaves asymptotically as s— where 0<8<(y—8). In
the second integral, which we denote by M,'(,s), we
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put ¢=X\s and #=vs and obtain

4 = ©  ou,t) 2t
M)(s)=—- / du / dt X(M)Qz( 1+ )
TJR R U—Ss u—4m?

@

== const X s~ / dv

V!

R/s V(V'—'l)
0 )\ﬁ—'y—s
X / PN
ris (142N /v)H1
where
e=p if »>A, (B8)
e=—vy if »<A.

In the above, we have used the bound (A2) on the
asymptotic growth of p(u,t). It is not difficult to
verify now that the integral for M,'(l;s) exists if
Rel>max(B8, —v) and B<min(1,y). Further, the asymp-
totic behavior of My'(l,s) is consistent with Eq. (41).
Thus, M,'(l,s) has the required properties of F(l,s).

(i) M(l,s). The integral representation (B3) for
M(l,5) may be written as

4 r» dt rE
Mall,5)=— / il f du F(s,u)p(ud), (B9)
m™JR tl+l 4m?

where F(s,u,t) is bounded in ¢ and analytic in # in
interval 4m?<u<R. Therefore, F(s,u,t) admits of a
Taylor expansion of the form

F(%%l) = Z Cn(s,t)19" ) (B 10)
n=0
where
d=u—3(R+4m?), (B11)

and C,(s,) is bounded in ¢ Substituting (B10) in (B9),
we obtain

4 re° dt
Mallys) == f s cats)
R tl+1 n

™

(R—4m)2/2 R+4m2
X f dg 0np(0+ , z> . (B12)

—(R—4m?) /2 2

From (A20) it now follows that the integral representa-
tion for Ms(l,s) exists if Re/>max(8, —v).

If s is large (i.e., s> R), one can show by expanding
(u—s)! in power series and following exactly the same
steps as before that both integrals in the representation
(B3) for My(l,s) exist separately if Rel>max(8, —v).
Further, the contribution from the second integral is
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easily seen to be bounded by s~'. Thus we obtain

1

4 o
My(ls)~— 2.

TS n=0 |: (4m2—I—R>:I"+1
s—
2

© 2% (R+4m?2) /2
X / dt Ql(1+ ) / ds
R s—4m? —(R—4m?) /2
4m>+R
Xp(ﬂ—l— 5 ,t)-z?"—i—O(s—l), s>R

=0(s%1)+0(s™).

(i) Ms(l,s). Let us denote the first and the second
integrals on the right-hand side of Eq. (B4) by M3'(l,s)
and M3"(l,s), respectively. It is clear that M3'(l,s) exists
for all / such that Rel>—1 and asymptotically it is
majorized by the integral

(B13)

Ins 2

At(S,t)dt.

S 4m?
It now follows from (A23) that
M (,s)=0(s""), (B14)

where §<(8—1). As regards the integral representing
M4''(l,s), we observe that its existence and asymptotic
behavior is determined by that of the integral I defined by

© du R
I= / / o(u,b)dt.
r w(u—s) Jam?

From (A20) it follows that

0 uﬁ—l
I=constX / du.

R U—S

Thus, I and, therefore, M;"(l,s) exists if 3<1 and
asymptotically Ms”(l,s) is bounded by s where
< (1—6).

(iv) M4(l,s). From the boundedness condition (40)
and Egs. (A3) and (A11), it follows that

B B
$(dm>—s—1, t)SconstXmaX(_ ; “) ’

Y sY

for t large and s> 0. Therefore, the integral representing
M,(l,s) exists if Rel>max(8, —y) and is bounded
asymptotically by s~ where §< (y—3).



