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4 b, U, (s)
'l'(s) =2

'=' (~/f,")—) 'EigenvalueNumber

TABLE I. The Ave largest eigenvalues and projections 6; for the function is represented by
scattering of scalar mesons with the exchange of a mass 3ttf.' scalar
meson. The value of so was also 3y'.

0.160
0.00945
0.00118
0.000235
819X10 '

—0.334
0.0283—0.00464

+0.00106—0.00028

and D is given by
b, V, (s)

D(s) = 1—P
'=i (l,/g') —)t;

The fact that the Born terms used in most calcu-
lations have relatively simple structure for s)4tts (for
example the scalar exchange Born term is positive
definite and monotonically decreasing for s)4) means
that only a few of the coeKcients b; will be important,
allowing the X function to be represented over a wide

range of coupling constants as a simple function of g'.
To illustrate this point the two scalar problem has been
solved for a meson exchange mass of 3p,' with 50 mesh
points. In Table I are given the eigenvalues for the Ave

largest coeKcients b;, For the range 0&g'&5000 the E

to an accuracy of a few percent. The value of so used
was 3p, .

V. CONCLUSION

The method which has been discussed here produces
solutions to E and D which are explicit functions of the
coupling constant and which, for wide ranges of the
coupling constant, can~~be approximated by a small
number of terms.

The "bootstrap" problem is particularly simple when
this form of the gD—' solution is used as one parameter
is determined directly.
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An attempt is made to continue analytically the partial-wave amplitude for the scattering of two identical
spinless particles in the complex l plane, exploiting unitarity and analyticity properties in s. The Froissart-
Gribov representation for the partial-wave amplitude is known to be holomorphic in the region Rel) n of
the complex l plane provided the absorptive part A i(s, t) of A (s,t), the scattering amplitude in the t channel,
is bounded by t for any 6xed s. Apart from the above assumptions, two crucial hypotheses on which the
present analysis is based are (i) the possibility of extending unitarity in the inelastic region to complex values
of l, and (ii) the boundedness condition, viz. , that both A 4(s, t) and A (s,t) are asymptotically bounded by the
maximum of (te/sr, so/t I) if s and t are both sufficiently large with y) 0 and p ( min(f, y). With the help of
the fi/D technique it is then possible to continue analytically the partial-wave amplitude up to the line
Rel =P and show that it is meromorphic in the region P (Rel &~a. The domain of meromorphy of the partial-
wave amplitude obtained by the method of analytic completion is smaller than the preceding one. The
analytically continued partial-wave amplitude is bounded by

~
l

~

'~' for large values of Imi, so that a Regge
representation for A (s, t) can be obtained. The f|//D method of analytic continuation does not work beyond
the line Ref = —1 even if one assumes P (—1. It has also been shown that accumulation of poles at l = ——,

'
near threshold, a feature which has been pointed out by several authors, is also manifested in the analytically
continued partial-wave amplitude.

I. INTRODUCTION

HE purpose of the present work is to discuss the
problem of analytic continuation of the rela-

tivistic partial-wave amplitude in the complex angular-
momentum plane and hence to investigate the singu-
larities which one encounters in such a procedure. In
the case of nonrelativistic scattering by potentials,
Schrodinger equation provides a very convenient frame-

work within which this problem has been tackled. ' In
relativistic scattering the absence of a Schrodinger
equation makes the situation very much complicated.
It is, however, presumed that, unitarity and the analy-
ticity properties of the scattering amplitude as contained
in the Mandelstam representation play the role of a

' A. Bottino, A. M. Longoni, an& g, Regge, Nuovo Cimento 2B,
954 (1962).
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Schrodinger equation in the relativistic scattering
theory. Therefore, the question as to how and to what
extent Regge's results in potential scattering may be
justified within the framework of analyticity and uni-
tarity of the scattering amplitude is of considerable
interest.

The above problem has been recently considered by
several authors. ' ' The starting point in these investiga-
tions is the Froissart-Gribov (F-6) representation for
the partial-wave amplitude. In the case of identical
pseudoscalar particles of mass m, the I'"-6 representation
may be written as

2
a+(t,s) =——

(s—4m-")

(s—4m. ')

.:." (', "...)
X (At(s, t)+A„(s,t))

2t
dtQE 1+ iA i(s,t), (1)

4m' s—4m'9

where s, t, u are the usual Mandelstam variables with s
the square of the center-of-mass energy. In the above,
A~(s, t) and A (s,t) denote the absorptive parts of the
scattering amplitude in the t and I channels, respec-
tively. If there exists an o, such that for any fixed value
of s

tA, (st) ~/t +'~0 as t~~,
and there is at least one value s' of s such that

/A (s', t) [/t '~~ as t ~~, (3)

where & is an arbitrarily small positive number, then
Eq. (1) defines a function holomorphic in t in the region
Rel&n. In the interesting region Rel y&a where singu-
larities of a~(l, s) are expected to occur, the Froissart-
Gribov representation is not valid. In order to investi-
gate the singularities of a+(t, s) in the complex t plane
one has, therefore, to continue a+(t,s) analytically into
the region Rel~&o. by exploiting unitarity and analy-
ticity properties in the s plane.

The analyticity properties of a+(t,s) follow directly
from the Mandelstam representation for A ~(s, t) and the
known singularities of Q&(s). Unitarity for a~(l, s) when
written in the form' 4

Ima~(l, s) = (R(l,s)((s—4m')/s)'~'

Xa+(l, s+ie)a+(l, s—se), s&~4m', (4)

gives us a relation between the left-hand (—eo &~s ~&0)

and the right-hand (4m ~&s&~ao) discontinuities of
a~(l, s) provided (R(l,s) is known. If s is below the
threshold for inelastic processes (i.e., s&~16m' in our
case) (R(l,s)=1. In the inelastic region, however, our
knowledge about (R(l,s) is very limited. Even for
physical values of l the only definite restriction one can

' S. Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963).
s G. M. Prosperi, Nuovo Cimento 26, 541 (1962).
4 K. Bardakci, Phys. Rev. 127, 1832 (1962).
~ Haridas Banerjee, Phys. Rev. 131, 2810 (1963).

impose on (R(l,s) is that (R(l,s))1 if s) 16m'. It is thus
clear that one can hardly make any progress unless one
is prepared to make some working hypothesis regarding
(R(l,s). For our purpose it is suflicient to assume that,
as a function of t, (R(l,s) is holomorphic in the region of
the / plane in which we are interested. As regards the
behavior of (R(l,s) as a function of s, our assumption is
less restrictive. We need only assume that it is con-
tinuous and is bounded asymptotically by s~ &, where
3 is given by Eq. (41) and rt is a positive number.

We have already noted that unitarity determines the
right-hand discontinuity of a~(t, s) provided its left-hand
discontinuities are given or vice versa. It is customary
to regard the left-hand discontinuity or at least some
of its general features such as the asymptotic behavior
in s to be known. In making this approach one is mainly
guided by an analogy with the case of potential scatter-
ing. There one can show that the left-hand singularities
of a+(l, s) are related to those of the Fourier transform
of the potential. In the present investigation there is
another reason why such an approach seems to be
appealing. Under some reasonable assumptions (see
Secs. II and III) regarding the asymptotic behavior of
the scattering amplitude, one can show that the left-
hand discontinuity has a larger domain of holomorphy
in the / plane than the right-hand discontinuity. It is
then our task to find the nature of the singularities of
the latter consistent with unitarity.

It should be emphasized that any arbitrary asymp-
totic behavior of the left-hand function $i.e., the func-
tion which has only the left-hand discontinuity of
a+(l,s)] is not consistent with unitarity. Indeed, it can
be easily verified that for real t (leaving aside the limit-

ing case where the left-hand function behavies like lns
for large s) unitarity requires tha, t the left-hand function
must vanish for large s. The boundedness condition

) A ~(s,t) (
(rt(t' r/s), (s, t both large)

assumed by Mandelstam' just ensures the vanishing of
the left-hand function like s & asymptotically. It has
been pointed out' that (5) is compatible with crossing
symmetry only if p = 2. In the elastic unitarity approxi-
mation followed by Mandelstam crossing symmetry is
in any case violated and, therefore, the above does not
consititute a serious objection. In our investigation,
however, by allowing (R(t,s) to be different from unity
we have in some sense included the contributions from
inelastic channels. It is, therefore, desirable that we
extend our considerations to a more general asymptotic
behavior of A &(s,t) consistent with crossing symmetry.
This we have done in Sec. III.

It should be noted that the F-6 representation (1) has
a, continuous cut —~ &~s ~&+ ~ in the s plane for non-

integral values of /. Several authors' 4 ' have pointed

6V. N. Gribov, Zh. EksperiIII. i Teor. Fix. 42, 1260 (1962)
/English transl. : Soviet Phys. —JETP 15, 873 (1962)); A. O.
Barut and D. Zwanziger, Phys. Rev. 127, 974 (1962).
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out that the cut 0~&s~&4m' stems from the threshold
behavior of a+(l,s) (s—4m')' and can be eliminated if
one considers the amplitude

T(l,s) = (1/(s 4m—')')a+(l, s) . (6)

where e is allowed to assume successively all integral
values up to n= 0. It can be shown that in the common
strip of the / plane where both T,(l,s) and
(s—4m') 'T„(l,s) are defined and where, therefore, they
should be identical in order that Mandelstam's method
should work, the agreement of their asymptotic be-
havior cannot be guaranteed, It is, therefore, not sur-
prising that on the basis of the boundedness condition
(5) Mandelstam was led to conclude that a+(l, s) is
meromorphic in l if Re/) —y and that there is a fixed
pole at /=1 —7 which contradicts our result (see Sec.
III). In our analysis (Sec. II) we shall analytically
continue a~(/, s) with the help of an auxiliary amplitude
of the form

$(l,s) = (f(l,s)/(s —4m') ')a+(l,s),

where f(l,s) (i) is an entire function of l, (ii) behaves like
s' asymptotically, and (iii) is analytic on the physical
sheet of the s plane except for the cut —~ &~s&~0. The
exact form of f(l,s) will be given in Sec. II. The im-
mediate advantage of our method is that it avoids the
strip-by-strip procedure of Mandelstam. It will be
shown in Sec. III that if the boundedness condition (5)
of Mandelstam is strictly valid, then one can analytically
continue $(l,s) and hence a+(/, s) only up to Re/) 1—y
in the complex E plane.

In Sec. IV, following Bardakci, 4 we have also obtained
a domain of meromorphy for a+(l,s) by applying the
tube theorem for analytic completion of meromorphic
functions. The domain thus obtained is, however, found
to be smaller than that derived by the E/D method in
Secs. II and III. Finally, in Sec. V, we have pointed out
that if one makes stronger assumptions regarding the
asymptotic behavior of the scattering amplitude A(s, t)
and the absorptive part in the t channel Ai(s, t) it is
possible to extend the domain of meromorphy of a+(l,s)
only up to the line Re/= —1 and the E/D method of
analytic continuation does not work for Ref~& —1. It
has also been shown that the analytically continued

From the point of view of analytic continuation, how-
ever, the amplitude T(l,s) is not convenient. This is
because the s-asymptotic behavior of T(l,s) is now /-de-

pendent. For example, if a~(/, s) behaves asymptotically
like s &, then T(l,s) should behave likes ' &. But such
a behavior is, in general, not possible to guarantee in
the process of analytic continuation. In his analysis
Mandelstam' has tried to continue a~(/, s) analytically
strip by strip in the complex l plane in terms of a
sequence of amplitudes dined by

T„(l,s) = (s 4m'—) '+"a+(/, s),

partial-wave amplitude exhibits the feature of clustering
of poles near l= —~ at threshold.

t'Qs+ (4m') '") '

$(/, s) =
~ ~

a+(l,s),
&gs—(4m') '") (9)

= Lgs+ (4m') ' '$"(a+(l,s)/(s —4m2) ') . (1O)

From Eq. (9), it is clear that $(l,s) has the same
s-asymptotic behavior as a~(/, s). Moreover, if we choose
the branch cuts for Lgs+(4m')'~'g" from —~ &&s &~0
and for (s—4m') ' from —~ &&s&~4m' then in the
s plane $(l,s) will have no kinematical cut from
0 &&s &&4m'. Further, the presence of the factor
Lgs+ (4m, ')' 'j" in (9) introduces no extraneous pole in

a+(l,s) because [gs+(4m')'"$" never vanishes on the
physical sheet.

It is interesting to note that the l-asymptotic behavior
of a+(l, s), i.e.,

e—&' 1 Qs —(4m')'") ')
a+(l,s) 0 — =0

~ ~, (11)
g/ g/ Qs+(4m')'"I )

where
Sm'

~)=cosh 'i 1+
s—4m'l

(12)

also indicates the need of a factor of the form
(L+s+(4m')'"j/Lgs —(4m')'")}' in the representa-
tion of a~(/, s). Representation (9) has been used by
several authors, in connection with the various prop-
erties of the partial-wave amplitude. In his modification
of the Regge-pole formula, Khuri' has used this repre-
sentation in order to exhibit the correct t-plane cuts of
the total scattering amplitude. More recently, repre-
sentation (9) has also been used by Kreps et al. ' in con-
nection with the problem of x-x scattering.

We now discuss the analytic properties of $(l,s) in the
s plane. It is evident from Eq. (9) that the analytic
properties of $(l,s) depend upon the Qi function and

r N. N. Khuri, Phys. Rev. 130, 429 (1963).
R. E. Kreps, L. F. Cook, I. J. Brehm, and R. Blankenbecler,

Phys. Rev. 133, 81526 (1964).

II. FORMULATION OF THE N/D EQUATIONS

It has already been pointed out in Sec. I that the F-G
representation has a continuous cut for nonintegral
values of l from —ar &~s &~+ ~ . If, in order to eliminate
the kinematical cut 0~&s&~4m', we choose the repre-
sentation (6), we find that the s-asymptotic behavior of
T(l,s) is l-dependent. From the point of view of analytic
continuation, such a behavior of T(l,s) is very incon-
venient. Hence, we need a function which (i) eliminates
the cut 0~&s&&4@a' from the F-6 representation i.e, ,
keeps a gap between the left- and the right-hand. cuts,
and (ii) maintains the s-asymptotic behavior of the
F-G representation. In order to do this we choose an
auxiliary function $(l,s) defined by
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2 t(s, t), where 2 t(s, t) is given by the following subtracted
dispersion-relation:

/1 " p(u, t) sn'

A, (s,t) =i — du +Q s"-'f (t)
i

(u —s) u 1 J

function of its arguments. For the analytic properties
of the Qt(z) function we use the following formulasz:

Qt( z—Hie)=e+'~&1+'&Qt(z+ze) for (z()1, (16)

p(u, t) (4m' —s—t) N

N'

+P(4m' —s—t)"-'f„(t) ~,

=y(s, t)+@(4m' s t, t—) . —

oo

+ — du
(u+ s+ t—4m')

sinzrlQt(zowie) = ~zzrpe+' 'Pt(z) P—t( z)—] . (17)

(13)
$(l,s) = (4's+(4m')'/')'1T(l s)

It follows from Eq. (18) that
14

We now proceed to calculate the discontinuity of
$(l,s) across the left-hand cut. We can write Eq. (9)
using Eq. (6) in the following form; i.e.,

In the above, @(s,t) and g(4m' —s—t, t) are the con-
tributions coming from the direct and the crossed
channels, respectively. For the pseudoscalar equal-mass
kinematics, as is the case here, the spectral function
p(u, t) represents a real symmetric function of its argu-
ment and is given by

p(u, t) =o (u, t)8(u —4m') 8(t—16m'u/(u 4m')—)
+cr(t,u)8(t 4m')8(u —16m't/(t ——4m')), (15)

where 8(x) denotes the step function and o (u, t) is a real

$(l, s+ie) —$(l, s—ie)
Ds+ze)1/z+ (4mz)$1/2]zlLT(i s+ze) T(l s ze)j
+(E(s+ze)' '+ (4m')' 'j" ((s——ie)' '+ (4m')'/z jr')

)& T(l, s ie)—. (19)

Using Eqs. (16) to (18), we obtain that

$(l, s+i e) $(l, s i—e) =—2z P f/, (l,s), s(0, (20)
k=1,2, 3

where

tn2

(~s~+4m')' sin2lp 4 ' ' f 2t ) (2lt —zrl) ' ' ' (
fi(l,s) = 2 Pt~ 1+ ~dt zr sin — Pt~ —1—

~

s 4mz
~

'+' sinzr—l, „m k s—4m'/t slnzrl

2t

s—4m'

—2 sin2l( Qtl
—1—

4„,
2t

ddt y(s, t)8(—s), (21)
s—4mz/t

(~s~+4m')' sin21-& ' ' ' ( 2t ) (24—zri)
fz(l, s) =2- Ptl 1+

~

s—4m'~ '+' sinzrl 4 ~ k s—4m'I slnzri 4~a

2t
/dt

s—4m'&

—2 sin2lp
t/ 2t

Qt~
—1— ~dt y(4m' s t, t)8( —s)—, (22)—

s—4m'

(isi +4nz')' "
p 2t

f (l,s) =4 cos'lg Q ~

—1— p(4m' —s—t, t)8( s)dt, —
(s—4m'('+' 4 ~ k s—4m'

&=tan '(~ s(/4m')'/'

(23)

(24)

and rts(4mz s t, t) denotes —the—real part of P(4m' —s—t, t) defined by Eqs. (13) and (14). The limits in the case
of fz(l,s) are in fact determined by the support properties of the spectral function p(u, t) (see Eq. 15).Having ob-
tained the left-hand discontinuities, we de6ne the left-hand function as

F(l,s) = P F/, (l,s),
a=i, 2.3

(25)

where F/, (l,s) is defined by the Cauchy integral formula

1 ' f/, (l,s')
Fg(l, s) = ds'. —

s —s
(26)

In Eq. (26), subtractions are implied if necessary.

' Bateman Project StaG, Higher Transcendental Functions (McGraw-Hill Book Company, Inc. , New York, 1964), Vol. I, p. 140.



8 1580 JOSH&BAN E RJEE AN D G.

cedure gi

2 1/2 2l4 (Qs+ (4m') '")'
F(l,s) =Fi(l,s)+ !y(4m' —s—t, t),dt Qii 1+

where

e ex licit form of F(l,s), i.e.,' we finally obtain the exp iciof the authors, ' we na y'ven by one o eFollowing the pro

(27)

2 I/2 2lp(g t s

(- . -

JF.(t) ' '+' k s—4m'
+4+ s" '

1 4m

F,(l,s) =— dt

4m )

thedirect-channel an h
27) d (28),Kqs.

o right-hand cut.
auxi iary'l' partial-wave am

e(,
(V's+ (4m')'")"

F(l,s) =4 1 A,(,t)
2t

d Q 1

ri —
' 'n E . (27) will be referredi ht-h d side i Eq. d
I

st and the secon
el left-hand functions

t of F(l,s) across the eTh discontin y o
l s). is. Th will be clear i w . 27 in

' '")"
ds

4m' 4 44 s)

'&s&~~). E(l,s) andh sical cut (4m'~s~ . andp y'
D(l,s satis yt' fy the following in e

our represeou p entation form.
'

nt feature of o p
bhl-asymptotic e

the presence
that its -a

of ~ unc

is!)1,we can use t e
f~(l,s').

0

X(l,s) =—
k=1,2, 3

D(l,s'), (35)
1 )il2

Qi(s)-
I( )

s —s
and

y(l, s') JV(l,s')
ds

00

Dl, s) =1—— (36)—s' —1)'"j) s —s
(3O)

s. 35 and (36), we obtain'nating D(l,s) from Eqs. (35 an, tain

and obtain that

(38)
where

() ()(')=I
il (~,+(~,)...)

x' '
l s)=1. Wea prox'ximation Gt(,1 tic unitarity p

(B(l,s) =X(l,s)/, s,
cllt ( ~ ~s~0 alls has the left-hand cwhere X(l,s) has

F(l,s') F(l,s)'—
dsds' $(l,s') (39)

4m 4m 2

38)show that conditons

A(st, e, th total scat eri

ex {(l+-,) lnLs (

Ellml1)i/4

exp

" F(l,s') F(l,s—
~(l,s) =F(l,s)+31constant!i!

i F(s,l) i
(con

ill be true t ro

»w i
'

i ate whether e
'i a h the integral

totic behavior wil

g

he representation
of the 1V/D in e

37) is nonsingu a .
VVe now

1 t
r rovi e

Es. e. The unitarity

nonsingu a p

equation for S, . e
for s&4m') is given by

I F(l,s) I
'ds( ~,—), ( )

4m'

)( +)(, —

and
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absorptive part in the t channel. Once it is proved that
the integral equation (37) is nonsingular, we can con-
clude' that if the resolvent exists for at least one value
of E then the solution of the integral equation is a mero-
morphic function of t. The poles of N(l, s) in the complex
l plane are independent of s and cancel in $(t,s). Thus,
in the l plane, the poles of $(l,s) and, therefore, of a+(t,s)
are to be identified with the zeros of D(l,s) which are
s-dependent. Since F(l,s) is bounded by

~
t~

'/' asymp-
totically, it is quite clear from Eq. (37) that the same
bound holds for the kernel and therefore for N(l, s). It
follows that the analytically continued partial-wave
amplitude is bounded by

~

t
~

' ' asymptotically so that,
by making use of the Sommerfeld-Watson transforma-
tion' and the fact that a+(l, s) is meromorphic, one can
obtain the Regge representation for the total scattering
amplitude A (s,t).

m' 4m'

) s~~ i—28+2'

f
I/ (s,s')

/ i

—
i

dsds'
&s)

F(t,s') F(t—,s)
ds ds

$ —s

(s~ 4/ri2) i+1/2 2 ( s~ 1—28+&

X— ie.(t,s')i, (45)
s'i/2(gs'+(4t/t2)i/2)i ( s

should be convergent. If we now assume that

The inhomogeneous term in the integral equation for
M(t, s) is clearly square-integrable. Thus, in order to
show that Eq. (42) is nonsingular, we have only to prove
that the integral I, defined by

~
(R(l,s)

~
(constantXs' ", (46)

III. DOMAIN OF MEROMORPHY OF THE
PARTIAL-WAVE AMPLITUDE OBTAINED

BY THE N/D METHOD
where g is a positive number, and substitute s'=As
we obtain

Our subsequent discussions are based on the following
ansatz rega, rding the asymptotic behavior of A(s, t)
and Ai(s, t):

s ' '&ds $1—2~2'(Q + (~

&
t/i sa~

A(s, t), Ai(s, t)(rt max~ —,—~, s, t)R, (40)is~' V)
' since we can always choose a« it. It follows that M(t, s)

and, therefore, N(l, s) is a meromorphic function of l.
We have thus shown that if A(s, t) and A i(s, t) obey the
boundedness condition (40), then a+(l,s) is a mero-
morphic function of t in the domain Ret) max(p, —y).
The restriction Ret)max(P, —y) comes through the
fact that our representation LEq. (27)j for F(l,s) breaks
down if Rel& max(P, —y). If 8) t~, instead of Eq. (42),
we can consider the integral equation (37) for V(l,s)
directly and show that it is nonsingular. Our conclusions
would be the same as in the case already considered.

It may be noted that in contradistinction with the
boundedness condition assumed by Mandelstam, ' viz. ,

where p)0 and g, R are suKciently large positive
numbers. It is now possible to show (see Appendices A
and B) that if P(min(i, y) there exists a left-hand
function F(l,s) such that (i) F(t,s) is holomorphic
for Ret&max(P, —p), and (ii) asymptotically F(t,s)
vanishes, i.e., as s —+

~
F(t,s)

~

(consta, ntXs ', 8)0. (41)

The above properties of F(l,s) are sufFicient to
guarantee that the integral equation for N(t, s) is non-
singular. We first remark that if ti( —'„F(t,s) would not
be square-integrable so that condition (38) would not
hold. In order to get around this difficulty we divide
the integral Eq. (37) for N(t, s) by s'" '+' and obtain

[A,(s,t)i&gt' r/s, /sf, ftf-&R, (5)

F(t,s)
M(t, s) =

s

( s~) i/a —s+

E(s,s')I
&sJ

where
M(l, s) =N(t, s)/s'/2 '+'

F(t,s') —F(l,s)
K(s,s') = 1 " k (t,s')

D(t,s) = 1—— ds' N(l, s'),
4~& $ —S

$ —$
(s~ 4pg2) i+1/2

X —-- R(t,s') . (44)
s&1/2(gsl+ (4iii2)1/2)2l

ro J. D. Tamarkin, Ann. Math. 28, 12'7 (1927).
where k(l, s) is bounded for large s. Let us first assume
that N(l, s) is bounded on the line Ret=1 —y. Since

where y) 0, condition (40) is consistent with crossing
symmetry and the former is only a particular case of the
latter. On the basis of the boundedness condition (5)
Mandelstam has claimed that a+(t,s) is rneromorphic in
the domain Ret& —8, where 8=min (yP~). Condition

M(t s~)ds~ (42) (5), however, imPlies the existence of a singularity of

a+(l,s) on the line Rel=1—y and since this lies within
the domain of meromorphy the singularity must be a

(43) pole. But this is not possible. In order to see this we
consider the equation for D(t,s),
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the base of the tube T. The tube T is connected if 5
is connected and the convex hull of a tube is the tube
over the convex hull of the base. The tube theorem"
now states that the holomorphy envelope of a connected
open tube is its convex hull. In other words, if ter(xr', xs')
and ~s(x&",xs") are two points of S, then any point lying
on the line X~r+(1—X)&us, 0&X&1 is also in S.

In order to apply the tube theorem we 6rst construct
the function

Reg=p

H(l, s) = +—
$(l,s) 2s- 4„~

(s' —4m')'"
as'

I s"

&= s=o S=g

/gs' —(4'') '~') ' (R(l,s')
XI —, I, , (4&)

~ps'+ (4m')'"1 s' —s
FIG. 1.The shaded triangle ABC is the convex hull of the base.

The partial-wave amplitude is meromorphic in the tube with base
ABC.

N(l, s) is the solution of a nonsingular integral equation
it must vanish asymptotically. It follows that on line
Rel=1—y, D(l,s) asymptotically tends to unity and,
therefore, a+(l,s) cannot have any pole on that line for
large s. If, however, N(l, s) has apole at, say, l= 1 y+i $—
then in its neighborhood a+(l,s) would behave as

+(l, )=f( )/L(l —1+7—5)—4( )3,

where f(s) and P(s) both vanish asymptotically. Again
we conclude that a+(l,s) cannot have a pole at
l=1—y+if for large s. According to our results, how-
ever, a~(l, s) can be analytically continued by the N/D
method only into the region Re/) 1—p and it would be
meromorphic there. Thus, the above difhculty does
not arise.

IV. DOMAIN OF MEROMORPHY OBTAINED BY
THE METHOD OF ANALYTIC COMPLETION

Apart from the N/D technique, the only other
method which has been employed so far in connection
with the analytic continuation of partial-wave ampli-
tude is analytic completion with the help of the tube
theorem. 4 We shall now show that the domain of
meromorphy of a+(l,s) obtained by this latter method
on the basis of the assumptions already made in the
present investigation is smaller than that obtained in
the preceding section.

We begin by quoting the definition of a tube. ""A
tube 2' in the space of two complex variables zr =xr+ iyr,
zs xs+iys ——is the set of all points which can be repre-
sented as (x&,x&)QS, —~ &y&, ys&+ De, where S is any
set in the two dimensional space of (xr,xs). S is called

"Wightman's lectures on analytic functions of several complex
variables, in Relations de dispersioe et particlles dlementaires
(Hermann et Cie, Paris, 1960).

'~S. Bochner and W. T. Martin, Several Complex Variables
(Princeton University Press, Princeton, New Jersey, 1948),
Chap. V.

which is free from the unitarity cut. In the above we
have assumed that 5t(l,s')/s' vanishes asymptotically.
If $(l,s) is holomorphic in a certain domain, H(l, s) will
also be holomorphic in the same domain except for the
poles due to the zeros of $(l,s). From our assumptions

l Eq. (40)j about the asymptotic behavior of A&(s, t) it
follows that H(l, s) is meromorphic in a tube domain
given by the connected set of points (Rel) u, Res) 0)
and (Rel)P, Res)R). If, following Bardakci, ' one
assumes that the tube theorem can also be used for
analytic completion of domains of meromorphy, one
can conclude that the domain of meromorphy of H(l, s)
and, therefore, of $(l,s) includes the set of points
(Rel='A(n —P)+P; Res) (1—X)E} with 0&'A&1 and
Im/, Ims arbtirary. Diagrammatically these points
de6ne an open tube with the triangular base ABC in
Fig. 1.Clearly, the domain of meromorphy thus obtained
is smaller than the domain {Rel)P,Res) 0) obtained
by the N/D method in the preceding section. It should,
however, be pointed out that we have not fully utilized
in the analytic completion procedure all the assumptions
needed in analytic continuation by the N/D method.
Moreover, the latter procedure does not work at all
unless P&min (1,y), whereas it is always possible to
obtain a domain of meromorphy larger than that of
holomorphy for the partial-wave amplitude provided
only P&a.

We would like to remark that the use of the Froissart
bound for A &(s,l) in the procedure of analytic completion
with the help of the tube theorem, as done by Bardakci, 4

cannot be justified rigorously. A Froissart bound, or an
extension thereof, '4 for the absorptive part in the
t channel is valid only if cos8, where 8 is the corres-
sponding angle of scattering, is restricted to lie within
the Lehmann ellipse. This means that Ims cannot be
arbitrary; in particular, if we take 0&Res&e then
lImsl &Sm'. It follows that the region where $(l,s) is
holomorphic for Rel& 1 cannot form a tube domain, and
hence the tube theorem cannot be applied unless some
extra assumptions regarding the validity of a Froissart
bound outside the Lehmann ellipse are made.
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V. CONCLUSIONS

It may be argued that if in our ansatz (40) for the
asymptotic behavior of A i(s,t), p is assumed to be nega-
tive it may be possible to extend the domain of mero-
morphy of a+(/, s) to the left half of the complex / plane.
Indeed, in our investigations the only restriction im-
posed on P was P&min(i, y). Thus our conclusion that
a~(/, s) would be meromorphic if Re/) p will remain true
even if p is negative, unless the integral equation for
E(/, s) ceases to be nonsingular for reasons which were
not relevant for positive values of Rel. It may be easily
verified that so long as Re/) —1, F(/, s) is holomorphic
in 0&s& ~ and behaves as s s (see Appendix B)
asymptotically. Thus, the kernel of the integral equation
for N(/, s) remains square integrable. But at Re/= —1,
(i) F(/, s) and, therefore, the kernel develops a fixed pole
due to the poles of the Qt functions at the negative
integral values of /, (ii) the kernel ceases to be square-
integrable due to the presence of the factor (s' —4l') '+' '.
Thus, even if P & —1, our method of analytic continua-
tion does not work beyond the line Re/= —1 ao.d there
will, in general, be a singularity of a~(/, s) other than a
pole at l= —1. Since there is a unique correspondence
between singularities of a+(/, s) in the / plane and the
asymptotic behavior of A~(s, t), consistency demands
that, in general, P cannot be less than —1. This is in
agreement with the observations of Gribov and
I'orner anchuck. "

Apart from singularities at negative integral values of
l, several authors'4 have discussed the accumulation of
poles of the partial-wave amplitude near /= —

~ at
threshold which is essentially of kinematic origin. "
From the above discussion it is, however, clear that if
P& —~~, nothing becomes wrong with X(/, s) at /= —rs

and s=4m' except that it may have a 6xed pole at
/= —sr . In that case D(/, s) will also have a fixed pole at
/= —

s and this will cancel in X/D. In any case, in the
neighborhood of the threshold D(/, s) may be repre-
sented by

D(/, s) = 1—(s—4m') '+' 'P(/),

where P(/) is at most meromorphic in / near /= —is. If
l/(/) is bounded and nonzero at /= —-'„ the zeros of
D(/, s) are given by
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APPENDIX A

In this appendix we shall prove some results which
will be used in Appendix S.

From
2 g(s, t) =Red, (s,t)+is.p(s, t), (A1)

it follows that if, for s, t)R, A&(s, t) is bounded by
max(s~/t&, t%&) then p(s, t), being its imaginary part,
cannot behave worse than max(s~/t&, t%&) for s, t)R.
Thus, we obtain

/= —-', at threshold remains true even if l/(/) has a zero
or a pole at I= ——,'.

In conclusion, let us summarize our results. From the
validity of the Mandelstam representation with a finite
number of subtractions for the total scattering ampli-
tude one concludes that there exists a domain of holo-
morphy of the form Rel&o, of the relativistic partial
wave amplitude a+(/, s) defined by Eq. (1). Using the
tube theorem for analytic completion it is possible to
prove that a+.(/, s) is meromorphic in a larger domain if
in addition to condition (2) one also assumes the
boundedness condition (40) with P&u for the asymp-
totic behavior of A~(s, t). For the 1V/D method of
analytic continuation to work, one has to make use of
the boundedness condition (40) with the further re-
striction p &min(i, y). The domain of meromorphy
Re/) p obtained by this latter method is larger than the
corresponding domain obtained by using the tube
theorem. It should be emphasized that the mere exist-
ence of a domain of meromorphy Re/) P in the complex
/-plane is not of much physical interest unless one can
at the same time show that the analytically-continued
partial-wave amplitude is bounded asymptotically in /

in this domain. The above requirement for the partial
wave amplitude is guaranteed in the 1V/D method of
analytic continuation.

/= ——',+a/ln(s —4m')+2im7r/1n(s —4m') (48)

where a= —in/( —zr) and m is any integer. Equation
(48) clearly shows the accumulation of zeros of D(/, s),
i.e., poles of a+(/, s) near /= —rsat threshold. It is also
easy to convince oneself that clustering of poles around

s~ t~)
p(s, t) &max —,—i, s, t)R

t& s&)

According to Eq. (14),

(A2)

"V. ¹ Gribov and I.Ya. Pomeranchuck, Zh. Eksperim. i Teor.
Fiz. 43, 1556 (1962) LEnglish transl. : Soviet Phys. —JETP 16,
1098 (1963));P. G. O. Frennd and R. Oehme, Phys. Rev. 129, 2361
(1963l.

'4 B.R. Desai and R. G. Newton, Phys. Rev. 130, 2109 (1963);
V. N. Gribov and L Ya. Pomeranchuck, Phys. Rev. Letters 9, 238
(1962); B.R. Desai and B. Sakita, Phys. Rev. 136, B226 (1964)."M. Froissart, Proceedings of Seminar on Theoretical Physics,
Trieste, 1962.

A, (s,t) =y(s, t)+@(4m' s t, t), ——,(A3)

where, for t)R, d(s, t) is given by

1 ' p(u, t) 1 "p(u, t) s&

@(s,t) =— du+ — —du++ s"-'f„(t),
4m~ I—S ~ ~ I—S N2'

(A4)
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1=-2
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'
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