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A method for obtaining solutions to the S and D equations as explicit functions of the coupling constant
is developed. The analytic properties of Eand D in the coupling-constant plane are investigated. Finally this
method, which is particularly useful in bootstrap calculations, is used to Gnd the self-consistent parameters
in several types of scalar and pseudoscalar meson bootstrap calculations.

I. INTRODUCTION

S INCE their introduction by Chew and Mandelstam, '
the X and D equations have been employed ex-

tensively in dynamical calculations in high-energy
physics. The general procedure has been the following:
one starts with an assumed interaction whose strength
is determined by a coupling constant and the ED '
technique is used to generate a partial-wave scattering
amplitude which satisfies unitarity on the physical cut
and has the input left-hand singularity. The integral
equation for F is solved in one of several ways, either
by iteration or by a numerical Fredholm technique.
The disadvantages of these two methods of solving the
F equation is that the dependence of the coupling
constant is not explicit and for each new value of the
coupling constant the equation must be solved again.
The de6ciency becomes particularly important in the
case of bootstrap calculations in which one adjusts the
coupling constant to produce a resonance or a bound
state at a particular energy.

The purpose of this paper is to propose another
method of solving the AD ' which, while requiring the
use of a computer, has the advantage of making the
dependence of the solution on the coupling constant
explicit. This method makes use of the simple analytic
structure possessed by the S and D functions in the
coupling constant plane. The procedure is then applied
to several types of bootstrap calculations.

The following section presents the solution to the
XD ' equations. Section III contains the formulation
of the bootstrap problem in terms of this form of the
solutions to SD '. In Sec. IV numerical results are
presented.

II. SOLUTION FOR THE N AND D FUNCTIONS

To illustrate this approach, based on analyticity of
the F function in the coupling constant plane, we will
consider the S wave scattering of equal-mass scalar
mesons. The method obtained is by no means limited
to this simple example.

The XD ' method is a mathematical procedure for
constructing a scattering amplitude which satisfies
elastic unitarity on the physical or "right-hand cut"

and has a prescribed discontinuity across the "left-hand
cut."The partial-wave amplitude T which is analytic
in the energy variable s is written:

T= ecs sinb/p= ND-' (2.1)
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where o (s) is the discontinuity of T across the left cut
and gs is a parameter (coupling constant) which controls
the strength of this singularity. Since the scattering
amp1itude is unchanged if both Ã and D are multiplied
by a constant we remove this ambiguity by normalizing
D to one at s=sp. The linear integral equation for X is
obtained by substitution of Eq. (2.2) into (2.3).
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It is this equation which is usually solved by iteration
or matrix inversion techniques. The method of so1ution
proposed here is the Hilbert-Schmidt method' for
treating inhomogeneous linear integral equations such
as Eq. (2.4).The 6rst step of the approach is to produce
a symmetric kernel in Eq. (2.4). This is done by con-
sidering the following modish. cation of S and 8:

p(s) )'" p(s) &'"
rt(s) =

i N(s), b(s) =
i

B(s) . (2.6)
s—spl s—ssf

where p=L(s —4tts)/s]rts is the appropriate two-body
phase-space factor. The left-hand singularities are
carried by N, while D is analytic on the left (s less than
the physical threshold). The equations satis6ed by N
and D are the following:

g' o (s')D(s')
X=— 8$ (2.2)

s —sI

~ This work supported in part by the National Science
Foundation.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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' See, for example, R. Courant and D. Hilbert, Methods of
Mathematical Physics (Interscience Publishers, Inc. , New York,
1953), Vol. II, Chap. 3.
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FIG. 1. Diagrams repre-
senting the scalar meson boot-
strap: (a) is the interaction
produced by exchange of the
scalar meson which in' turn pro-
duces the bound state (b)
which is itself the scalar meson. where

(s—sp 'i' g'b„U„(s).V(s) =
i n(s) =P
k p(s)

(2.12)

furthermore the positions of these poles are fixed inde-
pendent of energy. We may now transform back to
the usual E:

(B)

The integral equation for e is now
If we define

(s—sp)'"
U-(s) =

I I u-(s).
p(s)

where

n g'b+g' ds'k (s',s)n(s'),
4~2

(2 7) V„(s)=
s—sp p (s') U„(s')

ds
(s' —sp) (s' —s)

(2.13)
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We will now assume that k is a nondegenerate kernel
and that the following integrals are bounded:

dsds'Lk (s,s')j', dst k (s,s')j'.

In this case the kernel k has a discrete set of real
eigenvalues and any function which can be represented
in the form

g(s) = ds'k(s, s')f(s'),

where f is piece-wise continuous can be expanded in
terms of the eigenfunctions of k. The orthonormal
eigenfunctions, which will be denoted by u„(s),satisfy
the following equation:

X„u„(s)=
4~2

ds'k(s, s')u„(s'). (2.8)

ds'b(s')u (s').

Substituting these expansions into Eq. (2.7) and pro-
jecting out the ith component, we obtain

We now expand e and b in terms of the I's:

n(s) =Q a„u„(s)b(s) =g b„u„(s), (2.9)
where

the D function may be expressed as an explicit function
ofg.

g'b„V.(s)
D(s) =1—P

1—g'X

Both X and D have fixed poles in the coupling constant
plane whose location depends on the subtraction point
Sp as well as the function B. On the other hand, T has
poles in the coupling constant plane which move as a
function of the energy.

Let us examine the physical significance of these poles
in the g' plane. First, consider g' small but approaching
the pole due to the largest positive eigenvalue X~. As
g' ~ 1/Xt, one term dominates both E and D:

X-+ g'btUt(s)/(1 —Xtg'),

D ~ —g'btVt(s)/(1 —Xtg').

Since the V's have a zero at s=sp the scattering ampli-
tude 2' has a bound-state pole at sp for g'=1/Xt. In-
creasing g' to the next largest eigenvalue corresponds
to having a second bound state reach the point sp. From
this form'""'of the XD—' solutions it is clear that in a
bootstrap":~calculation one must be more precise than
simply stating that a bound state is to be produced at
a given energy as it is clear that there are infinitely
many solutions g'=1/Xt, 1/X„that have a bound
state at sp.

Finally the dependence of the positions of the poles
on sp can be understood as follows. Each pole is at a
value of g' at which a bound state has reached sp,
clearly if sp is decreased, a larger coupling constant will
be required to produce a bound state at a lower energy
(more binding energy). The poles which lie on the
negative real axis correspond to ghost poles in the ED—'

Finally
Gi g bs+g )I iQi ~

g'b,u;(s)
n(s) =P

1—g9.

(2.10)

(2.11)
FIG. 2. Diagrams for two

pseudoscalar mesons (P) pro-
ducing a scalar meson (S) from
the force provided by the ex-
change of the scalar meson.

Thus we see that e is a meromorphic function of the
coupling constant with poles only on the real axis, and (A)
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FIG. 3. Diagrams for a
pseudoscalar meson (P) and a
scalar meson (S) forming a
pseudoscalar bound state. The
force is provided by the pseudo-
scalar meson exchange in one
crossed channel.

solution which appear for a suKciently repulsive
interaction.

From the analytic structure of X we see that the
iterative solution to Eq. (2.7) (Neuman series) can
converge only if g'(

~
1/X

~
where X is the eigenvalue

with the largest absolute magnitude, as this solution
is a power-series expansion in the coupling constant
about g'=0. This explains the dependence of the con-
vergence of this expansion on the value of sp.

III. FORMULATION OF THE BOOTSTRAP
CALCULATION

In discussing bootstrap calculation let us consider
d,s an example the simplest bootstrap, namely, the
scalar meson. In this case the exchange of a scalar
meson of mass p LFig. 1(a)$ is required to produce a
bound state of mass p in the S-wave scattering ampli-
tude for two scalar mesons LFig. 1(b)j. Since all the
scalar mesons are identical the coupling constant is the
only free parameter and is adjusted to produce the
bound state at the correct energy.

The interaction term produced by this particle
exchange is

B(s)= f2/(s —4)j ln(s —3), (3.1)

where p has been set equal to 1. If we now set sp=1,
the solution with only one bound state located at sp is
obtained for g'= 1/Xr. The self-consistency equation is
then

g'—= 1/Xt ——Ur(1)/t (8/rls) Vt(s)$, i. (3.2)

This approach clearly has the advantage of giving
the input value of g' directly rather than solving the
E and D equations a number of times varying g' to
produce the desired bound state.

The numerical results for this case are that the input
g'=17.1 while the output g' from Eq. (3.2) is 105 in
close agreement with the values obtained by Collins'
in a more detailed treatment of the scalar meson
bootstrap.

Another bootstrap possibility is binding two identical
pseudoscalar mesons in an S state to produce a scalar
meson (Fig. 2). In this case the Born term is

8 (s) = L2/(s —4)$ ln(1+ (s—4)/p'), (3.3)

where p is the mass of the scalar meson and the pseudo-
scalar mass is set to 1. In this case p, can be varied to
produce a self-consistent value of g'. The numerical

P. D. 3. Collins, University of California Lawrence Radiation
Laboratory Report, UCRL 11463, 1964 1unpublished).

results for this case are that the self-consistent values
are p'=3.5 and g'= 5 3

The third type of bootstrap investigated here is a
scalar meson of mass m and a pseudoscalar meson of
mass p which are bound to produce the pseudoscalar
meson. The force is produced by the pseudoscalar
meson being exchanged in one of the crossed channels
(as shown in Fig. 2).

The Born term in this case is

where
&()= (1/4V') h (1+4&'/ '),

q'= rs —(m+ )'jLs —(m —p)'3/4s

(3 4)

The ratio of m/p can be varied to produce a self-
consistent g'. The self-consistent values are g'=4.8 and
(m/p)'= 0.18.

The simplification provided by the eigenfunction
solution to E and D makes possible the investigation
of two-particle bootstrap problems in which one includes
the exchange of two mesons and requires the force to
produce two bound states at the appropriate energies.
In this calculation the ratios of the coupling constants
and the ratio of the masses are the free parameters to
be adjusted for self-consistency.

It should be noted that in the bootstrap problems
which have been discussed here the two-particle con-
tinuum in the crossed channel and inelastic sects in
the s channel have been ignored. The additional inter-
action produced by the continuum does not have the
form which has been assumed for the exchange inter-
action in Eq. (2.5) in that its strength is not controlled

by a coupling constant and hence cannot be easily
included in the calculation scheme being discussed.

N=gsg+gsgN

where E is an n)&e matrix. The solution for 37 is

(4.1)

N= gsp' —gsQg
—rg. (4 2)

Most of the computer time required for this calculation
is required for the inversion of the matrix (I gsÃj-
which must be done for each value of g' of interest. The
eigenfunction method requires the computation of the
eigenvalues and eigenvectors of E which requires com-
puter time comparable to the time required by matrix
inversion. As a result producing the solution for any
additional values of g' results in a minor increase in
computer time when the eigenfunction method is used.

IV. NUMERICAL CONSIDERATIONS

To illustrate the advantages of the eigenfunction
expansion solution from a numerical point of view we
will compare this method with the most commonly
employed method of matrix inversion. In either ap-
proach the interval 4p' to ~ is mapped into a finite
interval which is then represented by finite (e) mesh.
In this form Eq. (2.4) is simply a vector equation
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4 b, U, (s)
'l'(s) =2

'=' (~/f,")—) 'EigenvalueNumber

TABLE I. The Ave largest eigenvalues and projections 6; for the function is represented by
scattering of scalar mesons with the exchange of a mass 3ttf.' scalar
meson. The value of so was also 3y'.

0.160
0.00945
0.00118
0.000235
819X10 '

—0.334
0.0283—0.00464

+0.00106—0.00028

and D is given by
b, V, (s)

D(s) = 1—P
'=i (l,/g') —)t;

The fact that the Born terms used in most calcu-
lations have relatively simple structure for s)4tts (for
example the scalar exchange Born term is positive
definite and monotonically decreasing for s)4) means
that only a few of the coeKcients b; will be important,
allowing the X function to be represented over a wide

range of coupling constants as a simple function of g'.
To illustrate this point the two scalar problem has been
solved for a meson exchange mass of 3p,' with 50 mesh
points. In Table I are given the eigenvalues for the Ave

largest coeKcients b;, For the range 0&g'&5000 the E

to an accuracy of a few percent. The value of so used
was 3p, .

V. CONCLUSION

The method which has been discussed here produces
solutions to E and D which are explicit functions of the
coupling constant and which, for wide ranges of the
coupling constant, can~~be approximated by a small
number of terms.

The "bootstrap" problem is particularly simple when
this form of the gD—' solution is used as one parameter
is determined directly.
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An attempt is made to continue analytically the partial-wave amplitude for the scattering of two identical
spinless particles in the complex l plane, exploiting unitarity and analyticity properties in s. The Froissart-
Gribov representation for the partial-wave amplitude is known to be holomorphic in the region Rel) n of
the complex l plane provided the absorptive part A i(s, t) of A (s,t), the scattering amplitude in the t channel,
is bounded by t for any 6xed s. Apart from the above assumptions, two crucial hypotheses on which the
present analysis is based are (i) the possibility of extending unitarity in the inelastic region to complex values
of l, and (ii) the boundedness condition, viz. , that both A 4(s, t) and A (s,t) are asymptotically bounded by the
maximum of (te/sr, so/t I) if s and t are both sufficiently large with y) 0 and p ( min(f, y). With the help of
the fi/D technique it is then possible to continue analytically the partial-wave amplitude up to the line
Rel =P and show that it is meromorphic in the region P (Rel &~a. The domain of meromorphy of the partial-
wave amplitude obtained by the method of analytic completion is smaller than the preceding one. The
analytically continued partial-wave amplitude is bounded by

~
l

~

'~' for large values of Imi, so that a Regge
representation for A (s, t) can be obtained. The f|//D method of analytic continuation does not work beyond
the line Ref = —1 even if one assumes P (—1. It has also been shown that accumulation of poles at l = ——,

'
near threshold, a feature which has been pointed out by several authors, is also manifested in the analytically
continued partial-wave amplitude.

I. INTRODUCTION

HE purpose of the present work is to discuss the
problem of analytic continuation of the rela-

tivistic partial-wave amplitude in the complex angular-
momentum plane and hence to investigate the singu-
larities which one encounters in such a procedure. In
the case of nonrelativistic scattering by potentials,
Schrodinger equation provides a very convenient frame-

work within which this problem has been tackled. ' In
relativistic scattering the absence of a Schrodinger
equation makes the situation very much complicated.
It is, however, presumed that, unitarity and the analy-
ticity properties of the scattering amplitude as contained
in the Mandelstam representation play the role of a

' A. Bottino, A. M. Longoni, an& g, Regge, Nuovo Cimento 2B,
954 (1962).


