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~+~+p Resonance —A Static-Model Calculation*
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The v+v+p scattering amplitude in the J= —, (even-parity) state is calculated, in the static-nucleon approxi-
mation. The isobar model is not used, and the symmetry required by Bose statistics is maintained through-
out. As a consequence, although the static model radically simpli6es the three-body problem, the solution
displays some interesting three-body features. A discussion of the physical interpretation of the solution is
presented, especially with regard to the definition of a three-particle resonance. Such a resonance is found;
rough values for the position and half-width are 1550 and 125 MeV, respectively. No arbitrary parameters
are used in obtaining these numbers, which agree rather well with recently reported experimental values for
a w+w+p enhancement in the 6nal state of m++p ~ m +m++m++ p.

I. INTRODUCTION

q~OR a long time there has been speculation concern-
ing the possibility of a resonance in pion-nucleon

systems with isotopic spin T=
~ and angular momentum

J= s. The simplest such system is s.+s+p, which is pure
T=-', . The original basis for these speculations was the
old strong-coupling calculations, ' which predicted a
squence of bound pion-nucleon states with 2J=2T
=1, 3, 5, . More recently, a number of authors' 4

have considered this problem from diferent points of
view and all find indications that a resonance should
exist in the (5,5) state. Roughly, the reason for this is
that the exchange of a nucleon or an X* (i.e., the 7'
resonance at 1238 MeV) provides a strong attractive
force in the (5,5) state. (See Fig. 1.) All of these calcula-
tions neglect nucleon recoil.

There has recently been reported the observation of a
s.+s-+p enhancement at 1560 MeV with a half-width
of 110 MeV. ' This has led to further speculations
regarding resonances in similar systems. ' The general-
izations of both the strong coupling calculations' and
the exchange calculations~ using SU& symmetry leads
one to expect the s.+s.+p resonance to be a member of
a 35-dimensional multiplet. Many interesting questions
are associated with this possibility, but in this paper we
shall ignore strange particles altogether.

The purpose of the present work is to present a
simple calculation of s.+s-+p scattering which goes
further in dealing with the three-particle system than
the earlier calculations. The usual practice in treating
three-particle systems, in which a pair can resonate, is

to use the isobar model" to reduce the problem to a
two-body problem. While this is frequently a successful
procedure, some of the interesting features of the
problem are lost. In this calculation, no such approxima-
tion will be made; the pion energies will be allowed to
vary over the entire range compatible with energy
conservation. Furthermore, the two pions will be treated
in a completely symmetric way and no aritficial sym-
metrization of the final result will be needed. Lacking a
useful dynamical basis for treating three-particle field-
theory problems, we too will work in the static-nucleon
approximation. Only fairly low energies of the individual
pions, energies for which the static model has already
been successful in xlV scattering, will therefore be
considered. At such energies, direct mx interactions are
probably not too important and will be omitted from
the calculation. These assumptions radically simplify
the three-body problem. However, they do provide us
with a soluble problem, the solution of which has
several interesting features not present in the two body
case. In particular, we will be able to discuss to some
extent the dehnition of a three-particle resonance.
By physical arguments, the scattering amplitude will be
separated into a part which results from the initial- and
final-state interactions, and a part which results from
the simultaneous interaction of the three particles. The
latter part will be shown to be &1 in absolute value.
The energy for which the equality holds will be called a
three-body resonance energy. " The solution will be
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Fxo. 1. s-+z+p scattering by way of (a) nucleon exchange,
(b) (3,3) resonance exchange.

"R.M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 109,
1723 (1958); 123, 333 (1961).

"No implication regarding associated poles in the nearby
unphysical region is intended by this de6nition. For some interest-
ing comments which bear on this question, see C. Goebel, Phys.
Rev. Letters 13, 143 (1964).
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x(P' q') (~ ~~—~'—)

shown to display such a resonance in the J=-s, state Eq. (2.3) may be written
with parameters that agree quite well with the experi-
mental values quoted above.

II. CALCULATION OF THE m+e+P WAVE FUNCTION

In this section, we shall construct an approximate
wave function for the w+m+p scattering state by a method
which has been applied with some success in static-
model calculations of the (3,3) resonance" and the
F~*."The model which forms the basis for this calcula-
tion is the well-known static model of Chew, Low and
Wick. ' The interaction Hamiltonian is

H ~= (4')'tsf dsx o VL~ $(x)]e(x), (2.1)

where g(x) denotes the pion 6elds, e(x) the source
function of the nucleon, and f~0.08 with the pion
Illass y= 1.

The calculation proceeds by constructing a trial state

I Pq)+= 2 ~"o"I
)x(p" q" p q) (2 2)

p// q//

Here
I pq)+ represents an approximation to the correct

scattering state which asymptotically consists of two
pions in plane waves of momentum p and q plus scat-
tered waves with the nucleon fixed at the origin; a~~ is
the creation operator for a m+ meson with momentum
k (only m.+ mesons will enter this calculation so isotopic
indices are unnecessary); I ) denotes a physical proton
state with spin indices understood, and g is a matrix in
spin space. The zero of energy is chosen so that H

I )=0.
The functions x(p'q'; pq) are to be determined by the
condition

= —Z(l ~,-'(H+~ —~. )~, I)x(q",p')
q//

—P(l a, '(H+ce —ce,.)a„ I )x (q",q')
q//

—l 2 (I~"~"(H+~)~'o; l)x(q",p") (2 5)
y// q//

The arguments P, q of x are no longer written explicitly
since they enter the calculations only parametrically.

In order to obtain a simply solvable equation for x,
the operator products are expanded over intermediate
states. It is then assumed that all matrix elements
&rt I a& I ) may be neglected except when

I rt) represents
the neutron state. This is the same approximation made
in the calculation of the (3,3) resonance by this method.
The result of this approximation is that Eq. (2.5)
becomes

x(p', q') (~—~.—~. )

GD&/

v,„l~)&~l v, ,'I)x(q",p )
q// COq/COq«

COq/

+ (I l" I ~)(N I
I'~'I)x(q" q') (2 6)

6)&/CO q//

where orq=co —cop and

,&Pql (H—~) IPq), =0,
5x(p'q'; pq)

(2.3) (I Vslrt)=i N—(k);
w (2(os)'t'

(2.7)

P&,cts' j=teatJst+ &s, (2.4a)

(2.4b)

where ce =cc„+to„cc„'=p'+1. By means of the relations
tt(k) is the cutoff function, the Fourier transform of
e(x). To get more useful equations, Eq. (2.7) is trans-
formed to the angular momentum representation by
way of

(J tt s) (L rrt N)
x»~(tc~ tee')= 2 L(2~+1)(2L+1)'"I dQe» ZQ&»(P M&~q tee~)

fS, A, PF kM L ~sI hatt 1 1)

X I' -*(P')I' "*(q)x.(P',q') (2 g)

[Of course, there is a similar projection on the variables p and q. Since this is exactly the same for all members of
Eq. (2.7), we may take it as understood. g In general, this leads to sets of coupled equations for the x/Jsr(u„, ,u, ,) .

n B. Bosco, S. Fubini, and A. Stanghellini, Nucl Phys. 10, 663 (1959).
+ D. Amati, A. Stanghellini, and R. Vitaie, Nuovo Cimento 13, 1143 (1958);T. L. Trueman, Phys. Rev. 127, 2240 (1962).
"See, for example, S. S. Schweber, Retateeesttc Qttue&ra Feeld Theory (Row, Peterson and Company, Evanston, Illinois, 1961),

Chap. 12.
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However, for the case of primary interest J=-'„a very simple uncoupled equation results:

/t/3/2

de"u (q")
Q) qI I

q~ 3/2 pi3/2

u(q') ~. X»q, q, »s(~q" 8n')+ u(p )~q'7f»q s»s(~q" ~q') ~ (2 9)
07 q&

(From now on, the subscripts will be dropped since this is the only amplitude to be considered. )
The boundary conditions are incorporated into Eq. (2.9) by rewriting it as

x (~;,~') =~(~' ~.)6(~'—~q)+~(—~' ~.)o(~'—~q)—

where P, = sqf' and
qr M~i+tqqi Go —tq

M&& COq&

u(q')q'"' K(co„)+u(p')p'»q E(tq, ), (2.10)
CO qq CO&1

E(qq, .)=
g"»'u (q")

dGOq» X(~',~. )
(0q«

(2.11)

At this point, it is convenient to introduce the following functions:

q'"u'(q")
(2.12)

u(7') (7i' "'~;
L(~n)=&(~')D(~') . . .—,I —, P(~. —~.)+&(~.—~,)].

u (p )p ' u (p') k p

It follows from Eqs. (2.10)—(2.13) that L(o/„) satisfies

(2.13)

X (pq)s/'u(p)u(q)
L(tq, )=—

D (o/q) (o', .—(oq —qq) D ((u„) ((u„. /d„qe)— —

ImD (M qiq ) Gl q~ ~ L (o/q» )
dMq»

G) ) GO CO « —
CO / —Z6q ) q q u

(2.14)

p' is shorthand for L(cq —cq„)'—1]i/'. D(~~) will be
recognized as the denominator function of the zX
scattering amplitude in the (3,3) state, in the one-

meson approximation with the crossed m.Xcut neglected.
Explicitly,

e"(" & sin8(cq„) =u'(P)XPs/cu D(cq„), (2.15)

where S(o/„) denotes the (3,3) phase shift.
Thus, the integral equation for x(cq„,cqq ) is reduced

to a fairly simple single-variable integral equation for
L(&q„.). An equation similar to this was obtained by
Kallen and Pauli" in the problem of constructing

i U8) states in the Lee model; the significant difference
is the inhomogeneous term in Eq. (2.14), which has a
pole in the region of integration. Recently, Kenshaft
and Amado" have presented a solution of the Kallen-
Pauli equation. Rather than try to adapt their method

"G. Kallbn and W'. Pauli, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 30, No. 7 (1955)."R. P. Kenshaft and R. D. Atnado, J. Math. Phys. S, 1340
(1964).

to Eq. (2.14), we present a different technique, which
seems more direct, for obtaining a solution to such
equations.

The function L can be defined by Eq. (2.14) for
complex energy s, with I.(s) ~L(tq„) as ~s„o/ie—
L(s) has poles at cq„, tqq and a branch cut from —qo to
co—1. The main difhculty in solving this equation is
that the discontinuity across the cut at co„. is related to
L(M cq„), not to L(c—o„.).Hence, some relation between
L(s) and L(tq —s) is necessary in order to proceed
further. ' This is provided by the simple relation
between the discontinuity of L(/d„. ) and the discon-
tinuity of D(cq„). Form the symmetric combination

M(s) = (1/s)L(s)D(s)+$1/((q —s)]L((q—s)D(tq —s),
and. observe that M(s) has no discontinuity across the

» Equations of the sort solved by R. D. Arnado LPhys. Rev.
122, 696 (1961)g and P. K. Srivastava (Phys. Rev. 131, 464
(1963)g also relate the discontinuity at &oq to the value of the
function at co —co„.However, their integral equations have a simple
symmetry under s+-+ ao —s which provides the necessary relation
immediately.
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real axis. Furthermore, M(s) does not have poles at
e&„and e&,. (The first point is trivial; the second, though
straightforward, requires a little care since the integral
in Eq. (2.14) contributes a pole to I.(s) on one side of
the cut.) M(s) does have poles, in general, at 0 and es.

Thus,

(1/s)1-(s)D(s)+51/(~ —«))I-(~—«)D(~—«)
= f&/s (e& —s), (2.16)

where 6 is a constant; i.e., b may depend on co„and ~„
but not on s. At this point, the familiar sort of ambiguity
arises: an arbitrary polynomial can be added to the
right-hand side of Eq. (2.16) without changing the
required analytic properties. As is usual in this situation,
we choose the simplest alternative and assume that no
polynomial is present. )The high-energy behavior of the
cutoff function and the implicitly assumed convergence
of the basic integrals in Eq. (2.9) can limit the order of
the polynomial. However, we know of no pyhsical
reason for specifying the precise behavior of u(k) and
so prefer to state the assumption simply, as above. )
Then Eq. (2.16) provides the needed symmetry relation.

b=e&1 (0).

The result of this calculation is

(2.17)

X (Pq) 2/su (P)u (q)D (e& s) —e&„
L(s) =

2I &d &M &D ((d &)D (e&&) «e&

where
00

A (s,e&) = ——
1

2e&D (e&)A («,e&)

(2.18)
1+e&D(e&)A (O,e&)

I111.
/d "D(a&")

X — . (2.19)
D(M ) e& +s—co

When this result is combined with Eqs. (2.10)—(2.13),
the expression for the wave function is obtained:

With this relation, it is routine to obtain a solution of
Eq. (2.14) by the Omnes method. "b is then determined
by the condition

1 X Xus(q)qs Xus(P)Ps
X(~. ,~")=e(~' ~.)e(~; —~.)+"e(~.—~.)~(~. —~~)+-—

2I e&p~+e&2~ —
e&
—zc M2D(G02) e&yD(co„)

usus (p) u'(q) p'q'- Xsu (p)u(q)u(p') u(q') (p'q'pq)'/'
+» L&(~~ —~.)+&(~'—~.))+

e&r D (e&r )e&2D (e&2) 2reo D(e&„)e& D(e& )

CO&&CO~& 1+e&D(a&)A (O,e&)

2e& 2e&D(e&)$(1/e&„)A (e& .,e&)+ (1/e&, .)A (e&, ,e&))
(2.20)

Within the brackets ( } we have set e&„+e&, =&a since only terms satisfying this condition contribute to the
asympotic wave function.

III. DISCUSSION

Equation (2.20) contains all the information we need in order to calculate the 2r+2r+p scattering amplitude. Thus,
the S matrix for the scattering of two ~+ mesons with energies co~, co, into two m+ mesons with energies ~~, m, , in
the J=—', state, is given by

S(e&„.e&; e&, e&,) = 2re"i'& 2»+'—&"&&P(e&„e&„)+8(e—&; e&,))—

with

q/'3/2 p&S/2q3/2ps/2

e"&"n& sinl(~~) e"&"2& sin8(&o, ) e"&" &sin25(e&, ) e"&"2'& sinb(&v„. )—27rl T(~), (3 1)

2r2X2 1+e&D(/d)A (O,ei)
(3.2)

The structure of Eq. (3.1) is just what one would expect
on rather general grounds: the first term corresponds to
combinations of simple two-body processes (Fig. 2)
while the second term corresponds to "true" three-
particle scattering. The S matrix is explicitly symmetric
under the interchange of the two initial or final mesons,

by Bose statistics, and under the interchange of the
initial and final particles, as required by time reversal
invariance. The factors e" sin8/ks/2 reflect initial- and
final-state interactions. '2 T(e&) has the expected analytic

R. Qmnes, Nuovo Cimento 8, 316 {1958)."R. F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963).
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(b) (c)(a)
rams re resent the contributions to the Grs t

attaching initial and anal pion energies

ro erties, viz. a branch point at co=2 an, i.D,o), has
a zero at co* on its secon s e

2P,21on its second sheet.
h ld f roducing additional mesons,Below the thres o or pro

the unitarity condition is (e)„+(e, =(d:

»'CO COQ Q l Q) l IQ) II Q) II ~ Q)yll~Q)yll ~ J)~ q~&y"& (&n'»q' ) ~' ) n

,3.3)

F r an ma rix o
' ' . ,3.1, thisFor an S matrix of the form given in Eq

implies that

sins' (e)s) sinsh (e)s)
dGOI((; =ERIK GO

k3 k3
Im

T(e))

is closel related to the two particle

exp ici y verpl' 'tl verified for the function given by q.
T( ) h a resonance structure, a bas will be

t section. However, because of the
he factor cv as

discussed in the next sec ion.
mediatel thatother arts o o

ro erl be called resonance scattering. Since,.::"., h. 'n -.l."
re ared in plane waves, it is c ear a

ll d nd strongly on

1 f this problem is the following:A otentia
ar

' f d' tes r and r2 interacting witwo pararticles o coor ina e
of a short-range potential ofcenter of force by way o a s or-

the form

V(li, ls) = Vi(li)+ V2(l2)+ V12(~1 ls)

h because there is no direc t mw interaction,w ere,
r and r2 are small.V ( ) is nonzero only when bot ri12 ~1 ~2

'f '
the range of the potentials an E. is theThen i p is e r

ume the effectra iuso esu' f th pherical quantization vo ume,
V ( ) is smaller by a factor of order (p/ )r 8 thanof t/ 12 fj 'f2 is sma

ar conditions
im osed. This is quite clear in our results; for

example if the wave function q.
m totic orm isforme o cd t oordinate space, the asymp

O z+ J=23 WaVe~us e syt th s mmetrized product o two m

ns. In order to see any effects of the true threefunctions. n or er o
orm ion waveartie e sca

'
1 ttering it is necessary to orm p'

ackets which both reach the proton at nearly the same
time. Of course, t is is w a

~ ~

When 3r+3r+p iS prOduCed aS a final State in reaCtiOnS
such as

3r++p ~ 3r +3r++3l++p,
P+P ~ 3r +23+3l++3r++P.

In order to avoid discussing the deta'ils of how the
t d let us consider the following

situa ion, w't tion which can be realized in princip e i no in
wave

J=-'. B choosing the two wave packets omomentum = 2. y c
eak at the protonbe identical, we ensure that they pea a

eneral some of the scattering
results from the first term of the 5 matrix, q.

t combinations of simp e two-bod
t of direct interest. This effect cascattering, it is no o i

' . ca
'1 b oided by using the following proper yeasily e avoi e

acket is iven-b d scattering: if the initial wave pac e i gtwo- o y sea er
b (d e "("» with g(e)g, ) real, then the pe wave acketby g (op t,

—

icall before and afterhas the same shape asymptotica y e
LThe final wave packet is given ythe scattering. e

+m+ S-matrix(e)s/e" ("3).~ Thus, if we calculate the 3l 3l p -m
between initial and fina wave p

&u e) )e '3("~) f3("3) and g((d, .)g((0,.)e"("~'
l two-body effects are removed.respectively, the simp e two- o y

Then

(~ )g(~.)g(~.)~(3 (~)+ 3 (~N)+3 (~P )+3 (~N )15'(e) (e ' e) (0 e) g,~
—s[8(cu) + (u22

where

de& G(e))L1—23ri/(((d) T(e))r/2((0)], (3.5)

and

G(e)) = (3.6a)

n'(~) = (3.6b)
sinb(&u„) sin()(e)„)

(f4'l
3/2 p3/2

r er S ac, . '
n Ph s. Rev. 123 692 (1961)' D. Zwanziger, Qsder er S. W. MacDowell, and S. B. Treinian, Phys. Rev. 1

h ot o t d
'

thoare, however, some subtle points which are no enc
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The physical meaning of »(&p) is quite simple; it is the relative value at the origin of that part of the wave packet
with energy pp, with the two-particle scattering taken into account. »(&p) takes its maximum value of 1 only when

g(&p„) ~ sinlI(&p„)/pp/2. This strongly suggests that the quantity —2&/&(&p)T(p)) plays the same role in three-body
scattering as e" sinb plays in tvro-body scattering. "

This conclusion may be reached in another vray, vrithout the use of vrave packets. Notice that if the second term
in S, which is proportional to T(&p), were absent, the exact wave function of the J=$ state would be the symmetrized
product of two J=~3, pr+p wave functions. Let this wave function be denoted by C'(pp3„&p,). Then the amplitude for
Gnding the system in a different state with wave function C (&p„,&p~ ), &p„Q&p„, p&„/ p&„would vanish were it not
for the second term in S; i.e. in terms of the potential analog, V&2(rq, r2) is entirely responsible for transitions
C (&p„,ppp) ~ 4(&p„,pp~. ). Because V22 is not zero, there is a nonzero probability for Gnding 4 (&p„.,&p„.) in the distant
future when the state contains pions of energies ~„and ~, in the distant past. The amplitude is given by

g(
& &)S(& & . & & )&

—2&3(ray~) —2ip(rap~)

(3.7)

l +(&p„,&pp))+ denotes the exact state with outgoing wave boundary conditions. The transition amplitude is thus

p~ 3/2 p3/2 q3/t 2

e "("&')sin5(p)„.) e '3("p') sinb(&pp ) e"("» sinb(pp„) e"("p) sinb(&p„)
R(&p~,p)p ', &p&,p&p) =—3'T(&p) (3.8)

One simply requires that

Rpg(p)) =
X+(~y', ~y'; &y,~y)

(3.10)

where (fq(&p„,pp)) is assumed to be a complete ortho-
normal set of functions on the interval 1 to au —1. The
solution of this problem is trivial; the results are

rp(p)) = —m./&(&p) T(pp),

ry(p)) =0, l(WO. (3.11)

Because R is separable, it can easily be diagonalized by
states of the form

to the completeness and orthonormality conditions
imposed.

Equations (3.11) and (3.12) clearly separate the two-
and three-body aspects of the problem. The two-body
scattering and the initial- and 6nal-state interactions
are contained in the eigenfunctions f&, (&d„,&d) The true.
three-body effects are all contained in r&, (&p), which are
the three-body transition amplitudes analogous to
e'~ sinb of the two-body problem. In particular, from
Eq. (3.14), jr'(&p) l

&1. Clearly, one should interpret
r&, (&p/3) =i as a three-body resonance at pp= &p/3. It should
be emphasized that an enhancement of this sort is a
result of the simultaneous interaction of all three
particles; it should not be confused with an enhance-
ment due to the overlap of two pr+p resonances. The
latter type of enhancement comes from the erst term
of the S matrix, Eq. (3.1). Incidentally, the entire S
matrix is also diagonalized in the (fq) basis:

In particular,The corresponding eigenfunctions are
Sp(p)) =1—2n.i/&(&p) T(p)) . (3.14)

fp(&p &p) =&,—"(» sinl&(&p, )e—"("»
Note that Sp(&d) has the form exp(2ux(&p)), with n(p))
real, and that a(p))3) =pr/2.

vrith the remaining functions arbitrary, subject only

~ See, for example, the discussion of Anal-state interactions in
M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley 8z Sons, New York, 1964), p. 540.

IV. THE (5,5) RESONANCE

In conclusion, vre discuss the resonance behavior of
the three-particle scattering amplitude. Equation (3.2)
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fmL1/~ D(~') j. The resonance
Posl lOosition is determined hy Re&1/~K(~&) T("&)j=
Eq. (4.1),

Ret 1/rrK(~) T(o)j
sin~g (~") /'sin8 (&o")cos8 (oV')

dG7
-//I/O ( g. s

M
3

t,o—

//3

stn'8(a& ) (~r+& )
de

CO-

(4.3)

The fit to the 7r+p data given hy Ge11-Mann and Watson"
d n evaluating these integrals. The result is

plotted in Fig. 3. The half-width is given by

l6001500 .
cu (MeV)

pro. 3. Rept/wK(co) T(co)g as a function of ~ the total energy.

I' d

2 (EQ) 7I K(41)T((d) (g—&ga

(4.4)

may be rewritten in the form
From Fig. 3, the following values of the resonance
position and width are obtained:

mK(a) T(co)

+-
K (M) MD (M) 7i 1

y Im
o)"D(co") D(a") ( ce"+—ie

K (CO) 1 ce"D(co") (o"D(o) )

(4 1)

In the second form, the integrand no longer has a
t "= This form is thus more suitable

for numerical evaluation. In the integrand, we mak. e the
following approximations:

1/co'D(co') =e" "' sinb(to')/Xg", rs') 1; (4.2a)

where or, ls t e energy oth gy of the (33) resonance. These
7

approxlma lons are q
't' e quite good for co' not too arge, an

the contributions from large co' are strong y ampe

kg=4.35=1550 MeV,

r/2=O. 9 =125 MeV.

Such good agreement with the experimental numbers
is undoubtedly fortuitous. In addition to the obvious
fIaws in the model used, it is to be expected that the

produced can have a substantial effect on the observe
position and width. Nevertheless, the results encourage
one to believe that the essential ingredients of t e
resonance are included in the model. It is, perhaps,
unfortunate that the energy of the resonance is expected
to be near 2'„at that energy, there should be enhance-
ment of the 7r+n.+p production from the overlap of the
simple two-body scattering and it may be difFicult to
disentangle the two effects.
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