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The n*rtp scattering amplitude in the J=§ (even-parity) state is calculated, in the static-nucleon approxi-
mation. The isobar model is #of used, and the symmetry required by Bose statistics is maintained through-
out. As a consequence, although the static model radically simplifies the three-body problem, the solution
displays some interesting three-body features. A discussion of the physical interpretation of the solution is
presented, especially with regard to the definition of a three-particle resonance. Such a resonance is found;
rough values for the position and half-width are 1550 and 125 MeV, respectively. No arbitrary parameters
are used in obtaining these numbers, which agree rather well with recently reported experimental values for
a wtrtp enhancement in the final state of #*+p — 7~ +xt 47t p.

I. INTRODUCTION

OR a long time there has been speculation concern-
ing the possibility of a resonance in pion-nucleon
systems with isotopic spin =% and angular momentum
J=4%. The simplest such system is =+x*5p, which is pure
T=4%. The original basis for these speculations was the
old strong-coupling calculations,! which predicted a
squence of bound pion-nucleon states with 2J=2T
=1, 3, 5, ---. More recently, a number of authors®*
have considered this problem from different points of
view and all find indications that a resonance should
exist in the (5,5) state. Roughly, the reason for this is
that the exchange of a nucleon or an N* (i.e., the 7V
resonance at 1238 MeV) provides a strong attractive
force in the (5,5) state. (See Fig. 1.) All of these calcula-
tions neglect nucleon recoil.

There has recently been reported the observation of a
wtrtp enhancement at 1560 MeV with a half-width
of 110 MeV.5 This has led to further speculations
regarding resonances in similar systems.5—® The general-
izations of both the strong coupling calculations® and
the exchange calculations” using SU; symmetry leads
one to expect the mtw+p resonance to be a member of
a 35-dimensional multiplet. Many interesting questions
are associated with this possibility, but in this paper we
shall ignore strange particles altogether.

The purpose of the present work is to present a
simple calculation of wtztp scattering which goes
further in dealing with the three-particle system than
the earlier calculations. The usual practice in treating
three-particle systems, in which a pair can resonate, is

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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to use the isobar model® to reduce the problem to a
two-body problem. While this is frequently a successful
procedure, some of the interesting features of the
problem are lost. In this calculation, no such approxima-
tion will be made; the pion energies will be allowed to
vary over the entire range compatible with energy
conservation. Furthermore, the two pions will be treated
in a completely symmetric way and no aritficial sym-
metrization of the final result will be needed. Lacking a
useful dynamical basis for treating three-particle field-
theory problems, we too will work in the static-nucleon
approximation. Only fairly low energies of the individual
pions, energies for which the static model has already
been successful in 7N scattering, will therefore be
considered. At such energies, direct 7w interactions are
probably not too important and will be omitted from
the calculation. These assumptions radically simplify
the three-body problem. However, they do provide us
with a soluble problem, the solution of which has
several interesting features not present in the two body
case. In particular, we will be able to discuss to some
extent the definition of a three-particle resonance.
By physical arguments, the scattering amplitude will be
separated into a part which results from the initial- and
final-state interactions, and a part which results from
the simultaneous interaction of the three particles. The
latter part will be shown to be <1 in absolute value.
The energy for which the equality holds will be called a
three-body resonance energy.!' The solution will be

(a) (b)

F1c. 1. wtrtp scattering by way of (a) nucleon exchange,
(b) (3,3) resonance exchange.

Y R. M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 109,
1723 (1958); 123, 333 (1961).

11 No implication regarding associated poles in the nearby
unphysical region is intended by this definition. For some interest-
ing comments which bear on this question, see C. Goebel, Phys.
Rev. Letters 13, 143 (1964).
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shown to display such a resonance in the J=% state
with parameters that agree quite well with the experi-
mental values quoted above.

II. CALCULATION OF THE =*=*p WAVE FUNCTION

In this section, we shall construct an approximate
wave function for the #tr+p scattering state by a method
which has been applied with some success in static-
model calculations of the (3,3) resonance? and the
¥ ,*.13 The model which forms the basis for this calcula-
tion is the well-known static model of Chew, Low and
Wick.!* The interaction Hamiltonian is

Hin= (41r)1/2f/d3x o V[zo(x)lx), (2.1)

where ¢(x) denotes the pion fields, v(x) the source
function of the nucleon, and f%220.08 with the pion
mass u=1.

The calculation proceeds by constructing a trial state

|p+= 2 aplag’| ("0 50,0 (2.2)
p’lql/

Here |pg), represents an approximation to the correct
scattering state which asymptotically consists of two
pions in plane waves of momentum p and ¢ plus scat-
tered waves with the nucleon fixed at the origin; a;' is
the creation operator for a 7+ meson with momentum
k (only 7+ mesons will enter this calculation so isotopic
indices are unnecessary); | ) denotes a physical proton
state with spin indices understood, and x is a matrix in
spin space. The zero of energy is chosen so that H| )=0.
The functions x(p'q’; pg) are to be determined by the
condition
a0 p0)s=0,  (23)
x(2''; p9)
where o=w,+w,, w,2=p>+1. By means of the relations
[H,ak"]=wkak"+ Vk y (24&)

(IVi=—( | (H+w), (2.4b)
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Eq. (2.3) may be written
x(#',q) (0—wpy—wy)

= —Z;(l agt (H+o—wp)aqe | )x(q",p)

-2 [ ag T (H+w—wg)ay [ x(q",q")
qll
-3 ”Z”< lap gt (H+w)aga, | (@’ p").  (2.5)

The arguments p, g of x are no longer written explicitly
since they enter the calculations only parametrically.

In order to obtain a simply solvable equation for ¥,
the operator products are expanded over intermediate
states. It is then assumed that all matrix elements
(n]ax|) may be neglected except when |#) represents
the neutron state. This is the same approximation made
in the calculation of the (3,3) resonance by this method.
The result of this approximation is that Eq. (2.5)
becomes

x(9',9") (w—wp—wy)

@pr

=—> { (| Vo |m)n| Vet )x(g”,p")

¢ lWgrwgr

2V o | V] >x(q",q'>} . (26)

wplwal

where oy=w—wy, and

o'k
A Valny=iL

7 (2wy)t?

u(k); 2.7)

u(k) is the cutoff function, the Fourier transform of
2(x). To get more useful equations, Eq. (2.7) is trans-
formed to the angular momentum representation by
way of

J u s\/L m n
Xrim(@pwg)= 2 [(2J+1)(2L+1)1/2(M I )( 1 1)/dﬂq”/dﬂp"(?,“’p'q,“’q’)m

1
m,n,p 2

M

XY™ @Y™ (@)%@'q). (2.8)

[Of course, there is a similar projection on the variables p and ¢. Since this is exactly the same for all members of
Eq. (2.7), we may take it as understood.] In general, this leads to sets of coupled equations for the X (wyr,wqr).

2 B. Bosco, S. Fubini, and A. Stanghellini, Nucl. Phys. 10, 663 (1959).
13D. Amati, A. Stanghellini, and B. Vitale, Nuovo Cimento 13, 1143 (1958); T. L. Trueman, Phys. Rev. 127, 2240 (1962).
14 See, for example, S. S. Schweber, Relativistic Quantum Field Theory (Row, Peterson and Company, Evanston, Illinois, 1961),

Chap. 12.
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However, for the case of primary interest J=3,

173/2

4 1 =
(“’_“"p’ _wq’)X5/2.2,5/2("~’p';wq’) = __fz_/ dw,lu(q/’)
. 3 m™J1 Wqrr

/3/2

TRUEMAN

a very simple uncoupled equation results:

/3/2

X {—"”(4')%”‘5/2,2.5/2(wq",wp')+——“M(P')&q'xslz.z,s/z(wq",wq')} . (29

W’

Wpt

(From now on, the subscripts will be dropped since this is the only amplitude to be considered.)
The boundary conditions are incorporated into Eq. (2.9) by rewriting it as

X (‘-"p’:wq’) =8(wp—wp)d(wy —wg)+6(wy _wp)a (wpr—wg)

| A oy b
+- ) {“(q')9’3’2—K(wp')+u(P')P'3’2—K(wq')} , (2.10)
T Wy T Wy —w—1€ Wqr Wy
where A=4 /2 and
/ls/gu(q//)
Kop)= [ dog—"x(oern). (21)
W
At this point, it is convenient to introduce the following functions:
A [® qusug(q//)
D(wp')=1-—wp:~/dwqu , (2.12)
TJi1 Wgr 2 (Wgrr— Wy —1€)
u(@) [\
Lo =KD (ay)— 2 ) 2 30— =] (213)
u(p)p"? w(pINp'/ oy
It follows from Egs. (2.10)-(2.13) that L(w,) satisfies
Liwy) A (P‘Z)3/2”(P)”(Q)r Wq Wp ]
W) =—
: P VT A YA ——
1 il ImD(w lr) Wt L(w “)
- / desgr S . (2.14)
wJ1 D(0g1) wor wgr— @p—1ie

¢’ is shorthand for [(w—wy)?—1]"2 D(w,) will be
recogmzed as the denominator function of the =NV
scattering amplitude in the (3,3) state, in the one-
meson approximation with the crossed =V cut neglected.
Explicitly,

= (pINP*/wpD(wp),  (2.15)

where 8(w,) denotes the (3,3) phase shift.

Thus, the integral equation for x(w,,w,) is reduced
to a fairly simple single-variable integral equation for
L(w,). An equation similar to this was obtained by
Killén and Pauli’® in the problem of constructing
| V6) states in the Lee model; the significant difference
is the inhomogeneous term in Eq. (2.14), which has a
pole in the region of integration. Recently, Kenshaft
and Amado'® have presented a solution of the Killén-
Pauli equation. Rather than try to adapt their method

€@ gind(w,)

15 G. Killén and W. Pauli, Kgl Danske Videnskab. Selskab,
Mat. Fys Medd. 30, No. 7 (195
(“R) . Kenshaft 'and R. D. Amado, J. Math. Phys. 5, 1340
1964

to Eq. (2.14), we present a different technique, which
seems more direct, for obtaining a solution to such
equations.

The function L can be defined by Eq. (2.14) for
complex energy z, with L(2) — L(w,) as 2— wy—ie.
L(2) has poles at w,, w, and a branch cut from — «© to
w—1. The main difficulty in solving this equation is
that the discontinuity across the cut at w, is related to
L(w—wy), not to L{w,). Hence, some relation between
L(z) and L(w—3) is necessary in order to proceed
further.” This is provided by the simple relation
between the discontinuity of L(w,) and the discon-
tinuity of D(@,). Form the symmetric combination

M (z)=(1/2)L(2)D(2)+[1/(w—2) ]L(0—2)D(0—3),
and observe that M (z) has no discontinuity across the

17 Equations of the sort solved by R. D. Amado [Phys. Rev.
122, 696 (1961)] and P. K. Srivastava [Phys. Rev. 131, 464
(1963)] also relate the discontinuity at w,s to the value of the
function at w —w,+. However, their integral equations have a simple
symmetry under 2z <> w—2 which provides the necessary relation
immediately.
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real axis. Furthermore, M (z) does not have poles at
wp and wg. [The first point is trivial ; the second, though
straightforward, requires a little care since the integral
in Eq. (2.14) contributes a pole to L(z) on one side of
the cut.] M (z) does have poles, in general, at 0 and w.
Thus,

(1/2)L(z)D(2)+[1/(w—2) JL(w—2)D(w—2)
=b/2(w—2z), (2.16)

where b is a constant; i.e., b may depend on w, and w,,
but not on z. At this point, the familiar sort of ambiguity
arises: an arbitrary polynomial can be added to the
right-hand side of Eq. (2.16) without changing the
required analytic properties. As is usual in this situation,
we choose the simplest alternative and assume that no
polynomial is present. [ The high-energy behavior of the
cutoff function and the implicitly assumed convergence
of the basic integrals in Eq. (2.9) can limit the order of
the polynomial. However, we know of no pyhsical
reason for specifying the precise behavior of #(£) and
so prefer to state the assumption simply, as above.]
Then Eq. (2.16) provides the needed symmetry relation.

1
X("-’p’;wq’) = 6(“’p""‘%)‘s(wq"“"q)""a(‘*’p’_wq)ﬁ (‘*’q’ '—""p)"i'_ K
T Wyt wey—w—1€

) NP (p)u(9)p*¢°
—_ 7
wpD (wp)qu (wq)

]@@w—wﬁ+@@w~w0]t
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With this relation, it is routine to obtain a solution of
Eq. (2.14) by the Omnés method.!8 b is then determined
by the condition

b=wL(0). (2.17)
The result of this calculation is
A (p9)**u(p)u(@)D(w—2) [ wyp wq
L(z)== 4
T wpweD(wy)D(w,) Z—w, Z—wg
20D (w)A (z,w)
— } , (2.18)
14wD (w)A4 (0,w)
where
1 > 1
A (z3,0)= —ﬁ/ dw"[Im —:l
/1 D (w//)
(2.19)

D(JJ"S W'

When this result is combined with Eqs. (2.10)-(2.13),
the expression for the wave function is obtained:

A {[Auz(q)q"+>\u2 (p)p°

weD(wq) @D (wy)

Nu(p)u(g)u(p")u(q) (p'q p9)*"
7w,D (@) D (w,)

20 20D (w)[(1/wy)A (wpr,w)+ (1/wqe)A (werw
X[—— | 20D (@)[(1/wp)4 (wp )+ (1/ ( )]:l}' (2.20)

14wD(w)4 (0,w)

Within the brackets { } we have set wy+wy=w since only terms satisfying this condition contribute to the

asympotic wave function.

III. DISCUSSION

Equation (2.20) contains all the information we need in order to calculate the #+x*p scattering amplitude. Thus,
the .S matrix for the scattering of two 7+ mesons with energies w,, w, into two 7+ mesons with energies w,, wy, in

the J=% state, is given by

S (Wpr gt 3 Wpywq) = | 2e218(pI+0@DI[§ (0,0 — wp) +-8 (wpr —wg) ]

€p) sind(w,) €0 sind(w,) € “a”) sind(wy) €% @s"” sind(w,)

3.1)

— 2wt
P32
with
w

T(w)=

The structure of Eq. (3.1) is just what one would expect
on rather general grounds: the first term corresponds to
combinations of simple two-body processes (Fig. 2)
while the second term corresponds to ‘“true” three-
particle scattering. The S matrix is explicitly symmetric
under the interchange of the two initial or final mesons,

TN 14 eD(@)4 (00)

Ty,

3/2 ’3/2
q* q

P’3/2

P 3.2)

by Bose statistics, and under the interchange of the
initial and final particles, as required by time reversal
invariance. The factors e® sind/k%? reflect initial- and
final-state interactions.!® T'(w) has the expected analytic

18 R, Omnés, Nuovo Cimento 8, 316 (1958).
1 R. F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963).
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F16. 2. These diagrams represent the contributions to the first
term of Eq. (3.1). There is a diagram for each possible way of
attaching initial and final pion energies to the dashed lines.

properties, viz. a branch point at w=2 and, if D(w) has
a zero at w* on its second sheet, a branch point at w*+41
on its second sheet.20:2!

Below the threshold for producing additional mesons,
the unitarity condition is (wy+wy=w):

w—1
/ Ao 1S (Wpr,wgr 5 wp”;a)p”)s(“’p":‘:’p" > ‘*’p:‘*’q)
1
=%[5 (‘*’p_wp')'l'ls (wpr —wq)] . 33)

For an S matrix of the form given in Eq. (3.1), this
implies that
1 =1 sin2§(wy) sin (@)
| do,
T(w) 1 k3
This equation is closely related to the two particle
unitarity condition Im[1/7(w;)]=wk. It may be
explicitly verified for the function given by Eq. (3.2).

The factor T'(w) has a resonance structure, as will be
discussed in the next section. However, because of the
other parts of S one cannot conclude immediately that
this can properly be called resonance scattering. Since,
in any observation of a 7*xtp state, the initial state
will not be prepared in plane waves, it is clear that
whether or not a bump is seen will depend strongly on
how the initial state is prepared. Before discussing this
further it is useful to note an elementary aspect of the
problem.

A potential analog of this problem is the following:
two particles of coordinates 7; and 7, interacting with a
center of force by way of a short-range potential of
the form

V(rire)=Vi(r)+Ve(re)+ Via(ryre)

=mx(w). (3.4)

.
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where, because there is no direct =m interaction,
V12(r1,72), is nonzero only when both r; and 7, are small.
Then if p is the range of the potentials and R is the
radius of the spherical quantization volume, the effect
of Via(ry,rs) is smaller by a factor of order (p/R) than
V1(r1) and V() when plane-wave boundary conditions
are imposed. This is quite clear in our results; for
example, if the wave function [Eq. (2.20)] is trans-
formed to coordinate space, the asymptotic form is
just the symmetrized product of two #ntp, J=% wave
functions. In order to see any effects of the true three
particle scattering, it is necessary to form pion wave
packets which both reach the proton at nearly the same
time. Of course, this is what is expected in practice
when #tztp is produced as a final state in reactions
such as

at+p — mrtattp,
pt+p— mtutattat+p.

In order to avoid discussing the details of how the
final state is created, let us consider the following
situation, which can be realized in principle if not in
practice: initially two pions are in spherical wave
packets, impinging on the proton, with total angular
momentum J=4%. By choosing the two wave packets to
be identical, we ensure that they peak at the proton
simultaneously. In general, some of the scattering
results from the first term of the S matrix, Eq. (3.1).
Since this is just combinations of simple two-body
scattering, it is not of direct interest. This effect can
easily be avoided by using the following property of
two-body scattering: if the initial wave packet is given
by g(wi)e~®r) with g(ws) real, then the wave packet
has the same shape asymptotically before and after
the scattering. [The final wave packet is given by
g(w)e®@n ] Thus, if we calculate the 7tztp S-matrix
between initial and final wave packets of the form
8(wp)g(wo)e @ wn =80 and g(wy)g(wy)e® @rItidlear,
respectively, the simple two-body effects are removed.
Then

w—1 w/—1
So= / do / dw, / o / deo o= 0@+ 3ap(opN+8@rS (6o 00413 y000)8 (00— 0)g (058 (05)8 (c2)8 ()
1 1

=/dw G(w)[1—2mik ()T (w)n2(w)], (3.5)

where ot
Glw)= / don? (7)) (3.60)
wnd a( >1 3(@»)
“=1  sind(w,) sind(@, T
’72(0))=|:_/1 dw,,W-—ﬁ—;/;—g(wp)g(wp)] /x(w)G(w)gl. (3.6b)

2 R. Blankenbecler, M. L. Goldberger, S. W. MacDowell, and S. B. Treiman, Phys. Rev. 123, 692 (1961); D. Zwanziger, ibid.

131, 888 (1963).

2 The same expression for the S matrix can be obtained by dispersion-theory methods similar to those used in Refs 17. There
are, however, some subtle points which are not encountered in those papers.
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The physical meaning of 7(w) is quite simple; it is the relative value at the origin of that part of the wave packet
with energy w, with the two-particle scattering taken into account. n(w) takes its maximum value of 1 only when
g(wp) = sind(wp)/p*2 This strongly suggests that the quantity —mx(w)T'(w) plays the same role in three-body
scattering as ¢® sind plays in two-body scattering.?

This conclusion may be reached in another way, without the use of wave packets. Notice that if the second term
in S, which is proportional to T'(w), were absent, the exact wave function of the J =4 state would be the symmetrized
product of two J=3%, 7+p wave functions. Let this wave function be denoted by ®(wp,w,). Then the amplitude for
finding the system in a different state with wave function ®(wp,@y), Wy Zwp, Wy #w,, would vanish were it not
for the second term in S; i.e. in terms of the potential analog, Via(r1,rs) is entirely responsible for transitions
B (wp,00q) — (wpr,@pr). Because Vg is not zero, there is a nonzero probability for finding ®(w,,@,-) in the distant

future when the state contains pions of energies w, and w, in the distant past. The amplitude is given by

l:im@ (@ 097) | T (@p,00))4 €7H om0t

=%5(w,—w)/dwp”/dw‘l"s(‘*’p”:wq";wqu)e—zw(wp')_ua(wq')[a(wp"—wp’)a(wq"“wq’)+6(wp”—wq')a("-’q"—wp’)]

=5/ —0)S (o 0 s wpog) e~

=90 (“’,_“’){%D (‘*’p’ _“’p)‘*"s(“’p'—wq)]'*'z'ik (‘*’p’;“’q’ :‘—"p:wq)} .

3.7

| ¥ (wp,wq) )+ denotes the exact state with outgoing wave boundary conditions. The transition amplitude is thus

€ gind(w,) €% (we) sind(wyr) €@ sind(w,) €9 sind(w,)

R(wp g 3 wpwg)=—7T (@)
P2

Because R is separable, it can easily be diagonalized by
states of the form

w—1

dwpfi(wpw) l ¥ (wp@p)+.  (3.9)

0 @) = f

1

One simply requires that
w—1 w—1
Ratw)= [ dog [ dout i)y
1 1
XR(‘-"p’s‘:’p’ 5 wm‘:’p)
(3.10)

=8an (@),

where {fa(w,w)} is assumed to be a complete ortho-
normal set of functions on the interval 1 to w—1. The
solution of this problem is trivial; the results are

ro(w) = —mk(w) T'(w),

n(@)=0, A0 (3.11)
The corresponding eigenfunctions are
fo (wmw) =¢~#(@2) gin§ (wp) e—i8(@p)
XSin&((:)p)/x(w)lﬂp:i/zpsﬂ , (3'12)

with the remaining functions arbitrary, subject only

22 See, for example, the discussion of final-state interactions in
M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, New York, 1964), p. 540.

(3.8)

/3/2
q / q3/2

P312

to the completeness and orthonormality conditions
imposed.

Equations (3.11) and (3.12) clearly separate the two-
and three-body aspects of the problem. The two-body
scattering and the initial- and final-state interactions
are contained in the eigenfunctions fi(wp,w). The true
three-body effects are all contained in 7)(w), which are
the three-body transition amplitudes analogous to
e sind of the two-body problem. In particular, from
Eq. (3.14), |n(w)| L1. Clearly, one should interpret
r\(wg)=1 as a three-body resonance at w=wg. It should
be emphasized that an enhancement of this sort is a
result of the simultaneous interaction of all three
particles; it should not be confused with an enhance-
ment due to the overlap of two #*p resonances. The
latter type of enhancement comes from the first term
of the S matrix, Eq. (3.1). Incidentally, the entire S
matrix is also diagonalized in the {f} basis:

~(Tu(0) [Tr(@))+=8(w—0)8nSx(w) -
In particular,

(3.13)

So(w)=1—27ix(w) T (w). (3.14)

Note that So(w) has the form exp(2ia(w)), with a(w)
real, and that a(wg)=/2.

IV. THE (5,5) RESONANCE

In conclusion, we discuss the resonance behavior of
the three-particle scattering amplitude. Equation (3.2)
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20— -]

) T(w) ]

5
]
!

1
(@

Re [7r x

0 \
1 ! 1

1400 1500 . 1600
w (MeV)

Fi6. 3. Re[1/7«(w) T (w)] as a function of w the total energy.

may be rewritten in the form
1
ik (w) T (w)

N 1 1
o
k(w) lwD(w) mJ1

1 1 1 1
X [Im }
" D(w') .JD (&) w—w"+1e

17

A2 o0 1 1 w
= dw”[lm :“: ] .
K(w) 1 wIID(wI’) E)//D(E)/I) (;)/Iw

(4.1)

In the second form, the integrand no longer has a
singularity at ’’=w. This form is thus more suitable
for numerical evaluation. In the integrand, we make the
following approximations:

1/0'D(w’) =¢®@" sind(w’)/Ag'3, ' >1;
o' D(w)=oT1— (o /wn)],

where w, is the energy of the (3,3) resonance. These
approximations are quite good for o’ not too large, and
the contributions from large ' are strongly damped

(4.2a)

W'<1, (4.2b)

L. TRUEMAN

out by the factor Im[1/w’D(w’)]. The resonance
position is determined by Re[1/mk(wg) T'(wz) ]=0. From
Eq. (4.1),

Re[1/mx(w)T ()]

1 I: f“—l p ,5in%(w") (sin& (&"")cosd (@) Aw")
= w
k(w)L/, g’ g’ e

00 M 26 124 - 17
A / g2 (ot ] (4.3)
w—1

q//;; (wr_ o—)u)w

The fit to the #+p data given by Gell-Mann and Watson??
is used in evaluating these integrals. The result is
plotted in Fig. 3. The half-width is given by

T d 1 1
L I, 0
2 do Tk (w0) T () domor

From Fig. 3, the following values of the resonance
position and width are obtained:

wr=4.35=1550 MeV,
I/2=0.9 =125 MeV.

Such good agreement with the experimental numbers
is undoubtedly fortuitous. In addition to the obvious
flaws in the model used, it is to be expected that the
details of the process by which the #tztp final state is
produced can have a substantial effect on the observed
position and width. Nevertheless, the results encourage
one to believe that the essential ingredients of the
resonance are included in the model. It is, perhaps,
unfortunate that the energy of the resonance is expected
to be near 2w.; at that energy, there should be enhance-
ment of the =+r+p production from the overlap of the
simple two-body scattering and it may be difficult to
disentangle the two effects.
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