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A previously discussed method is used to improve the Born series for the ~-x scattering amplitude in the
)p4 model. Only the Qrst two nonvanishing Born terms are considered in each instance: to order )' for
isospin 0 and 2, and to order ) for isospin 1.The results may be interpreted in terms of the existence of an
isospin-one P-wave resonance. Its position is adjusted to fit experiment, thereby determining all other
parameters in the theory. Taking the pion mass as a unit, we find the energy width of the resonance to be
r=0.72. The scattering lengths a+~ come out as ao ———0.78, a1 =+'0.032 ap = —0.44. The coupling
constant, as defined by Chew and Mandelstam, is X=+0.24. All these values are rather insensitive to the
position of the resonance. The numerical calculations may be done by hand.

1. INTRODUCTION

'HE so-called )44 Lagrangian density

is the simplest one available for relativistic pion inter-
actions. It is not absurd to suppose that its solution
would provide a good description of actual pion systems
at moderately low energies. This is because the man-
ifestly neglected particles, such as kaons and baryons,
have a high relative mass, and furthermore must be
produced in pairs. Other particles, such as the p and
other strangeness-zero mesons, are not manifestly
neglected because they may be implied by the model.
This hope is, in fact, the main motivation for studies
of this kind.

The present paper deals with the two-pion system in
the context of (1.1), with special attention to the
production of the p meson as an isospin-one I'-wave
resonance. Our point of view is strictly field-theoretic.

A similar approach to the two-pion system has
already been used by several authors. ' ' Our treatment
diRers from theirs in the following respects: First, our
calculations are interpreted in terms of a fit to the p
meson, whose mass is used as the (single) adjustable
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parameter; and second, our technique is based on a
recently discussed formula' designed to overcome the
convergence difficulties of the Born series. We also take
this opportunity to present a summary of relevant
perturbation results which may be of use to other
workers in the field.

2. RELATION BETWEEN SCATTERING AMPLITUDE
AND GREEN'S FUNCTION

We shall consider the isospin-T amplitude f~r(8) for
m. —m scattering through an angle 0 in the center-of-mass
system with incoming center-of-mass momentum k.
The partial-wave expansion for f is

2l+1
fI(8) =P (e"'"—1)P4(cos8),

21k
(2.1)

where the summation runs only over even (odd) / if T
is even (odd). We shall also consider Green's function

P=y(PI . P4)

where P; stands for an energy —momentum p; and
corresponding isospin index f; The f.unction y is
defined in terms of a time-ordered vacuum expectation
value by

(2rr) Is

4f pt

prs 1+ie—d4p

p4 1+ZAN'

ye—4m *4— .—4u4 44 (p . . . p ) (2 2)

I We take the physical pion mass as a unit; lo) is
the physical vacuum, and Qr(g) is normalized accord-
ing to the asymptotic condition. r] The connection

6 M. Wellner, Phys. Rev. 132, 1848 (1963).
7 In the sense of H. Lehmann, K. Symanzik, and K. Zimmer-

mann, Nuovo Cimento 1, 205 (1955).
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lines. As far as these low-order diagrams are concerned
it is consistent to set Z~ 1 and p, ,2 —+ 1 in (1.1), at
least if the external lines are taken on the mass shell.
Nor must we bother explicitly to renormalize ) o, as this
will be automatically accomplished later. ' We therefore
study the Born series as an expansion in Xo, or, more
conveniently, in

-y' (t;2;3,4)
Setting

g p=—16m.AO. (3.1)

FIG. 1. The I eynman diagrams considered in this article and
their designation in the text. The numbers 1, - ~ ., 4 stand for the
variables P~, ~ ~, P4.

between y and f may be obtained through the following
prescription:

(a) Define some arbitrarily normalized isospin func-
tions pz h&' for 2-pion systems, for instance

V= 2 (gs)"V'"'
m=0

we obtain in terms of diagrams (see Fig. 1)

7&'& =0, y&'& =60»(1,2,3,4),
y&2& = 18LK)2(1,2; 3,4)+
y'@= 108t S3'(1,2; 3,4)+ ]3„, ,

+54L$3(1,2; 3,4)+ . ], ,„„,.

(3 2)

(3.3)

&1 &3P t'

9 2"'"'=&ir82r2+~ih~sh.

(2.3)

(b) Define the scalar amplitude yz as a function of
two independent variables by forming the quantity (on
the mass shell)

3 Z 9r'"'LV(&i, g4)]., — "=.:1

f32t4
—= q~rr r yr(t, u)(22r)'5(pi+ . +p'), (2.4)

~n (3.3), those diagrams which do not contribute to
scattering, either because they are disconnected or
because they amount to zero on the mass shell, have
been omitted. The notation L ]„»„, indicates a
symmetrization with respect to the variables I'~, . , I'4.
As regards factors of i, 2~, etc. , the notation employed
in Fig. 1 is best reconstituted by the reader by noting
that the line stands for

where t and I are two of the variables' X)(1»2) =28»2(pi' —1) (2 )2'r(»p2, +p,), (3.4)

(c) Set

S= 1, 2 )

t= (Pi+Ps)'
23= (P2+Ps)'.

(2.5)
while the vertex is

$1(1,2,3»4) = —(2/3) (»11»tl34+ll»3524+»114»223)

X(2 )'~(p+" +P ). (3.3)

(d) Then

s= 4(k'+1),
t = 2k2 (cos8—1),

23= —2k'(cosg+1) .
(2.6) The Kronecker delta subscripts 1, 2, etc. stand for

il i2 e'tc.

Explicitly, one has

fsT (0)= yr (t,N)/162rz't2. —

3. PERTURBATION THEORY

(2 7)
$2(1,2; 3,4)

2 (7t»12»134+ 2'513»124+ 2&14»123)&((pi+p2)')
X (22r)48(pi+ +p4),

a. Feynman Diagrams
5)3'(1,2; 3,4)

= ((19/2&) &12~34+ 3~13~24+ 3~14~23)J((pi+ p2) )
X (2w)4~(pi+. +p4) .

We list here some results connected with the three
lowest order Feynman diagrams with four external

As a basis for this as well as future investigations of
the 7»p model, we report in this section on some explicit ~3(1,2; 3,4)
results of perturbation theory. ' = (2/2» (»»~34+4~»~24+4~14~23)1'((P +P2)') (3 6)

X (22r)'b(pi+. +p4),

' G. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).' An improved understanding of the model may well depend on
extending our store of' such results. Some additional formulas
may be found in Refs. 2, 4, and 5.

In the last formula, the dependence on a single variable
(Pi+P2)2 is correct if P»2=P22=1.
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b. Feynman Integrals

The functions I and J are given by the integrals

I(p') = q

(2~)' (V' —1+ie)[(p+V)'—1+ie]

c. Isospin Components

We now list the isospin components pz as defined by
/ Qw

(2.4). One finds, for T= 1

.2.

J((Pi+P2)') =
(22r)4

d4q

(3.7)

10
yr&'i(t, u) = 0 (3.13)

(p2 p2 1)

-i[50I(s)+30I(t)+30I (u)j
yr "i(t,u) = i[10I(t)—10I(u)$

-i[8I(s)+18I(t)+18I(u)]-
(3.14)

These integrals may be thought of as depending also on
a large cutoff parameter 3f through the regularization
of the propagator 1/(p' —1) wherever it appears:

(P' —1) (P'- 1) (P'-M')
(3 8)

The integrals I(s) and J(s), which are analytic in
the upper half-plane of s, may be evaluated in terms
of elementary functions. The results are

i[600J(s)+440J(t)+440J(u)]—250P (s)—110P(t)—110P(u)
yr/2/ (t,u) = i[80J (t) —80J (u) j—70P (t)+70P (u)

i[144J(s)+224J(t)+ 224J(u))—16I'(s)—86I'(t) —86I'(u)

(3.15)

d. The P-Wave Amplitude
I(s) = (i2r'/(2/r) )[lnM' —2a(s)$, %e next turn to partial-w'ave calculations. The only
J(s)=(—i/8(2~)')[4(1+lnM')' —(1+InM')a(s) (39) such results used in this paper concern the T=].

+b (s)+ (112r2/54) ——,
'j. I'-wave amplitude. For this one finds

For the purpose of specifying the functions u and b it is
convenient to introduce the auxiliary variables v and v,
both defined between 0 and 1:

(e" sinb) i'& =0,

Then

v= —-,'s+1—(-',s' —s)'/' (s ~& 0),
v=-', s—1—(-',s'—s)' ' (s) 4)

(e*' sinb) i2/ =- P(k'),
(3 10) 16(22r)2 (k2+1)'/2

(3.16)

a= ——,'[(1+v)/(1 —v) $ lnv

si/2q 4 q
i/2

a=
I

arcsin 2is i

(s&0),

f0 ~& arcsin ~& 2r/2, )
(0(s&4

(e" sirib) &2/=—
8(22r)' (k'+1)'/'

&&[Q(k2)+(const) P(k') j
a= —2[(1—v)/(1+ v) j(i~+»v) (» 4)

b=-', (v/(1 —v'))(2r' lnv+ln'v)+-', ln'v

(s&o),

where the constant multiplying P(k') in the last expres-
sion will turn out to be irrelevant to our scheme, and
where

1
b=—

6 (s——',s')'/'

Zx'

b= —lnv—
2

s'/
//—vr2 arcsin +4l arcsin

2 5 2i
s"' ' 0~&arcsin~&2r/2, )~

~

2 0&s&4

1 v
ln2v — 2m~ lnv —ln3v

61—v'

P (k') = »d» a(2k'(» —1)),

1 7
»d» b(2k'(» —1))+—a2(2k'(» —1))

1

Introducing the auxiliary variable

(3.17)

+-,'(1n2v —2r2) (s) 4) . (3.12) n= 2k'+1 —2(k4+k')'" (3.18)
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FIG. 2. The function —P,
plotted against k'. (See Eqs.
(3.17}, (3.19},and (3.20}.g
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we find for P and Q 4. THE IMPROVED-CONVERGENCE FORMULA

P(k') =
2k'

1 l '~'
tr 1 1

1—k'+i 1+—
i lna+i -+

i
ln'n

k'I E2 4k'1

Suppose a physical quantity' G(g; s&,s&, ), depend-
ing on a real adjustable parameter g and on some
continuous variables s~, s2, ~, possesses the perturba-
tion expansion

7 t
' ln's 1

Q(k)=
4k'5 1—s 6

(4.1)G =gG (i )+g&G (~)+ ~ . .

11' 1 11( 1 q'I'

(24 321k' 8 5 k'J (4 2)6=
G(2)/G(i)

The usefulness of the present considerations will depend

~
i/2 on the assumption that this expansion converges poorly

48ks ks) 6ks I ks)
i
ln4(s

i
1+

i
lns(t (3 19) or not at all. A simPle heuristic reasoning leads then to

the conclusion that, if we want to approximate G by
using its two leading terms only, we must write

3 (~' 39~——+— —
i

—+—iP(k') .
6 8 k3 8)

For small k, P and Q may be expanded as Taylor series
in k'. The leading terms are

where ~ depends on g but not on s~, s2, ~ ~ ~ . This depend-
ence on g is not supplied by our prescription; one can
only say that ~ ~ g

—' as g —& 0, in which case the Born
series is recovered.

Similarly, if the perturbation expansion has the form

P (k') = ——',k'+2k4/45+

1 f~' l 1 t' 49
Q(k)= —I

-+» ik'+
I

4-'+—Ik+
18(3 I 270( 2 2

It will be convenient to introduce the function

X(k') = Q (k') —(e-'/6+11/2) P (k')

which has a higher order behavior,

G g2G(2)+gsG(3)+. . .

(3 20) then the best approximation becomes

(43)

(I( &G(s)/G(s))s
(4.4)

The rearrangements (4.2), (4.4) are most likely to be
successful under the following important conditions:

The variables sI, s~, - ~ are in a region such that

X(k') = (—1/135) (83/4 —m )k4 (3.22) (a) G(si, ss, ) is differentiable;

at the origin. The functions —I' and —I are plotted in
Figs. 2 and 3.

(b) the complex phase of G is independent
of the parameter g.

(4.5)
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A related set of favorable conditions occurs if the
variables s~, s~, are rear a region where

(a') G(s, ,ss, ) is analytic (or the boundary
value of an analytic function); (4.6)

(b) as before.

The question may arise as to why one should not
approximate some simple function of G, say F(G), rather
than G itself: The result will in general be somewhat
diferent. Actually, this is not a serious arbitrariness,
for two reasons:

First, the end results are not very sensitive to the
function Ii. For example, our two-term scheme yields
exactly the same result whether we approximate G,
any positive power G~, or any constant multiple of
these.

Second, the derivation of the method makes it likely
that, in case of doubt, we must approximate the function
whose expected behavior is smoothest for general g.
For example, if 5 is a phase shift, we should approximate
6 rather than, say, tanb.

We finally observe that it is not necessary to know
the relation between w and g. The latter will not occur
in the results of any calculation, and what we are doing
amounts to replacing one adjustable parameter by
another. This is basically why no explicit coupling
renormalization is needed.

S. g-MESON CALCULATIONS

a. The X=I P-Wave Phase Shift 5 and
Scattering Length a&'

In order to describe physical scattering by our
improved-convergence scheme, we are led to search
for functions which satisfy the conditions (4.5) or (4.6)
as far out as possible in the physical region. The best

candidates are the phase shifts, which satisfy (4.6) as
far as As=3, where inelasticity sets in, so that (4.6)
breaks down only from here on. Experimentally, "
the p meson occurs at about k'=6.3. Whether this is
still "close" enough in the sense of (4.6) is a priori
unknown to us. This question may be answered to some
extent, either by computing the next systematic correc-
tion and showing that it is small, or by assuming the
validity of the model itself, appealing then to experi-
ment, and finally assuming that any agreement is not
fortuitous. Only the latter justi6cation can be presented
here. The former one, although apparently feasible, is
laborious and will have to be left to the future.

To third order, for 7= 1, the Born expansion for 8
is the same as that for e's sin5 LEqs. (3.16)j.Application
of (4.4) gives then, with the use of (3.21),

Sx k I'

8 (k'+1)'I' (a X/P)'—(5.1)

z being a real adjustable parameter. A resonance, if any,
will occur at

8= s./2,

i.e., at the solution k= k, of

X f 5

p & 4(~a+1)~~s &

(5.2)

(5.3)

Two cases must be distinguished.
(a) a&0. Only the minus sign is then possible in

(5.3). Numerically, one finds k,'&0.065. Since our aim
is to account for the p meson we shall reject the range
I(:&0 as incompatible with experiment.

"M. Roos, Rev. Mod. Phys. 35, 314 (1963); see, however,
M. H. Ross and G. L. Shaw, Phys. Rev. Letters 12, 627' (i964),
suggesting a lower width and a shifted position.
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FIG. 4. The parameter ~, plotted
against the position k~2 of the p
meson. LSee Eqs. (5.1) and (5.3).j
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sinb Sm 1
ag' —=lim~ k' 72~'

(5.4)

This result is plotted as a function of k, in Fig. 5.

b. interpretation and Width

Some further remarks on the range of validity of
(5.1) are in order. The phase shift 8 exhibits no point of
inQection near k,', so that the resonance curve is
somewhat distorted from the expected Breit-Wigner
shape. In particular, the width may not be inferred from
the slope of 8 at the resonance, but must be calculated
directly from a plot of b. We interpret this as follows:
In our approximation, the derivative of 6 breaks down
before 6 itself as we go towards higher energies. "The
best we can do in the present context is to accept
5= ~m at face value, but we note that the distortion of
the derivative at k =k, is symptomatic of the fact that
calculations become unreliable above that point. Thus
we are fortunately not allowed to take the further
intersections of 5 with 3'/2, 5s./2, etc. seriously. These

~ A similar situation is clearly the case in Ref. 6, Fig. I.

(b) «)0. We must require that the zero of « X/P—
occur to the right of the resonance, i.e., for k&k, .
Indeed, from Sec. 4 it follows that our approximation
should get better towards the "favorable" region k' &3.
Hence the zero, which is a catastrophic breakdown of
(5.1), should be towards higher energies. Thus we must
choose the plus sign in (5.3). Alternatively, one may
argue (to the same effect) that 8 should increase at the
resonance. A plot of ~ as a function of the resonance
position k, is shown in Fig. 4.

The T= 1 E-wave scattering length a~' follows
directly from (5.1).We find

c. Amplitude for T= 1 in the Unphysical Region

From now on we shall deal only with the unphysical
region t=u, s&4 and the threshold, s=4. Since the
scattering amplitudes are real, there is no need to take
partial waves in order to apply the improved con-
vergence scheme. This allows us to use the crossing
relations ' at the symmetry point s=t=u=43 in order
to fix the T=O, 2 parameters in terms of the already
determined T= 1 parameters.

First we apply (4.4) to (3.14) and (3.15):

yi(t, u)
5(2n.)'La(t) —a(u) j

{&i (7/4) L&(t)+ tt(u)1 Pb(t) —b(u) )/La(t) —u(u) j)'
(5.5)

for some parameter &&. The latter can be determined by
comparing y~ and 6 at the elastic threshold t=u=O,
s=4, where the higher partial waves are not relevant.
In this neighborhood, (5.5) becomes

—5(2~)'
yi(t, u) = k' cos8

3 («i—11/2 —~s/6) s
(5.6)

spurious resonances occur because 8 increases (mono-
tonically) to infinity as k approaches the zero of
(« X/P). Fo—r example, if « is such that k,'=6.3, then
8= 3m/2, oo at approximately k'= 7.6, 9.5, respectively.

In accordance with these remarks, we must compute
the width I' as twice the energy interval,

r =26(2(k'y1)'"),

between the left half-point 5= i«vr and the center 8= si7r.

The result is plotted as a function of k,' in Fig. 6,
together with the experimental point. "
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FIG. 5. The scattering lengths
a0', aI', a0', plotted against the
resonance position k,'. Note the
signs and the di6'erent scale for
a&'. /See Eqp. (5.4) and (5.21).j
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(only an infinitesimal continuation beyond the thresh-
old is involved). On the other hand, (2.7) becomes

3k'ai' cose = —(1/32~) yi(t, u) . (5 7)

Comparison of (5.6) and (5.7) gives

(Ki—11/2 —vr /6) =K' (5.8)

In solving (5.8), the sign must be chosen such that the
first two terms of the Born series are recovered with
correct relative sign as

~

K
~

~ ~ and
~
Ki

~

—+ ~. This
relative sign must be consistent as between b LEq. (5.1)j
and yi [Eq. (5.5)j. In this way we obtain

d. Amplitudes and Scattering Lengths for
T =0, 2; Coupling Constant

Using (4.2) in connection with the first two Born
terms (3.13) and (3.14), we obtain

10(27r) '
yp(t, u) =

Kp
—ha(s)+ pa(t)+la(u) j

4(2~)'
yp(t, u) =

Kp —$a (s)+ 9a (t)/4+ 9a (u)/4 j

(5.12)

in the unphysical region. The parameters ~p, ~2 must
still be determined. Crossing symmetry at s= t= I=—',
implies

Ki ——K+ 11/2+ sr'/6. (5.9)
2vp(a, p) =5&~(p, p),

Kp= K2.

(5.13)

(5.14)

Equations (5.5) and (5.9) summarize the extension of the
T=1 amplitude to the unphysical region. It is con-

venient to rewrite (5.5) as

The connection with ~ may also be found from crossing
symmetry. We define the partial derivatives

5(2m)'Pa(t) —a(u)]
yi(t, u) =

LK+c(t,u))'
(5.10) (5.15)

and to note for later reference the special result along
t=g

&as], „,.„„.
and then make use of either one of the relations

c(t,t) = ——,'a(2 ——,'s) —(b'(2 ——,'s)/a'(2 ——',s))

11
+—+-p'x'. (5.11)

2

~J."/].—~ I I+0 y

(at the symmetry point).

J. +1 2 I l+2 ~

(5.16)

(5,17)
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FIG. 6. The computed resonance
energy width F, plotted against the
resonance position k,', together with
the experimental value (small rec-
tangle).
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For comparison with the literature we report here
our value of the coupling constant. We define the
renormalized coupling constant" as10(2s.)'a'('o)

K C g= 167rX=—'yo(-'„—,) .
(5.18)

Use ot (5.12) and (5.20) then gives

(5.23)

10(2s )'a'(-;)

Also at. the symmetry point, one finds from (5.10) and
(5.12)

~ 1 leap
= 2~

& i+2 =
11.

oo——a(-', )
2

(2s)'

o:+0.575
(5.24)

Equation (5.16) yields
11

K C 3)3 = Kp a 3 )
2

(5.19)
This is plotted in Fig. 7.

6. SUMMARY AND DISCUSSION

where the ambiguous sign was fixed just as in (5.9).
Remarkably enough in view of the fact that we are
dealing with an approximation, both relations (5.16) and
(5.17) yield exactly the sa.ne result in conjunction
with (5.14).

For s=4, t=N=O we obtain the S-wave scattering
lengths Drom (5.12)j

1
ap"—= lim —simp' '.

app=
—5~/4

K+2.37

x+0.88

These are plotted as functions of k,' in Fig. 5. It is
worth noting that the threshold unitarity condition

(fo')o o =(1m'/k)o o

is satisfied exactly by (5.12).

(5.22)

whence, by (5.11),
11

&0 K+2a(o) —b'(-', )/a'(4o)+ —+ox', (5.20)
2

If the Xp' theory is solved to second nonvanishing
order with the help of the improved convergence
formula of Sec. 4, and if we assume this approximation
to be reliable at a sufficiently high energy, then we
obtain a 1=1P-wave resonance. Adjusting its position
to be k,'=6.3 (the experimental p meson"), we find a
width I'=0.72 and scattering lengths ag~ with the
values

ao'= —0.78, ai'=+0.032, ao' ———0 44

The coupling constant, as defined by Chew and Mandel-
stam, is ) =0.24. Inasmuch as these numbers are rather
insensitive to k, , we believe they are significant. We
also want to stress that our method makes the numerical
calculations quite amenable to slide-rule treatment.

As regards comparison with experiment, our value
for j. agrees fairly well with the measured 0.87&0.08.
The coupling constant and scattering lengths are more
controversial. On the whole, our values agree best with
the analyses of v and v' decays. "—"The values closest

"Our X is defined as in Ref. 8, and as —X of Refs. 4 and 5;
our g is defined as X of Ref. 2.

"N. N. Khuri and S. B.Treiman, Phys. Rev. 119, 1115 (1960)."R.F. Sawyer and K. C. Wali, Phys. Rev. 119, 1429 (1960).
5 E. Lomon, S. Morris, E. J. Irwin, Jr., and T. Truong, Ann.

Phys. (N. V.) 13, 359 (1961).
"See, however, M. A. B. Beg and P. C. De Celles, Phys. Rev.

Letters 8, 46 (1962).
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FIG. 7. The renormalized cou-
pling constant X =g/16s as a func-
tion of the resonance position k,'.
(See Eqs. (5.23) and (5.24).g
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to ours are'4

ao' ———0.8, ao' = —0.48, ) =+0.3.
The interpretation of other processes" has usually
given attractive S-wave scattering lengths. Typical are"

aoo=+0.5, ar'=+0.07 aos=+0.16.

An exception is the estimate X=+0.5 from the nucleon
isovector-moment form factor. '

This question of signs is worth a few additional
comments. The field-theoretic investigations of the
),Ps model seem to imply qualitatively' that a sufli-

ciently attractive I'-wave interaction is associated
with repulsive S-wave scattering lengths. Dispersion-
theoretic models are not unanimous on this point. " "
If, however, the Xp' model is taken seriously, and if
the sign of the renormalized ) is indicative of that of
the unrenormalized ) 0, then we must have A, &0 in
order to have a positive-de6nite Hamiltonian.

The present study has little to say about S-wave
phase shifts above threshold. The conflicting signs which
are found in the literature for the scattering lengths

' For numerous references, see J. Kirz, J. Schwartz, and R. D.
Tripp, Phys. Rev. 126, 763 (1962).

"H. J. Schnitzer, Phys Rev. .125, 1059 (1962).
' See, for example, B. R. Desai, Phys. Rev. Letters 6, 497

(1961),
'(1 R. K. Kreps, L. F. Cook, J. J. Brehm, and R. Blankenbecler,

Phys. Rev. 133, 31526 (1964)."K.Kang, Phys. Rev. 134, B1324 (1964). More references to
the dispersive approach may be found in Refs. 4, 16, and 21.

might indicate a fairly complicated behavior not far
above threshold. Hence it would be of great interest to
extend the present treatment to S waves. This neces-
sitates the inclusion of three perturbation terms.
Indeed, it is quite easy to use the two-term formula
(4.2) for these phase shifts, but the result is not reliable
when k'&1 for T=O and when k'&2 for T= 2. This is
deduced from the fact that signer's inequality"

db/dk & —1—1/2k (6.1)

(generously assuming a unit range for the force) breaks
down badly soon after these points. This conclusion is
not surprising, since the P' term was needed in the
T=1 case at moderate energies. In practice, use of a
three-term formula would mean the numerical solution
of a nonlinear di8erential equation, ' and will have to
be left to a future investigation. This should also be
relevant to the problematical Abashian-Booth-Crowe"
and Brown-Singer-Samios'4 "particles.
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