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Conclusions drawn so far from the SU(6) theory are reviewed. A further discussion of the magnetic mo-
ments of long-lived baryons appears to render implausible the existence of an integrally charged sextet
[SU(3) triplet with spin 3]. The question of Lorentz invariance is discussed in some detail. A “relativistic
completion” procedure is developed by means of which one can implement the requirements both of Lorentz
invariance and of SU(6) invariance for effective S-matrix elements. This procedure applies equally well to
an interaction Lagrangian but not to the full Lagrangian including the free-field terms. The group SU (6)
apparently has to be interpreted as a dynamical group which applies to one-particle states at zero momentum.
Lorentz invariance provides a natural mechanism for the first-stage breakdown of SU(6). Considering
SU(6) invariance as a strictly zero-momentum property, we arrive nevertheless at unique predictions to
order »/c in virtue of Lorentz invariance. Baryon recoil will be treated in future papers.

I REVIEW OF PREVIOUS RESULTS

T has recently been found that the description of
strong and electromagnetic phenomena in terms of a
group SU(6) leads to a considerable number of con-
clusions which are in good agreement with experi-
ment.’~8 It is the purpose of this paper to discuss some
conceptual questions which arise in this theory, notably
the problem of a synthesis between the SU(6) scheme
and relativistic invariance. In this section we shall first
review the results obtained so far with the SU(6)
theory. We shall then state the problem in Sec. IT where
also the further plan of the paper is outlined.

.

SU(6) appears to provide a natural classification of
baryons, mesons and low-lying resonances.'~2 The 56-
dimensional representation comprises the well-known
baryon octet and decuplet and dictates at the same time
the correct spins and relative parities. Likewise for the
35-dimensional representation for mesons which con-
tains the spin-zero octet and the spin-one nonet with the
same (odd) parity. The next small baryon representa-
tion with dimension 70 has also several candidates for
occupation. It will be a very interesting test of the
theory to see whether the 70 can be filled correctly.2:9.10

(II). Mass Formulas for Baryons and Mesons

It has been observed? that mass formulas are an
essential tool for ascertaining whether SU (3) multiplets
are appropriately united to SU(6) supermultiplets, be-
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13, E681 (1964).

7M. A. B. Bég, B. W. Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964).

8 B. Sakita, Phys. Rev. Letters 13, 643 (1964).

9 M. A. B. Bég and V. Singh, Phys. Rev. Letters 13, 509 (1964).
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cause such a unification will make it natural to relate
the mass splittings of the SU(3) multiplets involved by
means of simple assumptions on the nature of a broken
SU(6). For the 56, mass formulas have been proposed
by Giirsey and Radicati,! Pais,>2 Kuo and Yao,’ and
Bég and Singh.6 It should be noted that, insofar as this
particular representation is concerned, all these formulas
are in fact equivalent in their prediction of a connection
between octet splits and decuplet splits. This is due to
the following two identities, valid for the 56 only.

2J(J4+1)—Cy®=—(9/2), 1)
2 (J+1)— (1/4/6)Cs®=3/2. )

Here J is the spin, Cs® and C3® are the Casimir
operators of SU(3) of degree two and three, respec-
tively.!! The existence of the identities (1) and (2) is
essentially due to the fact that the 56 contains only two
multiplets which are distinct both with respect to
SU(3) and to spin. In any case, the equidistance within
the decuplet now becomes predictable from the octet
mass parameters’? and the result is in good agreement
with experiment.?5.8

For almost all other representations the situation is
more complex. For the general case, a mass formula has
been derived by Bég and Singh® by means of SU(6)
tensor-operator analysis. In particular a detailed dis-
cussion is given there of the general mixing problems
which arise when states with the same isospin and
hypercharge but which belong to distinct SU(3) multi-
plets are united within one SU(6) supermultiplet. As
applied to the 35, the SU(3) rule® 4K?—x?=23x? is of
course obtained, but no further relations exist unless one
makes more restrictive assumptions.* On the other

11 Equation (1) was given in Eq. (23) of Ref. 6. The relation
with the notations of Ref. 2 is as follows. Co®=2F:F;, C:®
= (34/6)d;i;1sFiF jFr. C:®=06, 12 for the octet and decuplet, re-
spectively. The corresponding values for Cs® are 0, 64/6. There
exist similar identities for the 20-dimensional (baryon) repre-
sentation of SU(6), namely 2J (J+1)4+C.®=15/2, C;® =0.

2 Tn the analysis of Ref. 6 the possible contributions from the
real representation 2695 have not been considered.

138 K2 denotes the square of the K mass, etc.

4 An example of such a restrictive sum rule is given in Eq. (30)
of Ref. 6.
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hand, the very well satisfied relation p?—7?=K*—K?
was obtained by Pais.?2 This rule is not incompatible
with the general Bég-Singh formula, but is only ob-
tainable from it by imposing special conditions which
are not dictated by the tensor analysis alone. This
indicates to us the need to supplement the general
algebraic methods by more dynamical considerations.
We hope to come back to this question. At any rate, it is
to be hoped that further information on the 70 may help
to clarify the situation.®!® It remains to be seen (a)
whether SU(6) works as well for higher energies,?
(b) whether the 70 is indeed the next supermultiplet to
be filled, and (c) whether interference effects between
supermultiplets are negligible.

We now turn to a notion important for what follows,
that of central mass of a supermultiplet.’® Take the 56
as an example. For definiteness we write the corre-
sponding mass formula for the broken SU(6) as

M=Mu+MJT+1D)+MY+M[I(I+4+1)—31V%]. (3)

Here the coefficients Moo, M1, M2, M3 are supposed to
depend on the Casimir operators of SU(6) only, that is,
they are constants within a given supermultiplet. We
now assume furthermore that M = M, when the SU (6)-
breaking interaction is neglected. This last assumption
is by no means self-evident. Its implication is that the
SU (6)-breaking interaction does not generate any ap-
preciable mass contribution which is independent of J,
I, and Y. Whether or not this is true can only be found
out by a more detailed knowledge of the dynamics than
we have. With this forewarning, let us continue the
argument. Mo is now the value to which all masses
within the broken 56 tend in the strict SU(6) limit. This
we call the central mass. Equation (3) yields'¢

Moo=1(4A+Z—V*)~1065 MeV. (4)

By a similar reasoning, the central mass of the 35-meson
states is found to be®

o615 MeV. (5)

(III). D/F Ratio for the Effective Coupling of the
Pseudoscalar Octet to the Baryon Octet

This ratio was found to be*

(D/F)=3}. (6)

15 From now on a representation of SU (6) and of SU(3) will be
denoted respectively as supermultiplet and multiplet.

16 See Ref. 6, Erratum. The following additional comment on
Egs. (3) and (4) should be made. Equation (3) is used in Refs. 1
and 6. For the 56, the mass relation of Ref. 2 is equivalent to
M=Mu+M/TT+D)+MY+M[I(I+1)—V2/4—C:®/6];see
also footnote 11, with the assumption that the mass parameters
are constant within the 56. This relation is not strictly identical
to Eq. (3), as it yields a central mass Mo =Mo+3(Z—A)/8,
while M’ =M+ (Z—A)/6. This difference in central mass changes
the result of Eq. (9) below by ~6%,. Both equations give the same
mass-split correlations between the octet and the decuplet. In the
present state of the art there seems therefore not much point in
arguing the relative merits of the two mass relations.
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Making the customary assumption that this strong-
interaction ratio is measurable in the axial-vector con-
tributions to the semileptonic decays, we may compare
Eq. (6) with the data analysis by Willis e¢ @l.'” This
shows that Eq. (6) agrees within the error with their
solution 4 which gives a ratio 1.74:0.35. We also recall®
that according to this theory the vector-meson coupling

to the baryon octet is pure F.

(IV). =-Nucleon Coupling Constant Versus
o-Nucleon Coupling Constant

The study of the effective meson-baryon vertex at
low energies within the framework of SU(6) relatest the
p-wave (pseudovector) w-nucleon constant g4 to the
s-wave (vector) p-nucleon constant g by g4=5g/3. The
precise definitions of g4 and g were given in Ref. 4. From
this relation it follows? that in the SU(6) limit

gpsz_ 25 (2M00)2 g2

4r 9 4r

Y,

Moo

One can relate g to the rate for p — 2. Thus, gy, is

determined from Egs. (4), (5), and!®
g/4r>~3,

©)
&)

so that®
gps2/4m>~15

remarkably close to the best value.

While the precise values of the central masses Moo and
uoo are related to a more detailed interpretation of the
mass formula,'® it is nevertheless curious that one gets
so close to the “experimental” value of g,, by arguments
that are only valid in the strict SU (6) limit. As isovector
current conservation is only broken by electromagnetic
and weak interactions, Eq. (8) is also true for broken
SU(6) and SU(3). Unless Eq. (9) is an accident, it is
somewhat of a puzzle, however, why the Moo/ugo ratio
should be so closely reflected in the actual situation
where neither SU(6) nor SU(3) invariance is manifest.
This must be considered as a further dynamical clue,
along with the good validity of the SU(3) and SU(6)
mass formulas as first-order perturbations.

(V). Decuplet Decays

Also the strong transition rates decuplet— octet
-+ meson are determined by g and the central masses.
With the usual treatmentfor phase-space corrections,
the width I's; of the 33 resonance is given by*

12 g, &3 [mNmas]
25 4 maPle Moo .

17'W. Willis, H. Courant, H. Filthuth, P. Franzini ef al., Phys.
Rev. Letters 13, 291 (1964). We are grateful to Dr. Willis for
communicating to us the error 4-0.35 on the value 1.7.

18 M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).

( ;6?) J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
1 .

T'3=

(10)
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TasLE I. Magnetic moments of long-lived baryons.

Particle SU(6) limit» Mass-corrected
P 1 2.79
n -3 —1.85
A -1 —0.78
zt 1 2.20
== -3 —0.73
ol —% —1.32
o —3% —0.66
Q- -1 —1.56

s The column “SU (6) limit" gives the relative magnitudes of the mag-
netic moments as obtained in Ref. 7. In the column ‘“mass-corrected” the
magnetic moments are expressed in nuclear magnetons with the assumption
on mass corrections described in Sec. 1. up is taken from experiment. As the
proton-neutron ratio differs by =2.5% from the experimental one, errors of
at least this order must be anticipated in the other ratios.

Using Egs. (4) and (9) one finds I';3>60 MeV. The
question of other decuplet widths has been commented
on earlier.*

(VI). Magnetic Moments

It has been shown’-® that the magnetic moments of
baryons are uniquely expressible in terms of u,, the
proton moment, if we assume that the effective electro-
magnetic current transforms according to the 35-repre-
sentation of SU(6). The results are summarized in
Table I. In this table we also give a “mass-corrected”
value which is obtained under the assumption that the
SU(6) ratio (up/u,) between the magnetic moment up
of a baryon B and u,'is corrected by the true mass ratio
(myp/mp) if we go from SU(6) to broken SU(3). In view
of the successful description of mass splits as first-order
effects we consider this a reasonable guess for this
correction.

It has been emphasized earlier? that the SU(6) results
of Table I correspond to the assumption that the charge
operator Q is givenjby

Q=F3+(Fs//3). (11)
A more general definition has been proposed, namely?®

Q(g0)=Fs+ (Fs//3)+ (qo—%)t, (12)

where go is a number [[SU (3) scalar] and ¢ is the triality
quantum number.? {=0 for the usual baryons and
mesons, ¢=-41 for the fundamental triplet (3) repre-
sentation of SU(3), t=—1 for 3*. We have Q(%)=0.
According to Eq. (12) the three members of the funda-
mental triplet have charges gq, go—1, go— 1, respectively.
Corresponding to Eq. (12) we have a magnetic moment

operator
M(go)=weQ" (g0, (13)
where J is the relevant spin, uo is a scale factor and

(1;"623:@ for example, M. Nauenberg, Phys. Rev. 135, B1047

2 See e.g., G. Baird’and L. Biedenharn, in Operator Structures in
SU; with an A pplication to Triplets, Proceedings of the Coral Gable
Conference, 1964 (W. H. Freeman & Company, San Francisco,
to be published), p. 58.
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Q' (go) has the same SU (3)-transformation properties as
Q(q). Also for this general case the magnetic-moment
ratios are unique and by the methods of Ref. 7 we find
in particular that

Bntlhpt MA= (3q0—4)‘ (3q0+1). (3q0_3) .

Evidently go7%2 spoils the good agreement which was
found previously for the proton/neutron ratio. We are
therefore strongly committed to the expression (11) for
the charge operator. This leads us to make the following
comments on various triplet models which have been
discussed recently.?

(a). Regardless of the definition of the charge opera-
tor, we cannot have as a separate representation a
fundamental triplet with spin other than %, unless
SU(6) is considerably enlarged, because the sextet of
SU(6) has of course the SU(3)Q@SU(2) content (3,2).

(b). Tf the fundamental sextet has a charge parameter
go*%%, attractive features of SU (6) get lost. In particular
we see no compelling reason to assume that the funda-
mental sextet has integral charged members. Under
these circumstances, the only acceptable sextet is the
straight extension to SU(6) of the quark model dis-
cussed by Gell-Mann? and elaborated by Zweig.?

(c). At the same time we reiterate’ that we do not
read in the results reviewed so far and to be obtained
below any additional evidence for or against the exist-
ence of quarks. We return to this point in the concluding
Sec. V.

(14)

(VII). Transition Magnetic Moments

Those between decuplet and octet are also uniquely
expressible in u,. In particular the relation” (N+*|u|p)
=24/2u,/3 was found to be in qualitative agreement
with other estimates. Also for the 35 there exist new
relations for transition moments.”

Thus we hopefully take the following position. On the
basis of SU(3) alone, the interpretation of an experi-
mental result concerning the A magnetic moment (for
example) is obscured by two problems: (a) the question
which is the appropriate charge operator, (b) what are
the corrections due to broken SU(3). Taking the
neutron/proton ratio as a guide, we opt for Eq. (11) for
the charge operator. As a result, the deviation from ¥ of
the ratio ua/un» should be a broken SU(3) effect. [Note
added in proof. Our mass-corrected value for ua agrees
within the error with the value —0.77+0.31 reported
by T. F. Kycia, Bull. Am. Phys. Soc. 10, 101 (1965).]

II. STATEMENT OF THE PROBLEM

These encouraging results have several general char-
acteristics in common.

2 F, Giirsey, T. D. Lee, and M. Nauenberg, Phys. Rev. 135, 467
(1964) ; T. D. Lee, CERN report 9425/Th 467 (unpublished).

% M. Gell-Mann, Phys. Letters 3, 214 (1964).

2 (3, Zweig, CERN report (unpublished).
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(a). They are all properties of effective matrix ele-
ments, either so-called two-point functions (like the
results about masses) or of vertices (like the results
about coupling constants, decay rates, magnetic
moments).

(b). They are all characteristic low-energy parame-
ters. This leads us to ask, as the first question, whether
and how one can look upon these low-energy effective
matrix elements as nonrelativistic limits of matrix
elements with the proper Lorentz covariance properties.
In other words, we ask for the synthesis of SU(6) and of
Lorentz invariance in an S-matrix theory. We show in
this paper how this can be done by a process which we
call the “relativistic completion” of SU(6). For clarity
we first do this (Sec. III) for the case of the effective
vertex between the fundamental sextet of SU (6) and the
35-meson representation. We show in particular how the
completion of the 35 leads to a description in terms of a
12X 12 matrix rather than by a 6X6 matrix as is the
case for zero energy.* This doubling is intimately con-
nected with the physical requirement of a 35 with
prescribed parity. It will be recalled that, in the sense of
labeling representations, parity is a label extraneous to
SU(6) or in other words, the parity operation commutes
with all generators of SU(6). In Sec. IV we discuss the
same completion problem for the vertex of the 56 in
interaction with the 35.

Asin any S-matrix description, the Lorentz-invariant
effective matrix elements are not unique, owing to the
occurrence of form factors. A group like SU(3) which
has no spin among its generators restricts the number of
independent form factors for given space-time trans-
formation properties. In the SU(6) theory further
constraints exist between form factors with different
space-time properties, as will be seen in the next two
sections.

Insofar as the strong-interaction vertex functions are
concerned, we can choose the form factors such that the
vertex is actually equivalent to a local interaction
Lagrangian, invariant under SU (6) in a sense to be fully
specified, and invariant under the Lorentz group.?
This is possible for the sextet interaction! as well as for
the 56 interaction.* It must be emphasized, however,
that our procedure of relativistic completion which
serves to give meaning to SU(6) invariance concurrent
with Lorentz invariance is in no accepted sense of the
word an extension of the Lorentz group.2

In fact, not even the process of completion which we
will outline below can be extended to the full La-
grangian, including the free-field terms. It will be shown
that the free kinetic-energy terms do not submit to our
completion. These terms act as ‘“‘spurions” from the
SU(6) point of view but there is nothing dynamically

% By Lorentz group we always mean the homogeneous ex-
tended Lorentz group.

26 We do not encounter in our work the noncompact groups G4
and G¢ mentioned in Ref. 1.
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spurious about them as they are dictated by the
Lorentz group.

Here we are at the root of the incompatibility which
was noted in Ref. 7. Clearly, if we drop the kinetic-
energy term of a free particle with nonvanishing spin,
we cannot generate the “normal” magnetic moment
which accompanies the recoil terms in the free
Lagrangian.

We are therefore led to look upon SU(6) as a “dy-
namical group” which interlocks the purely internal
SU(3) variables with ordinary spin, in such a way that
a leading approximation to the dynamics emerges which
so far seems to “work.” Moreover, the possibility now
arises of a prescribed “first-stage” breakdown? of SU (6)
by the Lorentz group itself. Thus part of broken-
symmetry theory may be due to a clash between the
“dynamical” group SU (6) and the kinematical Lorentz
group.

As has been noted earlier,?” the present picture seems
at least superficially to have some elements in common
with old strong-coupling ideas, where diagonalization of
the interaction takes precedence over that of the “free”
Hamiltonian. It has always been a dark point how to
include recoil in such a theory in a systematic way. We
may have to face the same problem here too. However,
we now leave further questions of interpretation till
Sec. V and first turn to some mathematical details of the
completion procedure.

III. INTERACTION BETWEEN THE SEXTET
AND THE 35 MESONS

In order to illustrate the nature of the problems
mentioned above, and as a prelude to the discussion of
meson-baryon couplings, we first consider the inter-
actions associated with the fundamental six-dimensional
representation (sextet) of SU(6). The occupants of the
sextet are an SU (3) triplet, each member having spin 3.
As regards their charge, we may think of them as
quarks,®? for definiteness (although this is not crucial
to the argument). We consider the sextet coupling with
the 35-dimensional adjoint representation of SU(6), in
accordance with

6*Q6=1®35. (15)

We now take as the systematic starting point that
SU(6) gives definite information about the structure of
wave functions at zero momentum. For the sextet this
information is trivial. We denote its zero-momentum
wave function by #,2(0), a=1, ---, 6. We also write
a=1,4,where1=1, 2 is a spin stafe indexand 4=1,2,3
is the SU(3) index. We have

u+"‘(0) = tAXi ’

#=(0): #-(3):

% See also Ref. 2, footnote 6, and Ref. 7, footnote 16.

(16)
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¢4 denotes the SU (3) triplet. Thus for each & we have a
two-component function #,%(0). We denote its adjoint
wave function by #yat (0)=14x.".

For the meson wave functions, denoted at zero energy
by M.#(0) we have!

M E(0)=P42(0)5,4V42(0)(o-2):7 17

with 8= j, B and =1, 4. P4® denotes the pseudoscalar
octet, V4% the vector nonet. We define

™ g ™ 9 29
Pl=—Ff—:\ ) Pl=——+—, Pf=——,

V2 A/6 V2 /6 V4 18)
P12=7r“, P1 =K—, P21=1I'+,
Pi=K+, P2=Ko, P3=Ko,
and?®

P W ¢ 0 0 0
V11=___ __._.l__._’ 22=___p__ :.O.__ .f_,
V2 A6 4/3 2/2 /6 /3
20°  ¢° 19
Vid=——-+—, Vi=p~, V=K%, a9
V6 4/3
Vil=p+, Vi=K+*, V=K% TV, = Kox
Note that
Trace M=0 as TraceP=0, Trace(o-£)=0. (20)

(V) 4® denotes a vector meson with polarization vector
e. This trace condition is of course what is needed to
have 35 independent components. Furthermore

Trace (MTM)=P4BPpi+ (eV)4B(eV)p4 (21)

provides a quadratic form invariant under the opera-
tions of SU(6). The relative weight of vector and
pseudoscalar terms in¥Eq. (17)}has just been chosen in
accordance with this requirement.

An SU(6)-invariant coupling with all particles
having zero momentum may be trivially written as
o (0)M 2 (0)u, #(0). It is clear however that if the
mesons are characterized by negative parity, this
coupling is not invariant under space inversion. It leads
e.g., to S-wave emission of pions. In order to write down
meaningful SU (6) couplings which conserve parity it is
necessary to extrapolate the #,*(0), M*(0), etc. to finite
momenta via appropriate Lorentz transformations.
Furthermore we may not just “boost” #,%(0) to a finite
momentum via a transformation? of SL(2,C); for then
we will still have difficulty with parity conservation. It
is necessary therefore to consider the particle and anti-
particle states simultaneously and join the two-dimen-
sional representations of the Lorentz group in the usual
manner.

28 0, ¢% are identical with wp, ¢p in Ref. 6.

# See, for example, R. F. Streater and A. S. Wightman, PCT,
Spin and Statistics and All That (W. Benjamin Inc., New York,
1964), Chap. 1.
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For the sextet this “completion” is obvious. We de-
clare the completion of Eq. (16) to be

xi

us*(g)=N(q) (22)

oq |14
X’L
qo+M

which doubles the number of (nonvanishing) compo-
nents to four. N(g) is a normalizing factor, N(0)=1.
Furthermore we have to complete the particle with the
antiparticle states. SU(6) does not intrinsically realize
the corresponding degeneracy. From the point of view
of this group, the antiparticle states form a new repre-
sentation #_%(g). We join particles and antiparticles by

u_>(q)=vsu:*(q)

0 7
75=( )7
I 0

where I, 0 are 2)X 2 unit and null matrices, respectively.

The completion is not so immediate for mesons. We
proceed to show that here the extrapolation is uniquely
determined by the requirement that meson-sextet
couplings be invariant under the extended Lorentz
group.?® Furthermore the requirement that an SU(6)
structure exist in the low-frequency limit gives constrainis
which are valid in the relativistic domain where the only
linear invariance group to the best of our present knowledge
is the direct product of SU(3) and the Lorentz group.

Let ¥(x) be the field operator of a spin-3 particle,
transforming as a triplet under SU (3). Furthermore, let
¢(x) and V#(x) denote the field operators of mesons
transforming respectively as pseudoscalar and vector
under the Lorentz group and as 8 and 1®8 under
SU(3). The interaction density

(23)

. 81 -
iL1(x) =i—Pvsv, 04+ gy [ Vi—5 Tr(V¥) W
Koo -

+3gbvu Tr(Vey  (24)
[where the indicated traces are over SU(3) indices] is
invariant under L® SU (3). This group, of course, tells
us nothing about the relative magnitudes of g1, g,
and gs.

Introduce the Fourier decomposition

Y(x)=

M 1/2
— . A i ik
(2m)i2 kZA(F) {on.s.attus (R)e

+bx, i, aTAu_i(k)e~ =y (25)

with similar decompositions for V, and ¢. A matrix
element of £7(x) may be exhibited as
ga0x (p2) MM @)w*(p1) 5 (26)

where g=pa—p1 and A, u are labels that run from 1
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through 12,
.w)\ (P) —_ tAui,a(P)’

Here a is the index which doubles the number of com-
ponents. The matrix 9,* is given by

Naf(q)
M.F(q)

A=1,2,3;i=1,2;a=1,2.

—Mf
(9)), @7)

MMg)= ( N

where

(0:q)i’ /g _

;Vaﬂ )=PAB "I" —_— VAB"%aABVcC)CO(sﬂ

q
Moo &

g
+<——3)><%6ABVcCe°6H, (28)
g1

q 8 .
Mﬁ(q)=PABiw+<—f)(VAB—%aABvc% (o).
Koo &1

+<§)x%wvcv(o-s>x, (29)
81

¢ being the polarization vector of the vector mesons,
satisfying the Lorentz condition gue*=0.
In the limit in which ¢=0, we find

N.(0)=0, (30)

82

Maﬁ(o)':PABaij'*“(
g1

)(VAB—%aABvccxo-e)ﬂ

+(§>%BABVCC(0-8)H- 31)
g1

If we now require that the theory have an SU(6)
structure in the low-frequency limit, we must identify
M .£(0) with the meson-tensor Eq. (17). This identifica-
tion requires that

g/e1=gs/g1=1. (32)

The requirement of an SU(6) limit therefore tells us
that the Lorentz invariant interaction of the funda-
mental sextet with the pseudoscalar octet, the vector
octet and the vector singlet is characterized by a single
coupling constant. It is this circumstance that leads us
to assert that SU(6) symmetry is a meaningful concept
in the relativistic domain.

Clearly, the description of the 35 mesons by the
12X 12 matrix Eq. (27) does not introduce any new
fields, that is, new representations of SU(6). Just asit is
necessary, by completion, to double the number of non-
vanishing components of a spinor when going from the
zero-energy to the relativistic description, so the same is
true for the mesons. At zero momentum a pseudoscalar
(vector) meson has one (three) degrees of freedom
corresponding to the spin. In the near-static limit
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(g/m00k1) we may look upon the completion of Mg® by
Nge as the introduction of the “small components’ of
the meson field, in close analogy to the spin-} case. Note
also that the 12-trace Tr(919M)/2 reduces to Eq. (21)
in the limit q=0. Here =M y,.

In Sec. II we promised to treat the theory with
relativistic form factors. This is now done at once, as
follows. In momentum space introduce three form
factors g:(¢?, =1, 2, 3 with the property

lim g:(¢*) = g+, (33)

q2-0

while Eq. (32) remains enforced. This is the completion
of SU(6) in the general case. From this it is evident that
one can not conclude from SU (6) alone anything new
about high-energy behavior unless the SU(6) theory is
Sfurther supplemented by specific dynamical arguments.
Houwever, to order v/c the predictions of SU(6) are evi-
dently unique.

We consider next the free Lagrangian, staying in mo-
mentum space. First consider the mass term of the
quarks. This is of the form

Mw\(p)w(p)

and is as invariant as is the interaction (26). We may
look upon M as the (1,1) representation of SU(6) and
satisfy SU(6) by Eq. (15), and also satisfy Lorentz
invariance.

Not so for the kinetic-energy term

(34)

DA(p)[yep 1wk (p),

where, in a notation analogous to that of Eq. (27)

_(0'p)ij
. 36
o ) (36)

(33)

?Oaij;

[’Ye € u)‘=5AB< .
r :] + (q-p) 7y
This term has the same value as does Eq. (34) for free
fields, or in the interaction representation, on the mass
shell. However, for general dynamical considerations we
can not confine ourselves to that special case. It is now
quite obvious from (36) that we cannot give [y.p¢] a
completed SU(6) meaning. This term corresponds in
fact to the (1,3) part 6f a 35, but is neither accompanied
by (8,3) nor by (8,1). Similar arguments hold for the
mass-versus-kinetic-energy terms in the free-meson
Lagrangian.

This breakdown of the completed SU(6) by the
kinetic-energy term can be exemplified in an inexact but
perhaps illuminating way, as follows. Let us take the
complete Lagrangian, impose the conditions Eq. (32)
and now calculate by naive perturbative field theory the
second-order self-energy of a vector and of a pseudo-
scalar meson via a quark bubble, using the same cutoff
for both integrals. The results are distinct which indi-
cates (but does not prove) that the mass degeneracies
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are broken. Now drop from the integrand the yp term
in the quark propagator. Then the formal expressions
are the same. Likewise for multibubble diagrams.

We conclude that the apparent success of the SU(6)
ansatz must have important implications for the effec-
tive damping of such integrals at high-frequency virtual
states. We comment further on this in Sec. V, but now
turn first to the baryon-meson vertex.

IV. BARYON (56)-MESON (35) INTERACTION

The completion of the SU(6) invariant meson-sextet
coupling, in order to incorporate the physically indis-
pensable requirement of invariance under the extended
Lorentz group, opens the road for a similar completion
of couplings associated with other SU(6) representa-
tions. To the extent that one can overcome, bypass or
ignore the possible difficulties associated with quanti-
zation of fields with higher spin, one does not encounter
any new problems that are more than technical in
nature.

We proceed to consider the coupling of the spin-%
baryon octet and the spin-§ decuplet, to the mesons in
accordance with

56*®56= 1+35-4-405-+-2695. (37)

In the limit of zero momenta, this coupling is given by
Bapy' B*#M57(0), (38)

where M ;7(0) is the meson tensor mentioned earlier and
Bep7 is the completely symmetric baryon tensor, re-
ducible under SU(2)QSU(3) as

1
Babr=x(ik)JAB C+__|: (2€tix k- ey ¥) €ABDp 1, C
34/2

+ (e¥ixk+2e7*x )P CPhp4T.  (39)
Here ¢/ and €4B8¢ are the Levi-Civita symbols left
invariant by the groups SL(2) and SL(3), respectively
and thus under SU (2)CSL(2) and SU (3)CSL(3). The
x¢ are defined in Eq. (16). The x¢® are the spin-}
spinors,

1 0
0 1
XA = , XU — ,
0 2/3 (0
0 0
(40)
0 0
1 0
X(122) —_— x(222) =
Z3 |1 10
0 1
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b48 is the baryon SU (3)-octet tensor,

bll=_z_0__+i, 22__20—+i’ 33=_E£,

V2 A6 V2 A6 A6 i~
b=, bi'=p, bP=Z", bi=n,
bP=E", bf=—pF°,

d4BC is the SU(3)-decuplet tensor,
1 1
PU=Nys*, I N, d“"2=\—/§No*, dP=N_*,
d“3=—1—Y+*, A% =——Y*, d223=—1~—Y_*, (42)
V3 A3
IB=—E, PB=—E*F PP=Q,
\/3

A relativistic completion can be obtained as follows.
We treat the x* as before. In place of the x* we use
eight component spinors constructed from the solutions
of the Rarita-Schwinger®® equations. For a spin-§ par-
ticle moving along the z axis with momentum p;, we
may write these spinors as u., % (p;), where

X 111)
u MV (p3)=Nypa(ps)| s xam |’
E+M
x(112)
u+(112) (ps) = N3/2' (p3) P3 2E—m ’

X(112)
E4+m2E+m |

(43)
X (122) )
1 9 (p3)=Nsyjo' (ps) | —ps 2E—m ’
x(122)
E4m2E+m
x(222)
%@ (p3)= N3 (p3) Ps X(222)
E+m

In order to have a complete set, we need in addition
four negative-energy solutions; these are given by

2GR =gy, GGB) | (44)

The reader may satisfy himself of the correctness of
these solutions by verifying that they satisfy the spin-§
wave equation written down by Moldauer and Case.®

30 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
3 P. A. Moldauer and K. M. Case, Phys. Rev. 102, 279 (1956),
see especially Eq. (2.19).
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For arbitrary orientation of the momentum a set of
helicity solutions may be generated by applying the
matrix

(3)(3/2) (_¢7 07 4’) ’ 0 ) (45)
0 ’ DEM (—¢) 0) d’) ’ ‘

where ¢, 6 specify the direction of p and

DO (g, 0, §) = eMsbeidabe—idtss, (46)

My, M,, M; being the 4-dimensional representations®
of the three generators of SU(2).

We can now write down a completion of Eq. (39) in
an arbitrary Lorentz frame. For positive- or negative-
energy solutions it is

B B7(p)=u, (i (p)dABC
1
@m[{zeamik (p)+ e u(p)} 4BPb ¢

+{eVusk(p)+2euy i (p)} € Popt ].

Note added wn proof. One cannot form a Lorentz in-
variant vertex from Egs. (27) and (47). However, it
turns out that if one neglects baryon recoil completely,
the coupling

(47)

3V2B (1)apr N s7() B4 *F® (48)

is a legitimate limit of the Lorentz invariant vertex.’
We have meanwhile found a fully covariant description,
see M. A. B. Bég and A. Pais, Phys. Rev. Letters (to
be published).

V. CONCLUDING REMARKS

(a). Section IV describes how it was possible to give
the covariant completion of the 56 representation of
SU (6). For this purpose we constructed local wave func-
tions for both spin-$ and spin-} components of this state
with the appropriate Lorentz transformation properties.
While it is an extremely useful mathematical tool for the
construction of SU(6) states (at zero energy) to build
them up out of product states of three sextets with the
right symmetry, this construction in itself is not predi-
cated on the actual existence of such sextets. Further-
more it is not obvious how to make such an explicit and
covariant construction for nonzero momentum. How-
ever this may be, the completion calculations once again
provide no evidence for or against the existence of
physical sextets. We feel impelled to repeat this point

32 See, for example, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), 2nd ed. p. 146.

3 Instead of the factor 34/2, a normalization factor 6 was used
in Eq. (4) of Ref. 4. This is an inessential difference, due to a
different normalization of the meson matrix which was used in
Ref. 4. With the help of Eqgs. (27) and (48), the reader will be able
to check the results obtained in Ref. 4 and reviewed in Sec. I.
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(see also Sec. IT) in order to stress that the SU(6) theory
is not necessarily built upon an atomic-structure-type
model.

(b). At the same time the impression is inescapable
that the description of the low-lying baryons by the 56
is highly complex and that a simpler underlying de-
scription is called for, but we do not know what that is.

(c). At the SU(3) level it is a puzzle why the Gell-
Mann-Okubo mass formula works as well as it does. At
the SU(6) level this puzzle is magnified. Why does the
SU(6) mass formula work so well, at least for the 56?
Why are the several agreements with experiment re-
viewed in Sec. I so good when SU(6) is badly broken in
the real world? The suggestion has been made? that,
insofar as the Gell-Mann-Okubo mass formula is con-
cerned, its success may indicate the existence of triplets
with a relatively high mass. To what extent this could
also be helpful to explain some of the SU(6) regularities
remains a question for further study.

(d). SU(6) is compatible with the existence of a
conserved isovector-vector current. This follows from
the formalism given in Secs. III and IV.

(e). If in Eq. (49) we replace M by (14-M\ys)9n, the
SU(6) structure remains unaffected and the same is of
course true for the behavior under proper Lorentz
transformations, but of course parity would not be
conserved. In our opinion, SU(6) invariance by itself
sheds therefore no new light on the question of parity
conservation in strong interactions.

(f). While quantities like rest mass, magnetic mo-
ment, coupling constants are all zero- (or low-) energy
parameters, their effective values are codetermined by
high virtual-frequency contributions. In view of what
has been said about the violation of completed SU(6) by
kinetic-energy terms, oneisled to surmise that, wherever
an SU(6) prediction works well, there is a strong
effective damping involved in these high-energy con-
tributions.

In this connection it should be noted that the
interaction (49) is unrenormalizable in the conventional
sense. However, the conjectured high-frequency damp-
ing may render such questions irrelevant, emerging as
they do from naive perturbation theory.

Generally, through the notion of dynamical group,
pure-symmetry arguments are intertwined with dy-
namical considerations. A main problem now appears to
be to find the best dynamical (nonperturbative®)
methods to cope with this situation.

(g). In this paper we have only considered explicitly
the vector and pseudovector couplings of the 35. In an
S-matrix framework one should of course consider all
possible form factors [we thank S. B. Treiman for
emphasizing this point]. Also the nonminimal form
factors? can easily be treated by the present methods.

# See R. Jost, as quoted in p. 31 of Ref. 29 and public com-
munication to the authors, 1962.
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Note added in proof. After the completion of this work
we received a preprint by K. Bardakeci, J. M. Cornwall,
P. G. O. Freund, and B. W. Lee® which also deals with

36 K. Bardakci, J. M. Cornwall, P. G. O. Freund, and B. W. Lee,
Phys. Rev. Letters 13, 698 (1964).
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the synthesis of SU(6) and relativistic field theory.
Their group W (6) is broken by the kinetic-energy as
well as the mass terms. Unlike the present work, new
mesons are necessitated. As in the present paper, a
possible connection with strong coupling is also noted.
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Strong-Interaction Symmetries Based upon Rank-Three Lie Groups*
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We consider all rank-three simple Lie groups as possible candidates for a higher symmetry of strong inter-
actions. All such groups imply the existence of a new quantum number X, the oddness, and of odd particles
with nonzero values of X. Because of uncertainties in the experimental observation of these particles, we
look for evidence of such symmetries in the properties of ordinary (X =0) particles. We give arguments to
show that ¢ decay into p and = mesons is a particularly good place to look for such evidence. In all groups,
we assign the vector mesons to the regular representation and derive mass formulas and decay rates for
various assignments of the pseudoscalar mesons and the mass operator to representations of the group. We
find that it is possible to formulate a general criterion, which can be applied to all rank-three Lie groups,
for assigning these representations, and that with this assignment all such groups give the same mass formula
and decay widths for the vector mesons, namely,

(Bwtp—4K*) Bp+p—4K*)+8(p—K*)2=0
and
I'(¢ — pr) =0.3-0.6 MeV, I'(¢p — KK) =2 MeV,

in extremely good agreement with experiment. We summarize the main properties of rank-three Lie groups

in appendices.

I. INTRODUCTION

HE octet model of SU(3)! has recently proved
strikingly successful in correlating experimental
information both in the strong and the weak inter-
actions. There are, however, certain unexpected regu-
larities between different SU(3) multiplets which have
led many authors?~1 to consider the possibility of em-
bedding SU(3) in a higher symmetry group G. Among
these are the approximate degeneracy of the unmixed
masses of the vector meson singlet and octet'? and

* Supported by the U. S. Atomic Energy Commission.
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the anomalously small ratio of the ¢pmr to the wpmr
coupling. There are also several relationships between
multiplets of different spins which might be explained
by extending the treatment we shall give here as has
been done for SU (3).13* Furthermore, in looking for a
dynamical basis for SU(3) symmetry, one is naturally
led to introduce triplets'® of fundamental fields. The
nonexistence of fractionally charged particles with
masses less than 3 BeV seems well established experi-
mentally,'® however, and modifying the Gell-Mann-
Nishijima relationship to allow for integral triplet
charges in itself suggests the existence of a higher
symmetry.7:18

We shall consider the case when SU(3) is embedded
in a simple Lie algebra of rank three. Including baryon
conservation this means that the Lie algebra corre-
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