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electron-neutrino angular correlation coefFicient, "which
set upper limits on (o ).

We now compare our experimental results with
preliminary calculations based on Nilsson's rotational
model. "Using the experimental value of (o), Eq. (9),
we find that the deformation parameter is

3) (Ar") = —2.3. (10)

Mehta and clarke" have studied the angular distri-
bution of protons from the reaction Cl"(d,p)C1' . The
value of the deformation parameter of CP' which they
obtained by fitting the experimental angular distribu-
tion is 31(C)35)= —2.8. As expected, the mirror nuclei
Ar" and CP' have nearly the same deformation. The
experimental magnetic moments and the magnetic
moments predicted from Nilsson's model are compared
in Table II. Possibly the large discrepancies between
measured and calculated magnetic moments are due in

's W. B.Hermannsfeldt, R. L. Burman, P. Stahelin, J. S. Allen,
and T. H. Braid, Bull. Am. Phys. Soc. 4, 77 (1959).

"S. G. ¹1sson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955).

"M. L. Mehta and C. S. Warke, Nucl. Phys. 13, 451 (1959).

TABLE II. Experimental and theoretical values for the nuclear
moments of Arse and CP'. The theoretical values are computed
from the rotational model using a deformation parameter g = —2.3.

p, (Arse)
55 (C135)

u, (cl») y3 (Ar35)

Experimental

+0.632. nm
+0.821 nma
+1.453 nm

Theoretical

+0,48 nm
+0.98 nm
+1.46 nm

a See Ref. 5, p. 615.

part to pion exchange currents. The sum of the mag-
netic moments of mirror nuclei should be independent
of such currents, however. In addition, there should be
a spin orbit correction of about 0.2 nm to the CP'
moment. "The corrected theoretical sum is then about
1.7 nm.

We plan to determine the asymmetries of Ne" and
Ar" more precisely in future experiments.

We are happy to thank the 90-in. cyclotron staff for
their cooperation. In particular we thank Edward
Ambrose and David Moyer for their help.

"D. F. Zaretskii, Zh. Eksperim. i Teor. Fiz. 36, 869 (1959)
I English transl. : Soviet Phys. —JETP 9, 612 (1959)g.
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Use is ma, de of the quasiboson method to study the problem arising from number nonconservation in
applications of BCS methods to nuclear problems. This method neglects higher orders in 1jQ, where fl is
an average number of available shell-model single-particle states. A method is given which identifies and
removes number-dispersion spurious effects. The relation of this method to the prescriptions of Nogami and
of Nilsson is discussed. An illustration of the method is given in an explicit calculation for the energy of a
two-shell system in order 0' and order 0. It is shown that the projected BCS wave function method gives
the leading order 0' exactly and results in a good approximation to order Q. Variation of the parameters of the
projected wave function affords zero improvement in either order Qs or Q.

I. INTRODUCTION

' 'N this paper use is made of the quasiboson method
~ - to consider the problems arising from the non-
conservation of particle number in applications of
Bardeen-Cooper-Schrieffer (BCS) solutions to nuclear
problems. Considerations are limited to spherical
systems of even numbers of nucleons.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

f Present address: Physics Department, Hebrew University,
Jerusalem, Israel.

The erst step in many nuclear calculations is made
by use of the BCS method, "which takes into account
the most important parts of the pairing interactions.
The remaining parts of the pairing interaction together
with other, longer range, interactions remain as per-

' J. Bardeen, L. N. Cooper, and J. R. Schrie8er, Phys. Rev.
108, 1175 (1957); X. X. Bogoliubov, Zh. Kksperim. i Teor. Fiz.
34, 58 and 73 (1958) LEnglish transl. : Soviet Phys. —JETP 7, 41
and 51 (1958)j;N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958);
and J. G. Valatin, Nuovo Cimento 7, 843 (1958).'S. T. Beliaev, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 31, No. 11 (1959).
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turbations. These have been treated by the random-
phase or quasiboson approximation (RPA).s The use
of the RPA constitutes the lowest order of a pertur-
bation treatment, and higher order corrections should
be considered. Beliaev and Zelevinsky4 have attempted
a specific expansion in powers of a smallness parameter
in order to treat systematically the lowest order, the
RPA, and the higher order corrections. In this paper
we use only the lowest terms of their expansions, and,
therefore, only the quasiboson approximation. The
Beliaev-Zelevinsky method is used only in providing a
belief that the neglected terms are higher order in a
parameter, which will be explained below. These higher
order terms have not yet been systematically explored,
nor are they explored here. Nevertheless the lowest
order, quasiboson, approximation is widely believed to
be a good approximation.

This procedure permits one to consider the number
problem correspondingly. The number problem arises
in the 6rst step, which is the application of the 3CS
method. In this procedure, the number of particles is
not an exact eigenvalue, and only the average number
of particles X is 6xed. The dispersion in the number is
of the order of gX, which for nuclear applications is
not inconsiderable. Recently, Nogami' and Nilsson'
have given prescriptions for removal of the spurious
eQ'ects of the number dispersion. Here, it is possible to
write explicitly the dependence on the number dis-
persion, and so to remove explicitly any spurious
contributions.

Another approach to the removal of the sects of
number dispersion uses projected wave functions.
Kerman, Lawson, and Macfarlane' (KLM) projected
out of the 8CS wave function the part corresponding to
exactly E particles, dropping all parts corresponding to

diGerent populations. These projected wave functions
are used to calculate the average value of the pairing-
force Hamiltonian. Comparison with the ground-state
energy calculated by an exact diagonalization of this
same Hamiltonian showed that the use of the projected
functions gave much better numerical agreement than
the results with the BCS. Part of this improvement is
due to the removal of the number dispersion. ' ' The rest
of the improvement, as will be shown below, comes from
the inclusion of part of the interactions omitted in the
BCS treatment. The part still omitted will be given ex-
plicitly in terms of the expansion method. Its smallness
can then be estimated for the particular physical prob-
lem. While it is, indeed, small for the ELM cases, this is
not a general rule. A variation of the parameters of the
projected wave function is shown to lead to no better
results in the two leading orders.

II REVIEW OF THE BCS, QUASIBOSON, AND
BELIAEV-ZELEVINSKY METHODS

The popularly used Hamiltonian, consisting of a
pairing-force interaction and a quadrupole-quadrupole
interaction, can be written in the somewhat unorthodox
form~

H= Q evgvBp(v) —Q gvgviAp (v/v)Ap(v vv )
V 2 v, v

x
Q-/Q pBp.u'(~, P)B (v,~), (1)

2 apy5, M

where the A J~, B~~ are bilinear combinations of the
annihilation and creation operators coupled to angular
momentum J, M by the usual Clebsch-Gordan co-
efficients

J(/Lvr, )v= Q C(j „j„J;r/s, m', M)a„. a„„,
tn, tn'

B&M(v, v )= P ( 1)'"' "C(j „j„—J;m, —m', M)a„„a„„, (3)

e„=single-particle energies,

g (2j+1)l/2 —Q 1/2

f= pairing-force coupling constant,

p= quadrupole-quadrupole coupling constant, and

a.~= (-II"~.ll/)/v'~

' M. Baranger, Phys. Rev. 120, 957 {1960);R. Arvieu and M.
Vendroni, Compt. Rend. 250, 992, 2155 (1960); T. Marumori,
Progr. Theoret. Phys. (Kyoto) 24, 331 (1960). Actually the
equations of the RPA described in the above papers mix orders.
The "quasiboson approximation" picks out only the leading
order. In this paper, as in popular misuse, we do not distinguish
in nomenclature between the two.

S.T. Beliaev and V. G. Zelevinsky, Nucl. Phys. 39, 582 (1962).' Y. Nogami, Phys. Rev. 134, B313 (1964).
6 S. G. Nilsson, Nucl. Phys. 55, 97 (1964).
~ A. K. Kerman, R. D. Lawson, and M. H. Macfarlane, Phys.

Rev. 124, 162 (1961).

The Bogoliubov-Valatin transformation introduces the
quasiparticle operators n„by

&vvv= Nvavvvv
—(—1)'" vvav vvt,

together with the inverse transformation

avvjv= +wvvvv+ ( 1)' &wv —vvv ~

(4)

The usual treatment" of BCS will not be repeated here,
since we will give an alternate demonstration in terms
of the methods to be discussed. It will be recalled that a

P The quadrupole-quadrupole interaction of (1) is in the same
form as that written by L. S. Kisslinger and R. A. Sorenson, Rev.
Mod. Phys. 35, 853 (1963).The differences between this and the
usual form in which the a, at are written in normal form can be
expressed as an addition to the single-particle energies, e„. This
added part is of order 1, compared to the e, which will be taken
to be of order g'.
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term —XN, where N is the number operator, is added
to H, and I, y are chosen so as to eliminate the terms of
the form ntu~, zo. from

(6)

Further, 'A is chosen so as to satisfy the average number
condition

{7)

where the expectation of N is taken in the quasiparticle

vacuum. This transformation does not completely
diagonalize H; even the quasiparticle vacuum is not
an exact eigenfunction of H. Further, there remains a
residual interaction between the quasiparticles.

Instead of proceeding directly from this point, it is
somewhat more convenient in this particular problem
to begin with the form of the Bogoliubov-Valatin
transformation, Eqs. (4) and (5), but to specify the
u's and p's below. With this transformation the
A J&(r(v, v') and BJ&(r(v,v') are expressed in terms of the
analogous quasipair operators

Az&(r(v, v')=P C(j „j„J;m, nz'M)(&(„,„.(&(„,

Bz~(v, v')= P (—1)'"' 'C(j„j„J;m,—m', M)a„,„.a„„.
nLtnl

Instead of the Az~(v, v'), B~&(r(v,v'), further work is made somewhat easier if the linear combinations

A J&(('+'(v, v') =
~ [AJ~(v, v')+ (—1) +~Ay ~"(p, v')],

'+'( ')=l[B (»')~(—1)'+ B — '(, ')],
{10)

(11)

together with the analogous definitions for A~~(+)(v, v'), BJ&(r(+)(v,v'), are used. The relation between the particle
and quasiparticle pair operators is

Ag~(~) (v, v') = P„„"+)

Appal'+)

(v, v') n„(+)Bg&(—r(+) (v, v')+-', (-', +-', )g„n..(+)(&gob„;, (12)

B~~(+)(v v')=n, (+)A~~&+)(v v')+$„„,(+)B~~(+)(v p')+ ( ~ )g (1 P (+)))~0(& (13)

where
$vv' =+v+v'+(&vVv' i

(6)—

gvv' =+Pv'~ &vN v' ~
(+)—

(14)

(15)

The transformation of the Az&k((v, v') into Az~(v, v'), Bz&(r(v, v') is a trivial consequence. In terms of these quasi-
particle operators H takes the temporarily formidable form

Q=P ~ g &(& 2 x Q g 2g, mn (+)n, , (+)+Q ~ g n (+)Ao(+)(p p) fP g g, P (+)n, , (+)Ao(+)(p v)
vv' vv'

+lf Z g'5-"'+Z "g.k-'"'Bo"'(, )+lf E g.g"'n-'"'n"""'Bo"'(, )
vv'

+if2 M"Ao' '(v v)Ao' '(v' v') —2f 2 M"5-'+'5" '+'Ao'+'(v p)Ao'+'(v' v')
vv' vv'

+ ',f Q g„g„.P„„(+-'n„„'+[A o(+) (v, v)Bp(+'(v', v')+Bo(+) (v', v')A (+& (v, v)] f Q g„n—„(+&Ao(+&(v, v)
vv'

,'f Q g„g„n„—„(+-'n„+'Bo(+)(v, v)B0 +'(v', v') f Q g„P„„(+)B—o(+'(v, v)
vv'

aPy8, M

aPy5, M

Q-PQVH-()'+'nv('+'( 1) A2 M'+'—(~,P)A2M—' '(7,~)

Q-(&Q~»-()'"'4~'+'( 1) [A2 ~—'+'(~,P)B2~'+'(v, &)+B2~'+'(v,&)A2 M(~)P)]—

aPy8, 3f

(17)

We will brieQy discuss this Hamiltonian in terms of the Beliaev-Zelevinsky expansion.
The heart of their method lies in the expansion of the A ~~ (v, v'), B~w(v, v') as a series in powers of other operators,

Az~(v, v'), that obey exact boson commutation rules,

[A»&r(IJ, ,II,'),Ag J&r t{v,v')]=Sing 5~~ (5„„5„.„.+( 1)'& '&'+~5„„.5„.„). —
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The coefficients of the expansion are determined by the requirement that: the A~ir(v, v') and B~~(v,v') obey their
exact commutation rules

[A JzMx (vl~vl )yA JaMa (v2&v2 )] 5J i J24f 1M'(5viv25vt' va'+ ( 1) ~ ~ 5vyvg'5vg'vg)

—Z (1+I )(1+1.)~(1,2,3)B...,(.„..), (18)
J3,v3v3'

[BJ' ir (v3 v3 ) A jyir (vi, vi')7= P (1+Pi)F(1,2,3)A Jgirm (v, ,v2'),
J2, v2v2

[B.. .(", '),B.. .'(", .')]= 2 (1-P.i.~.) I (1,3,2)B.. .( ....'),
J 3V3v3

(20)

where p, is an operator that permutes vi with vi' and multiplies the result by the phase factor (—1)&'"i &'"i'+~, j„,j„,
being coupled to J. The function I'(1,2,3) is given by

F(1,2,3)=5„,.„,5„...5„,„, [(2J2+1)(2J3+1)]' 'W(j 3&i'JaJm,' Jij2)C(J2JSJi M2M3Mi). (»)
In the simplest RPA everything except the first, the 5, term in Eq. (18) is dropped, so that the A J~(v, v') are
treated as boson operators, the Bg~(v, v')JNO are neglected, and Bo(v,v) is replaced by

(1/g, ) Q Ag~t(v, v')A J3I(v,v ).

Instead, Beliaev and Zelevinsky give an expansion in boson operators. As an example we consider the simplest
case, Ao(v, v); the expansion is

Ao(v, v) =AD(v, v)—
2g 2 v' v",J1J2J3,MIM23f 3

[(2J,+1)(2J2+1)7'~'g„W(j,j,JiJ2, J&j; )

X (—1) '+ &+ 'C(JiJpJS, —MiM2 —Mi)Ag, ir,t(v",v')Ag, ir, (v, v")Ag, jr, (v)v')

+ (terms involving A' terms and higher odd powers). (22)

The point is that the coefficient of the A' term is of
order 1/g', where g is an average over the g„. This fol-
lows from the fact that the R.acah coefficient is of order

1/g, for large g. Thus, the A' term involving J,=O is

easily evaluated, and is just

(—1/2g„2) P Ag~t(v, v')Ag, „(v,v')Ao(v, v). (23)
Juv'

The smallness parameter of 8eliaev-Zelevinsky is
measured by the small factor (1/g„2). Similar arguments
are given by them for cases more complicated than the
simple one shown above. The general expansion is given
as

Agjr(v, v')=Age(v, v')+(A terms of order 1/g )
+(higher order A' terms). (24)

Similarly Bo(v,v) is expanded as

Bp(v, v)=1/g, g Agirt(v, v')Ag, ~(v, v'). (25)
JMv'

In Eq. (26) the first term is of order 1/g, and the
higher terms begin with order 1/g'. In the work below
we use only the first, the qlasibosoe, terms. We take
from Beliaev-Zelevinsky the description of "higher
orders" as higher orders in 1/g'.

III. PERTURBATION PROGRAM

By use of these expansions, the Hamiltonian can be
written as an expansion in powers of the parameters,
1/g. The subsequent solution in powers of 1/g' by
perturbation theory, then, amounts to a corresponding
diagonalization of the Hamiltonian to the order con-
sidered. Since the number operator, N, commutes with
B, this implies a corresponding diagonalization of N.

To examine this point it is useful to write the number
operator K

~=K a.Bo(v v) =Z {a'v'+g,n..&+»o&+'(v, v)

+~ &-"'Bo(, )}, (»)

8=Q g 'v '+Q g,g„,&+&Ap&+& (v, v)

For this special case the series terminates, and a simple in its ex Qnsion.
closed form results. The more general case, B~w(v, v')
has an expansion

BJ)My(vlyv1 )
vgv3v2'v3' J2J3M2M3

I"(2,3,1)
+ Q P„„&+&Az~t(v,v') A ~M(v, v')

XAz,~, (v3, vs')A g,~,(v2, v2')

+ (higher order terms beginning with A') . (26)

vv, J3f

+ (terms in order 1/g and higher), (2g)
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where Ap'+&(v, v) has a definition analogous to that
appea, ring in Eq. (10). The leading term is a constant
equal to the BCS value for (O~N lO)= N. In order to
diagonalize X, up to and including order 1, it is useful
to introduce the self-motivating notation

m (v):—Ap~+~(v, v) x(v)—:iAp ~(v, v) (29)

(m (v),x(v) j= 1/i. (30)

Then, to this order,

&=2 g'p'+2 {g.~-'+'~(v)

+P„„&+'[x-(v)'+x(v)'—1j)

+ P („„&+~A.~prt(v, v')Agpr(v, v'). (31)
v v', J&0,1lI

4

The diagonalization is now easily seen. The A»r(v, v'),

A»r (v, v), JNO, commute with the ~(v), x(v) and also
with those of different J, M as seen in Eq. (17); the
last term is, therefore, in diagonal form. The second
term has the form of a harmonic oscillator whose center
has been shifted. It is diagonalized by the displacement
transformation

z (v)+g, rt„'+&j2&„„'+&= m'(v) . (32)

However, since this shift is of order g„, all matrix
elements of m(v) and of x(v) will be of the order g„.
This, in turn, means that the matrix elements of Ap(v, v)

are of order g„. This can also be seen directly from the
easily derived result for the unexpanded Ap(v, v)

iT (g 2+2 N ) i/P

(.V„—2~Ap(p. p) ~N„)=&P
" "— "

-(N„)i~P,
g

(33)

where ~N„) denotes the state with N„particles in the
u shell. However, the whole expansion has meaning
only if the matrix elements of all A are at most of order
1. Further, this difhculty with A is not confined to the
expansion of Ap(v, v) or of N, but would appear in the
higher order terms of A»r(v, v'), JWO.

To remove this difhculty the use of exact eigen-
functions of m (v) or of the oscillator, L7r'(v) j'+Lx(v) j',

must be replaced by averaging in a packet in vr(v),
x(v) space such that both ir(v) and x(v) are confined
to a spread of order 1 about a magnitude of order 1.
This will guarantee tha, t such quantities a,s m (v)' and
x(v)', for example, will be of order 1.This packet, then,
through the connection with the number operator, Eq.
(31), results in a weighted average over different
number eigenfunctions and eigenvalues. Different
packets in n. (v) and x(v) may or may not. correspond to
different averages over the number eigenvalues. There
is not a one-to-one correspondence between the vr(v),
x(v) averaging and the number averaging H.owever,
it will be explicitly shown that it is only the number
averaging that determines all physical results. For this
reason it will be sufficient to specify only the number-
packet: the way in which systems with different
numbers of particles appear in the weighted average.
Further, since the number dependence will be made
manifest it will be easy to keep the number averaging
the same for all states, and so remove all possible
spurious contributions.

In passing, it is worth noting that the BCS vacuum
is a number packet that fulfills the above requirements.

The use of the packet introduces contributions to the
energy of the form ((1V—N)') as well as higher powers
of the number dispersion. These are spurious effects of
the number averaging. However, since they will be
made explicit they will be removable. In addition, since
the degree of freedom associated with the number
dispersion is explicitly fixed by the packet the spurious
states based on tt such as (N—N)|t no longer appear.
The point is that f corresponds to a given weighting
of different numbers; schematically it can be written as

(34)

However, (N N)p, in gen—eral, corresponds to a
different set of weights, zv~, and is, therefore, excluded
by the necessity of keeping the number packet 6xed.

These considerations are made clearer by the simple

example in the next section.

f=Q iong(N).

IV. THE TWO-SHELL PROBLEM IN ORDER g'

Using the above expansions, the Hamiltonian of Eq.
(1) can be written, up to and including order g', as

H= P s g p p fP gy gv' '/vs gv'v' +2 &vgplvv Ap (v&v) pf 2 g"g" k» I" " A p (v&v)
v vv' v vv

+-'f p g '$ '+'+ p p.p..'+'A~~t(v, v')As~(v, v')+ pf 2 g"'rt-'+'rt""'+'A»r (»p ')A~pr(»v )
v v v', J2lf vv'v", J'3f

+if Q g g Ap~ ~(p p)Api ~(p, p) —pf Q g g„&„„~+~)„„+Ap+ (vv)AQ (v v )
vv vv

—2X Z

0-semper-t'+'~.

~'+'( 1) A2 ~'+'(~,—P)ApM'+'(7~). (33)
ePyB, M

It is worth noting that the e., the single-particle energies, and xQ ~Q~&, the quadrupole interaction energy, have
been taken of order (g'f) to reflect the practical choice of parameters. It is useful to rewrite this expanded Hamil-
tonian (35) in terms of the canonical variables m. (v), x(v) introduced in Eq. (29), together with the additional
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definition 8,, whose obvious signi6cance will be discussed below:

6=—Q g„st&„.&+) =f Q g„su„t&„.
2 v v

(36)

Since the g„„'+~ are of order 1, 3, is of order g'. In this new notation H takes the form

H=g e g 2&/' '6'—/f-+Q g, (e„t/,.&+)—Ap„(+))lr(v)+Q (e,p..(+)+/&lt/„„&+))fir(v)2+X(v)2 1—)

vv vv'

X Q Assi (v)v')A g~(v, v') 2X —P— Q.SQ,2»./&+ »,2+ (—1) A2 2r +)((2)tl)A2~&+)(p, i&). (37)
JQP, M, vI

8= Lg
'&/ '+g '1 2')+t g,&1&1&+)lr(1)+g22/22&+ ~(2)j+2»&+ (lr(1)2+x(1)2—1)+(22&+)(lr(2)2+g(2)2 1)j

( ) ) (, )+$22+' Q g/&r (2)2)Appar(2, 2)+((„&+)+(22(+&)
J&p, M JQO, M

X Q A j')2& (1,2)Aqs&(1, 2)+(terms of order 1//g and lower). (38)
J&P,M

This Hamiltonian contains both real eRects and spurious eRects arising from the number dispersion. We give
here an analysis that allows these spurious terms to be uniquely identified. For simplicity of presentation this is
first done in the simple special case of two shells.

The leading g terms in the Hamiltonian, Eq. (37), are just the first two constant terms. The third term in the
Hamiltonian, for example, which is of order g, contains both a number dispersion part as well as real parts. The
number operator is

The v~ and v2 are chosen, as in BCS, so that

gl t/1 +g2 S2 ~ (39)

The remainder of Eq. (38) is the number dispersion, (1V—1V). The leading term in this dispersion is
second term of Eq. (38), of order g, which can be compactly written in terms of a new variable &r~

(gi 2/ii(+) +g 2~ (+)2)1/2~

where x~ is defined by

glt&li(+)~(1)+g22&22(+)2r (2)
7i+=

(g 22/ (+)2+g 22& (+)2)1/2

It is convenient, then, to further dehne a complete canonical set of variab]es&

(41)

gl'gll +'2r (1)+g2"&22'+'~(2)
'r+ )

(g 2~ (+)sing 2~ (+)2)1/2

glt/» &+)X(1)+g22122&+) X(2)
SN

(g 2~ (+)2+g 2~ (+)2)l/2

g2'f22 2r(1) gl'gll 2r(2)
&R

(g 2~ (+)2+g 2~ (+)2)1/2

g22122'+'*(1) —glt/11 ~(2)
XR= )

(g 2~ (+)2+g 29 {+)2)1/2

(42)

' A similar procedure is described and used by D. R. Res, Nucl,
Phys. 49, 544 (1963). See also D. J. Thouless and J. G. Valatin.
Nucl. Phys. 31, 211 (1962).

which have the simple commutation rules

1
7l Q)Sgg X~)/$7 —

)
i (43)

L~„~N]= L~~,x~]=Lx„~~j=Lx~,x~]=O.

Since the R and X variables commute with each other,
the R degree of freedom has indeed no part of x~. To
the order in g in which ~~ represents the number
dispersion, x~ and x~ will give rise to real excitations,
free of spurious contributions. The real 0+ excitation
in even systems is, in this order, describable entirely in
7l g) Xgs

With this notation, the Hamiltonian can be written,
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to order g', as

glg2))22 (612/ll 6/11 ) glg2'gll (62'f22 6/22 )H= (constant in g')+ 7t'g

(g12))11(+)2+ g22y/22 (+)2) 1/2

gl $11 (61))ll 6)11 )+g2 'f22 (622/22 A/22 )
2r/2+ (terms in order g' and lower) . (44)

(g 2~ (+)2+g 2~ (+)2)1/2

The diagonalization of the R part of the Hamiltonian
would present a familiar problem, since in order g' it
would result in a continuous spectrum; the inclusion
of order g' terms would make the spectrum discrete, but
mz, xz would be of order g, thereby invalidating the
expansion. To avoid this we choose the I's and p's

entering into 6, ))(+) and &(+) to make the coeKcient of
2r/2 in Eq. (44) zero; that is, we choose them so that

612/ll 6/11 62'f22 At22
( )

where X is a constant. These two equations combined
with the requirement (39) completely determine the
three parameters e~, v2, and X. In terms of the original
n's and p's these equations are seen to be just the BCS
equations without the Hartree-Pock contribution to
the single-particle energies:

(&1 )()Ill/1 2+(Nl Vl )= 01

(&2 )()242()2 2 +(242 52 ) (46)

Q—g)22/12+g 2P 2

together with the definition of the gap parameter 6,
~=fLgl 2412/1+g2 N21/27.

The omitted Hartree-Pock single-particle energy con-
tributions are of order 1/g' smaller than the terms in

Eq. (46). Incidentally, the arbitrary inclusion of such
terms would not have changed any of the energies up
to and including order g'.

In the BCS procedure the second term X(P—X) is
removed by the special procedure of working not with
H, but with (H—klV). Since in both the BCS procedure
and here (lr&) =0, this term does not contribute anyhow.
This completes the discussion of order g'.

To proceed in order g', the RPA order, it is not
sufficient to identify (1V 1)/') with—

(gPl)t1 1(+)2+g 222/22 (+)2)1/22r/)/ ~

the next order terms in the expansion of I('/, Eq. (38),
must also be considered. To do this most expeditiously
it is very convenient to have all the contributions to
(N X) lumped tog—ether. This is carried out by a
canonical transformation, which is de6ned by

~iS

(g 22/ (+)2+g 2~ (+)2)1/2
(48)

here (8 V) is taken up to —and including order 1, Eq.
(38). The explicit solution for S is easily constructed
and turns out to be

With this choice of I's, p's, the Hamiltonian in order
g', Eq. (44) takes the very simple form

P= (constant in g4)+X/g122/11(+)2+g222/22(+)2 jl/22rN

+ (terms in order g' and lower)
= (constant in g4)+X((P E)—

+ (terms in order g' and lower) . (47)

[lr(1)'x(1)+x(1)'/3—x(1)+x(1) Q (AgMt(1, 1)AgM(1, 1)+AgMt(1, 2)AgM(1, 2))$
2g~gi~(+) JQO, M

b2(+)
L2r(2)'x(2)+x(2)'/3 —x(2)+x(2) Q (AgMt(2, 2)AgM(2, 2)+A.gMt(2, 1)AgM(2, 1))j

2g~g22'+' JQO, M

+Hermitian conjugate. (49)

The same canonical transformation, Eq. (48), is then applied to the Hamiltonian, and the result again expressed
in the original variables m&, x~, xz, xz and the A&M, J&0.The entire number dispersion now occurs only via wz,
Since m-&, x& commute with x&- exactly, we are sure that the spurious effects are separated and con6ned to the ~N
dependence. Of course, there is a simpler procedure possible to avoid worrying about the identi6cation of those g&

terms which, together with the g' term in Eq. (47), combine in making up X (N—F).This consists of simply adding,
at the beginning, the exact —PX to the Hamiltonian. We have chosen the other canonical transformation pro-
cedure to illustrate that which becomes necessary in the higher orders.
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After the canonical transformation the Hamiltonian becomes, up to and including order g,
H= Elgl (&1 +62g2 82 2A /f+&l(gl Y/ll +g2 )&22 ) 2l'N

+El P fA J M (1,1)A~M(1,1)+AzM (1)2)AzM(1,2))
JQO, M

+E2 Q PAJMt(2, 2)A&M(2, 2)+A&Mt(2)1)AJM(2, 1))
J&0,M

—-,'&( Q (—1)MLQ„)&„(+)A, (+'(1,1)+2Q, )&
(+&A (+&(1,2)+Q )&

(+&A (+&(2,2))

X/Q 2&
(+&A (+)(1,1)+2Q 2&

+ A + (1,2)+Q )&
+)A (+ (2,2))

gPqll'+ "+g2'q22(+"—fr+2 f(gP2&11+ +g2 1&22+ )m'~ +2f P~&2'+»' —1)
$11 $22

( ) g] 1(+)7)22 (+) g12~ 1 +)2 g22~22 +)2

+2fgpg2 2fglg22&12 F@7fg
gPnl 1(+"+g2'n22'+" gl )&11 +g2 )&22

f12 f11 '$22
2fgl'—g2' &r&P. (50)

gl 2&ll +g2 )&22

Here
E„=6/2&„„(+)=

t (e,—X)2+62)1&2 (51)

denotes the usual BCS quasiparticle energy, again
without the Hartree-Pock contribution to the single-
particle energy; E„is of order g'. It is worth noting that
x~ does not appear anywhere; this is, of course, because
X, and therefore, ~~ commutes with H. It is also worth
noting that the Hamiltonian in order g, Eq. (50), is
the part of the whole Hamiltonian that is diagonalized
by the RPA.

The m~2 terms appearing in order g' would give a
spurious contribution if they were included; they must
be subtracted out. This can be done by subtracting
from B a term proportional to Ã2. This is the procedure
of Xogami'; the determination of the correct propor-
tionality constant is, however, not immediate. The
Nilsson method' assumes that the energy depends
quadratically on Ã; knowing the E and Ã2 dependence

of the 3CS result together with the 3CS number
dispersion permits solving for the corrected energy. In
the procedure outlined in this paper the ~~2 terms can
be dropped either by inspection or by subtraction of an
(1()'—Ã)2 term; the coeflicient in the subtraction term
is completely de6ned in this order. The m~xz term can
be removed by a canonical transformation leaving only
an additional ~~2 term which is handled as other x~'
terms. It can also be dropped on inspection since it can
only result in an energy contribution involving m.&, and
all such terms are to be dropped in any case. It should
be remarked that higher powers of x~ appear in higher
order. For this reason the prescriptions of Nogami and
of Nilsson based on an E2 dependence are no better
than the simple prescription based on order g2.

Had we not had the aid of the canonical transfor-
mation in identifying all parts of (1V—cV) to the
desired order, a portion of H, Eq. (37),

(+) gg„(+)

(+)
(„„(+) P AgM'(), v')AgM(), v') =&( P P„„(+) P AgMt(&, 1')AgM(v, )'),

v', J&O, M v~, Jgo, M
(52)

might not have looked spurious. In fact this g' term is entirely spurious, since it goes with a g' part to form
&((g—1V). ln earlier work this spurious contribution was avoided because it was not H that was used, but H —&(1&&t;

which just subtracts out this spurious term. Since it would seem, at first glance, more natural to use II in the
RPA, the use of (H—&lP) was very fortunate and correct.

%e now have a Hamiltonian free of spurious contributions:

H= flgl 'Vl +E2g2 232 —
2 fÃ(gl +g2 +2 1~ )+ 2 fgl g2 )&12

+El Q tAJMt(1, 1)AgM(1,1)+AgM" (1,2)AgM(1, 2))
J&0,M

+E2 Q LA JMt(2, 2)A JM(2, 2)+A+Mt(2, 1)A+M(2, 1))
J&0,M

( 1) )Q112&ll A2—M (1)1)+2Q12)&12 A2—M (1)2)+Q22'f22 A2—M (2y2))

X/Qllg 1'+'A M'+'(1, 1)+2Qlml '+'A M'+'(1, 2)+Q2 g '+'A2M'+'(2, 2))
gl )&11 +g2 )&22 $12(

—)2/11(+)g 22 (+)

+'f k~~'+»' 1) 2fg 'g2' — — ~a'. (53)
(+)~ (+) gPgll(+" +g2'g22(+"
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15-1+-'.Z ~.—(&+&), (54)
0' 2

It is easily diagonalized. The JW0 parts are handled separately since they commute with the J=0 or lr&2, x/2 parts;
this results in the usual RPA equations and results. The mz, x& part of the Hamiltonian is even more easily handled.
For later purposes we will need the ground-state energy. This is

2lgl vl +&2g2 v2 2fiV (gl +g2 +2 &—)+2 fgl g2 'g12'

gl 2&11 +g2 2&22 g12g22~11 +)2g22 +)2 —,1/2

+2f 1—4g(2(-)2
'f11 f22 (g122&ll +)2+g222&22 +)2)2

m

(Q g 2~ (+)2)l/2
v=1

m

2 g.n-")~(v),
v=1

1 m

Xpf- Q g„»„„(+)x(v).
m v=1

(P g 2~ (+)2)1/2
v=1

(55)

where co, are the solutions of the usual dispersion
equation arising from diagonalization of the J= 2 part
in Eq. (53). It is worth noting that 2/( & is zero for the
degenerate case and Eq. (54) goes over to the well-
known result. It shouM also be noted that the last two
terms cancel each other in the case of vanishing quad-
rupole-quadrupole interaction (&(=0), since the three
~,'s appearing in the erst of these terms become in that
ca,se equal to 2E1, (El+82) and 2E2, respectively.

The procedures are immediately generalized to the
case of more than two, 'shells. For 2/2 shells (m —1)
different operators xg„~~„„andxg„~ xg, can
be constructed so that they have the canonical com-
mutation rules, and so that all commute with corre-
sponding x~ and x~

is also immediately generalized from its two-shell form
(49). To this same order in g

(+)
5= —Q I 2r(v)2x(v)+x(v)2/3 —x(v)

2g ~ (+)

+x(v) Q A Jli (v) v )A. J2i(vqv ))
J~o, m, vi

+Hermitian conjugate. (58)

V. COMPARISON WITH PROJECTED
WAVE-FUNCTION METHODS

It is of interest to compare the results of the pro-
jected wave-function methods with those obtained
above, that are complete in order g'. To do this, the
projected wave-function results must be similarly ex-
panded in powers of g. Since these projected wave
functions have been considered most extensively for
pairing forces alone, we do so here, putting the co-
efBcient of the quadrupole-quadrupole force x, equal
to zero.

The BCS solution for the ground state of an even
system, whose average number of particles is E, is

The condition that all terms in order g, linear in m.~„,
vanish again leads to the BCS conditions

(Ep X)u„v„26(u„v„)=0) v= 1, ' ' ', 2/2

I O) = g (u„y v„(—1) '-"a„„ta„„t)
I O),

v, m)0
(59)

where

q~t Pg 2v 2—
v=1

m

6=f P g 2u„v„.
v=1

where Io)v is the particle vacuum. The part of Io)
(56) corresponding to exactly the X particles has the well-

known form

ICN)=KNL p v„/u„( 1)'" ~a—„ ta„ t)N/2IO)v
v, m)0

=x I p (g,/2) v„/u„~.t(v.v)) / Io).; (60)
To order g' the Hamiltonian takes the form analogous
to Eq. (47)

(+» „/, ,5, here KN is the necessary normalization constant. The
expectation value of the pairing Hamiltonian

I Eq. (1),
with g=o), can, then, be written out in a straight-

The canonical transformation S,
s is/(N N)/gg 2&& -(+)2)sis 2VN problem:

/g= &~N I
&

I CN) = (f/2P'(gl —+g2+2 ~)
ulv2

&
»&"(v2~" (gl'/2) ' (g2'/2) .+ 2&1+fg221 1—

I
&N2I:(~'/2)!)2 g —

I I

—
I p

v+2=N/2 ul) ~u2) (gl'/2 —p)!p! (g2'/2 —q)!q!
// u2v1) (gl'/2)! (g2'/2)!+ 2~2+fgl'I 1—

I &N'C(&/2) )' 2 I

—
I

—
I q

ul'v2) - v+2 N/2 (ul) =u2) (g12/2 —p) (p ( (g22/2 —q) !q I
~

~

~ ~

~

~

ulv2 u2vl)( (g '/2) &

I&N2I (» /2) )' 2 —
I

—
I

— pq, (61)
u2v] ul'v2) v+2 N/2 ul) u2) (gl /2 —p) !p! (g22/2 —q) (q!
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and the normalization condition becomes
(g2'/2)!(gP/2)!

1=& 't:P/2)! j' (62)
2+q=&l2 (2tll u21 (g)2/2 —p)!p I (g22/2 —q) tq I

The evaluation of these sums, to the desired order, follows usual mathematical methods. "The terms in these sums
peak at P g12w12/2, q g222)22/2 and the sums get their main contributions from a region of the P, q variables whose

spread about this peak is of order g. It is, therefore, useful to introduce the new variable, 6, p=g122)12/2+(),
q= g222)22/2 —5. Since the effective range of I) is an order g smaller than g122)12/2 or g222)22/2, it is possible to expand
in 5/(gl'2)1'/2) and ()/(g222)22/2). Further, the factorials can be sufficiently well approximated by the first term of
Stirling s formula. Then, the weighting of terms in the sums turns out to be proportional to

gl 'gll +g2 'f22

exp —4 ~!)2

gl g2 ))11(+) ))22(+) )
This, in turn, is an (2 posteriori justification of the procedures used up to here. Finally, the finite sums can be replaced

by infinite integrals, the error being smaller by an order of g than the order of the present calculation. In this way
we obtain

where

nl2( )'
V(gl +g2 +2 A)+Pqlgl 2)1 +qqg2 2)2 ]+2fgl g2 q)12 8f (() )av)

2 (+)~22 (+)
(63)

gl q)11 +g2 'f22

(P), = dI) ()2 exp —4 ~P
gl g2 'gll q)22

1 ( g 2g22))ll +)22)22 +)2

q(&pz„&+& y&, „„&+&)

gl q)ll +g2 'f22
d6 exp —4 P

gl g2 Qll '$22

putting all these steps together, results in an expression for h good up to and including order g'

g=
2'(gl +gq +2 Ã)+ L&lgl 2)1 +&2g2 2)2 3+2fgl g2 '$12 fgl g2 q)11 ))22 q)12 /(gl q)ll +g2 q)22 ) ~ (65)

Here the I's and v's obey the BCS conditions without
Hartree-Pock additions to the single-particle energies,
as given in Eq. (46). For these 2t's and 2)'s the coeKcient
of the term involving (l)), vanishes exactly. It should be
noted that (!)), itself does not vanish; also, the equation
for (()), is not just the simple analog of Eq. (64) since
there are additional terms in the distribution which

can be described schematically as of the form 8/g2,

()2/g' times the exponential. It is also worth mentioning
that the mathematical conclusions about the (p, q)
regions that contribute importantly to the sums (61)
and (62) could have been guessed immediately from
the BCS results. To see this we have only to note that
2p corresponds to the number of particles occupying
shell 1, which we call Xl, 2q corresponds to the number

occupying shell 2, which we correspondingly call $2.
Now the BCS results for the average of El and of X2
and for their dispersions are

+1 gl ~1 y +2 g2~2

E((&1—&1)')-3"'=(1/2)'"glnli(")

E(P —& )')'-3'"= (1/2)'"gm "'.
because of the connections between 1Vl, %2 and p, q

I See, for exaDIple, %. Feller, An Introdlctzon to I'robability
Theory and its Applications (John Wiley R Sons, Inc. , New York,
1957), Vol. 1, 2nd ed. , Sec. VII2.

these relations imply that p, q are effectively confinecl
in a regio n of order (gl, g2) about the mean 2g122)12, lg222)22.

It should be remarked in passing that the use of
BCS I's and p's with, rather than without, the Hartree-
Fock. single-particle energies would not change the
energy in either order g4 or g'. These single-particle
energy shifts are of order 1/g' with respect to the q.

Their inclusion would then change the u's and e's by
order 1/g'. However, as will be seen below, the order
g4 terms are stationary with respect to a shift in the I's
and m's. The effect of this shift would then first con-
tribute to the energy in order 1, which is beyond the
region of interest here.

The same result for 8, as that given in Eq. (65), can
also be obtained very much more simply and elegantly
by taking the expectation value of Eq. (53), with )(=0,
in the boson vacuum, so that

&B ~B 2 ~

The two results are the same because it can be shown
that the boson vacuum and the BCS vacuum are
equivalent. A difference might be thought to occur in
the m&' terms. However. on the one hand, they have
been dropped in Eq. (53), while on the other they would
contribute zero when the expectation is taken in

~
C)q),

the exact number eigenfunction. These number dis-
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that is, 8„,
X= (vs/us) (eg/Ng)-'; (67)

&.=(e~'I &14~')/&4~'I 4~'&, (6g)

is a function of the parameter X only. To make the
calculations especially simple we add the additional
constraint,

+=g(s()p+gs '()s
~ (69)

this costs us nothing, since, even with this constraint,
X can still run over the whole range, —0() to +0().
However, with this constraint the calculations for 8„
go through just as those for 8 above, and the answer
is just of the form given in Eqs. (63) and (64), except
that one of the s's, say e&, is now a variational parame-
ter. It is trivial to verify that the g' contribution to the
energy, which we call 8,(", is a minimum at the choice
of variational parameters given by Eq. (46), the BCS
values. This guarantees that minimizing both 8„(4) and
the g' contributions to the energy, 8„(2& will produce
changes in the I's and w's only of higher order in 1/g.
This, taken together with the vanishing of (Bh, (')/Beq)

persion terms are in this way also handled equivalently.
Finally we can compare 8, Eq. (65), which results

from using the projected wave functions, with the
result obtained by exact diagonalization of Eq. (53)
with x=0, E, given in Eq. (54). The E and h are
identical in order g4. They diGer in order g', the differ-
ence being

gPnii(+"+gs'ass(+"
g=~f

q»'+'g22&+'

g 2g 2~ (+)2~22(+)2 -1/2

x
(gp)i~) (+)s+gss))ss(+)s)s

( g sg 2~ (+)2~ (+)2

(g s)i y(+)s+gss)ass(+)s)s

This is, of course, negative. It is immediately seen that
when )iu( ", ))~s( "=(Nqvs —w)us)', is small, even the
order g' difference is greatly reduced; 1—x/2 is a very
good approximation to (1—g)'I' for reasonably small x.
In suminary, then, the projected wave-function method
gives the correct result in order g', and a good approxi-
mation in order g'. This seems to provide a basis for
understanding the excellent numerical agreement that
Kerman, Lawson, and Macfarlane7 found between the
projected wave-function result, and the result they
obtained by an exact diagonalization of the whole
Hamiltonian.

We can also easily discuss the possibility of improving
the projected wave functions by varying the I's and
e's after projecting. We call these "improved" projected
wave functions 4~'. We again restrict ourselves to the
two-shell problem. A glance at the form of the wave
function, (60), makes it clear that the only parameter
in this problem is the combination X,

at the BCS values of y, means that the variational
minimum energy is the same both in order g4 and g' as
the projected BCS result, Eq. (65), and no lower.
Finally, knowing that the result depends only on the X
parameter we can drop the constraint, Eq. (69), and
state that the result of the general variation is zero
improvement over the projected BCS, in orders g4 and
g', even though Eq. (66) implies that there is room for
improvement in order g'.

Of course, such methods cannot be expected to give
order g' correctly since they are based on BCS functions
which do not contain quasiparticle correlations. How-
ever, such correlations contribute in order g'. In the
weak. -coupling case where the gap, 6, as de6ned by the
BCS equations (46), vanishes, the argument in orders
of 1/g ceases to be valid. A considerable improvement
may very well be obtained by varying the u's in this
case."

VI. HIGHER ORDERS

We have not considered terms beyond those of order
g' in the Hamiltonian. However, an exploration of the
higher orders is important both to establish the appli-
cability of the lower orders and as a source of
corrections.

The number operator can also be expanded to higher
order and the transformation S can be produced to
explicitly gather these higher order terms into m~. The
contributions of x~, in turn are controlled by the packet.
Up to order g' the x~, xN2 dependence can be removed
by subtraction of terms proportional to N and 2V'. In
many applications it is sufBcient to insure that the
expectation values of the powers of x~ are equal in the
ground and excited states. Thus, to calculate the an-
harmonicity to order 1/g' in the ratio of energy spacings
of vibrational nuclei, this constancy is sufBcient. How-
ever, a bolder approach is also possible at the end. It
will be recalled that a packet was required so that Ap
and Ap+ would be of order 1 in order to validate the
expansion. This in turn meant a packet that would keep
both x& and x& of order 1. Since they do not commute,
squeezing the packet so that the dispersion in m&

approaches zero would make the dispersion in x~
in6nite. However, since x~ cannot appear in the anal
transformed form of the Hamiltonian this ininite dis-
persion of x~ has no consequences. We can then proceed
to take the final packet so that x~~0. Put more
simply, we anally arrive at an effective zero number
dispersion, up to the order considered.
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