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TABLE II. Summary of the transition probabilities determined
in this work, and comparison with the predictions of the single-
particle model (Rei. 16).

E& Transi-
Nucleus (Mev) tion

Transition B(E1)d
probability B(E1)d

(sec ') (10»em cm~) B(E1)sp

Sm148 1,46
0.91

Sm»~ 0.96
0.84

1 ~0+
1 + 2
1 ~0+
1 ~2+

(4.3 ~1.2) X10»
(2.7 &0.8) X10»
(11~1) X10»
(14~2) X10»

0.9
2.3
7.9

15.4

5X10 4

12X10 4

4X10 3

8X1o '

' Y. Yoshizawa, B. Elbek, B. Herskind, .R. J. Keddy, and M.
C. Oleson, Bull. Am. Phys. Soc. 9, 497 (1964)."L.Grodzins, Phys. Rev. 109, 1014 (1958).

The upper limit established recently" for the B(E1)
of the 1.46-MeV level in Sm" by a Coulomb excitation
experiment with 43.S-MeV oxygen ions, B(E1)&&3
)&10 "e' cm', is consistent with our value for the re-
duced transition probability, As far as the lifetime of the
0.96-MeV state of Sm'" is concerned, our value falls
into the range established by previous experiments. ""

It is evident from Table II that the B(E1) values
change rather abruptly as one proceeds from the
spherical nucleus Sm"' to the deformed Sm'" nucleus.
Further measurements of transition probabilities of
1 states in the region of the deformed rare-earth
nuclei as well as below neutron number 90 will be

necessary in order to establish whether this change

in the B(E1)'s is accidental or whether it indicates a
definite trend.

It might be worth pointing out that the ratio of the

B(E1)'s for the corresponding transitions in Sm'4s and
Sm"' is approximately the same as the ratio of the

B(E2)'s for the first 2+ states. In addition, the excita-

tion energies of the 1 and the 2+ states change by
approximately the same amounts as the neutron num-

ber changes, " while the excitation energies of the 3—

states remain practically constant. Since the energies

of the 2+ states are much lower to start with, the
fractional changes upon crossing neutron number 90
are much larger for the 2+ states than for the 1 states. '
The relationships mentioned above may be of interest

in view of the suggestion that some of the 1—levels in

even-even nuclei arise from the coupling of a quadru-

pole and an octupole collective excitation. "
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The probabilities of occurrence of alpha clusters are calculated for the case of four nucleons in a harmonic-

oscillator potential, based on the simplifying approximation that the oscillator constants for alpha clusters
and nucleons are equal. Some general observations as to how alpha-decay hindrance is affected by the over-

lap of wave function of a cluster and that of the constituent nucleons are made. The decay of Po"' is dis-

cussed in part.

I. INTRODUCTION

' 'N the shell model the hindrance of alpha decay can
~ ~ be attributed to a number of factors. In this paper
we shall study one of these, namely, the overlap of
wave function of an alpha cluster and that of the con-
stituent nucleons. Other factors include centrifugal
barrier, configuration mixing, coeKcient of fractional
parentage, etc.

Consider the motion of two protons and two neu-
trons in a harmonic-oscillator potential. Their wave
function can be written as a linear combination of wave
functions, corresponding to various groupings of the
nucleons, such as an alpha cluster; it has the form

0=-P; a;@;,

where 0'; are wave functions for the various groupings,
and

~
a,

~

is the probability of occurrence of grouping L

We shall calculate the coefficients ui for the alpha
groupings.

II. CALCULATIONS

The Hamiltonian for four nucleons in a harmonic-
oscillator potential is

4 4

H=- Q P'+-'cue'Q r' (2)2' i I i=1

where r; and yi are the coordinates and momenta of the
nucleons and m the nucleon mass.

The quantum numbers for orbital angular momentum

and total angular momentum of nucleon i shall be
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denoted by /; and j;, respectively, and

+(jtjs(J»)jsj4(Js4)JM)
denotes a (unperturbed) normalized wave function in
which jl and j2 are coupled to J», j3 and j4 to J34, and
then J12 and J34 to J.

A. Two Equivalent Protons and
Two Equivalent Neutrons

let l1=l2=/, 33
——14=i, ja= j2=j, and j3——j4 ——j'. A

normalized wave function for two equivalent protons
and two equivalent neutrons is

M12, M34

rl
2

(J»Mrs Js4M34
l
JfsJs4JM) Q (2j+1)l (2S»+ 1)(2Lts+ 1)]'" —', l j R„((r&)R ((rs)

S12,L12

&~12 I 12 J12~

r 1
2

X Q (StsptsIls)wlslStsL»J»Mls) gr»""XB»»' P (2y'+1)l (2Ss4+1)(2L34+1)j'"~ -',

812 t ~12 834, L34

&S34 L34 J34~

XR„.~ (rs)R„p(r4) p (Ss4les4Ls4)ts4lSs4Ls4Js, Ms4) tll, „" Xs„& ~ . (3)
834 e ~34

Here (J»M»Js4Ms4l JtsJseJM) is a Clebsch-Gordan

coefficient; ~ —,
' l j ~ a 9—j symbol', R„&(rr) the

L» J».
radial part of a harmonic-oscillator wave function;

alpha grouping is

+ (LML) =4 (R) 4 (t,n, ()xo'(1,2)xo'(3,4) (6)

where

'tlr„, "'~' ——Q (bnlm'l f/L„A, ;)YP(8,q,) Y)"'(8,ro;), (4)
P(R) =Rsrl, (R) Yr~&(R/R), (7)

m, m'

&8;;"*= 2 (sm. sm'lssSel a)~-.(s)&-;(Z),

where Y~ (H, y,) is a spherical harmonic for the ith
nucleon, X,(s) a spin wave function for the ith nucleon,
etc. J» and J34 satisfy 0~& J»~&2j and 0~& J34~&2j',
respectively, and take even values. And J satisfies

I J» Js4 I ~& J~~J»+Js4.
For simplification we make the approximation that

the oscillator constants for alpha clusters and nucleons
are equal. This approximation is perhaps good enough
for calculations using harmonic-oscillator potentials,
because harmonic oscillator wave functions are not
very sensitive to small variations in the oscillator
constants. ' 4 Then a normalized wave function for an

' H. Matsunobu, Progr. Theoret. Phys. (Kyoto) 14~, 589 (1955).
'A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic

Press Inc. , New York, 1963), p. 41.' H. D. Zeh and H. j.Mang, Nucl. Phys. 29, 529 (1962).Their
Table 3 shows that the relative transition probabilities of Po"'
are not very sensitive to small variations in the oscillator constants.

4K. Harada, Progr. Theoret. Phys. (Kyoto) 26, 667 (1961}.
Harada has used two different oscillator constants for alpha

to(g, rl, ()= (m(o/ As)' ' e px[—(mco/25) (P+rP+ f')j, (8)

R=-', (rt+rs+rs+r4), g= (rt—rs)/v2,

rl = (rs—r4)/K2, (=—', (rt+ rs —re —r4),
(9)

and Xs'(i,j) is the singlet spin wave function for nu-
cleons i and j.

The coefFicient for an alpha grouping in the state
0'((j'(I»)j"(Js4)JM) is given by

spin coordinates
4 *(LMI,)%(j '(J»)j "(Js4)JM)

Xdgdrld(d R, (10)

where the integration over E is from some positive
value E, less than the nuclear radius to ~, so as to
account for the possibility that "clustering" occurs
mainly in the nuclear surface. By means of the trans-

clusters and nucleons, and consequently a summation over E
appears in his Eq. (10). As a result of our approximation the
.evaluation of the overlap integrals, such as the one in our Eq.
(1.0), does not involve such a summation.
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formation brackets'" ' it can be shown that
». 1

2

a= (2j+1)(2J&2+1)'t'» —', l j «(2Z'+1) (2J34+1)'t'» -', p j'
.0 J34 J34

X(OO,Ni2Ji2, Ji2~ n/, tt/, J»)(00,1V,4J34,J,4~ tt'/', tt'/', J,4)

X(OO,N J~J
I
Ni2Ji~, N34Ja4, J) [R~J (R)]2R'dR8(JL)8(M, Mr) . (11)

Rp

The coeKcient vanishes unless the following conditions are satisfied:

4N+2l= 2&V»+ J»,
4tt'+ 2l'= 2Nt4+ Jt4,

2N»+2iVt4+ Ji2+J)4——21V+J.

B. Two Equivalent Neutrons (Protons) and Two Nonequivalent Protons (Neutrons)

Let l3 /4 l' ——and ——j,= j4——j'. The coeKcient for an alpha grouping in the state %(j&j2(J»)j"(J,4)JM) is

2 11

a=—[1+(—1)"+'~ »][(2ji+1)(2f2+1)(2Ji2+1)]'t 2 l2 f 2 «(2j'+1) (2J34+1)'t » a
l'

v2
~0 J34 J34~

X(00,1V,&J,2)Ji 2 t tti/i)N2/2) J»)(00)fV34J34)J34 (
tt /', tt'/', J34)

with the conditions

X(OONJJ~Ni2Ji2)lVQ4J34)J) [R+J( R)]' R'de( J) L)8( M M)r) (13)
Rp

2ni+/i+2ttm+/2 —21Vi2+Ji2,
4n'+ 2l'= 2N34+ J34,

2Ã»+2N34+ Ji2+J34= 2N+ J;
(14)

otherwise the coefficient vanishes. Ji2 and J34 satisfy
~ ji—j2~ &&J»&&ji+j2 and 0&~J,4&~2j, respectively, J,4

takes even values, and J satisfies
~
Ji2—J34~ &&J &~ Ji2+ J34.

C. Two Nonequivalent Neutrons and Two Nonequivalent Protons

The coeKcient for an alpha grouping in the state +(jaj2(J»)j3j4(J34)JM) is

z=-', [1+(—1)'&+'~ &][1+(—1)'3+'»—34][(2ji+1)(2j2+1)(2J»+1)]'"

X» i2 l2 j2 «[(2jt+1)(2j4+1)(2J34+1)]'"»a /4 j4

-0 J34 J34.

X (00,1Vi2Ji~,Ji2
~
ni/&, tt~/~, Ji2)(OO, Nt4J84, J84

~
tta/a, tt4/4, J~4)

X(OO,NJ, J~Ni2Ji2, N34J34, J) [R~g(R)]'R'dR8(J, L)b(M)Mz), (15)
Rp

' M. Moshinsky, Nucl. Phys. 13, 104 (1959).
'T. A. Brody and M. Moshinsky, Tables of T~awsformalcon Brackets for tVtcclear Shell 3fodel Calcglatco-ls (Universidad Na-

cional Autonoma De Mexico, Mexico, 1960).
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T~LE I. Some ratios of probabilities of occurrence of an alpha cluster. J is the angular momentum quantum number of a cluster.
The two neutrons (protons) couple to zero angular momentum and are represented by (a,b); the proton (neutron) pair by (3s&/s)', etc.
For each value of J the numbers give the ratios among the probabilities of occurrence of which the largest one is taken to be 1.

(a&&) (»us)'

0.75

(a,b) (2dg/s)s

0.67
0.58

(aP) (2&s/s)'

1.00
1.00
1.00

(a 1) (1gr/s)'

0.18
0.18
0.22
0.63

(aP) (tg~/s)'

0.22
0.23
0.29
1.00

(a.&) ((h»/s)'

0.0062
0.0066
0.0085
0.0300

(aP) (Os»/s)'

0.0073
0.0076
0.0098
0.0382

with the conditions

2nr+lt+2es+ls= 2Xts+ Jts,
2ms+ls+2N4+t4 ——21Vs4+ Js4,

2Xt2+2Xs4+ J12+J34 2~++J i

(16)

TmLE II. Some ratios of probabilities of occurrence of an alpha
cluster. The constituent nucleons are (1ps/s)'(Ofr/s)' with the erst
pair coupling to zero angular momentum. J and N are the angular
momentum quantum number and radial quantum number of the
cluster, respectively. The numbers in the third column give the
ratios among the probabilities of occurrence of which the one forJ=6 is taken to be 1.

otherwise the coeKcient vanishes. J~2, J34 and J sat-
isfy

I ji—jsl & Jts~ ji+js I js—j4I ~ J34«js+j4 and

I Jis—Js4I &&J&~J»+J,4, respectively.

IG. DISCUSSION

Some general observations can now be made.
(1) We expect that in each shell the overlap of wave

function of an alpha cluster and that of the constituent
nucleons of lower angular momenta is larger. As an
illustration, Table I lists some ratios of probabilities of
occurrence of alpha clusters formed from two protons
(neutrons) coupling to zero angular momentum and a
pair of neutrons (protons) in the shell with 2m+i= 6.

Zeh~ has calculated the alpha reduced widths of even
Po isotopes. It is noted that the ratios of the pure shell-
model reduced widths for the neutron configurations
(1gs/s)' (at neutron number 136), (Oirl/s)' (at neutron
number 138), and (Oits/s)' (at neutron number 114) are
similar to the ratios of probabilities of occurrence of an
alpha cluster of J=0 for the configurations (a,b) (1gs/s)',
(a,b) (Ostt/s), and (a,b) (Osis/s) .

(2) In a nucleus, the factor Jr/, "ttR~q(R))'R'dR is
larger for nucleons of higher shells. For an alpha cluster
formed from nucleons of higher shells has higher energy,
and therefore the wave function Rs/J(R) is larger in
the nuclear surface.

(3) We expect that when the constituent nucleons
are the same, the occurrence of alpha clusters of lower
angular momenta is more probable. As an illustration,
Table II lists, excluding the factor Jg,"I R~q(R)]'R'dR,
some ratios of probabilities of occurrence of alpha
clusters formed from (1ps/s)'(Of&/s)'. Including the fac-
tor is likely to make the occurrence of alpha clusters of
lower angular momenta even more probable, because
the wave function R~J(R) has, for a larger X, more
nodes away from the origin.

' H. D. Zeh, Z. Physi)i 175, 490 (1963).

Probability of
occurrence

3.40
1.01
0.84
1.00

In the alpha decay of Po ", the transition to the
569-keV level in Pb" is slower than the transition to
the 900-keV level in the latter nucleus. The ratio of the
reduced transition probabilities, calculated by taking
the lowest permitted alpha angular momentum, for the
two transitions is about 16. YVe have found that the
probability of occurrence of an alpha cluster of angular
momentum J=3 formed from (1gs», 2ps/s)(Ohs/s)' is
about 16.5 times that of yn alpha cluster of the same
angular momentum formed. from (1gs/s, 1fs/s) (Ohs/s)'.
Thus it is possible that, when more exact wave func-
tions are used, the difference in the overlap of wave
function of an alpha cluster and that of constituent
nucleons accounts for a large part of the difference in
hindrance between the two transitions.

Finally, we wish to mention: First, in recent shell-
model calculations" of alpha transition probabilities
there is used a radius parameter, the choice of which is
somewhat ambiguous. We have in this paper used
overlap integrals, such as the one in Eq. (10), in the
hope that our study may point to a way of avoiding the
use of the radius parameter. Second, in applications to
heavy nuclei the tables of transformation brackets'
need to be extended to include higher quantum numbers.

SI. Perlman and J. O. Rasmussen, Encyclopedia of Physics
(Springer-Verlag, Berlin, 1957), Vol. 42, p. 186.' Zeh and Mang (Ref. 3) have recently made detailed calcula-
tions on the relative transition probabilities of Po'".

' See Refs. 3, 4, 7 and J. O. Rasmussen, Nucl. Phys, 44, 93
(1963).


