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Fluctuations with Time of Scattered-Particle Intensities*
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The Quctuations in counting rate of a particle detector are studied. These may be used to study the co-
herence properties of the beam. For the case of electromagnetic radiation they may be used to study spectral
line shapes. The Quctuations in intensity of scattered particles provide a means of studying Quctuation phe-
nomena in the target.

C(t)dt

is the total number of particles entering the detector in a
time interval T. The normalization (1.1) suggests that
we may call C(t) the instantaneous counting rate of the
detector.

In any given experiment the counting rate C(t) will be
expected to fluctuate with time —and it is just this
fluctuation which we wish to study here. In particular,
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M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys.
Rev. 132, 2764 (1963).This paper will henceforth be referred to
as I.

I. INTRODUCTION
" 'N a recent paper' the correlation in counting rates
&- was studied for two detectors counting scattered
particles. There it was shown that by such an observa-
tion the phase of a scattering amplitude can be meas-
ured. In the present paper, we wish to study the cor-
relation of fluctuations in the counting rate of a single
detector and of a pair of detectors.

We have in mind a typical scattering experiment, as is
illustrated in Fig. 1.A beam of particles is directed on a
target. Particles scattered into the detector are counted
and recorded. For simplicity of discussion, we shall
suppose that the detector output is in the form of an
instantaneous electric voltage C(t), at time t, across two
terminals T~. We shall also suppose the detector to
have been calibrated so that

we shall discuss the autocorrelation function

(1.2)

where the time interval T is so large that )see Eq. (1.1)]
Ã~&1.

We shall assume in this paper that the incident par-
ticle beam is "steady" in the sense that its intensity
does not systematically drift during the course of the
experiment. We shall also assume that the detectors
used are 100% eflicient, counting every particle which
enters them. The fluctuations in C(t) will then be de-
termined by three factors. The Grst of these is statistical
Auctuations in the incident beam intensity, the second
is statistical fluctuations in the target, and the third is
the transient response characteristic of the detector.
The finite response time of the detector will tend to
smooth Quctuations in the scattered beam and will thus
ordinarily not be welcomed when we are studying
Auctuations.

The study of particle beam fluctuations can provide
information concerning the structure and degree of
coherence of the beam. (For such a study one would of
course omit the target and place the detector directly
in the incident beam. ) After developing the general
theory in Sec. II, we shall study beam fluctuations in
Sec. III. The results will be applied to an analysis of
spectral line broadening of a radiating gas in Sec. IV.

The autocorrelation function (1.2) Lmore generally,
the fluctuations in C(t)]can be used to study fluctuations
and relaxation processes in the target. ' Examples of
such phenomena, which might be studied with the func-
tion (1.2), include density fluctuations in liquids and
gases, spin waves in solids, phonon excitations in liquid
helium, etc. To apply the theory of Sec. II to such
studies, we first (in Sec. VI) cast conventional steady-
state scattering theory into such a form that scatterer
coordinates are represented by Heisenberg variables at
a retarded time. This is then applied in Sec. VII to a

~ That such information is available from Quctuations is evident
to anyone who has watched a moving ship or aircraft on a radar
A scope.
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description of several experiments which might be per-
formed to measure correlations and Quctuations.

In this connection it is perhaps worth noting that
temporal Quctuations may be studied even for a target
in a pure quantum-mechanical state. For example, let
us imagine that we are studying x-ray scattering by
hydrogen atoms, each in its ground state. The electron
coordinate in a given atom may be written as s(t) =—s*'"'

&&ze '"', where h is the atomic Hamiltonian, and its
wave function may be written as gp(s), where hgp= wpgp.

The average coordinate (gp, s(t)gp) =(gp, sgp) is of course
time-independent. The observation of the autocorrela-
tion function (1.2) provides a measurement of such
quantities as (gp, s(t+r)s(t)gp), which does depend on T

Time-dependent motion of this sort is physically mean-
ingful even for pure eigenstates. It is with the observa-
tion of such time dependence (for pure states and for
statistical mixtures) that we are primarily concerned.

II. CORRELATED COUNTING RATES

In this section we shall express in somewhat simpler
form the theory of correlated counting rates as pre-
sented in I in the light of the formalism' developed in
II. In addition we shall rederive some of the results of I
without the use of second quantization methods.

We consider an experiment designed to detect par-
ticles in a particle beam. These might be particles
emerging from an accelerator, or from any kind of
radiating source, or they may have been scattered from
a target. In any case, we imagine that the experiment
lasts for a time interval T, during which n identical
beam particles are emitted. If e is suKciently large,
transient effects associated with the beginning or end of
the measurement may be ignored.

The time-dependent wave function for the jth beam
pa, rticle (j =1,. . .

,n) is written as C,(x;,t), where x; is
the space coordinate of the particle and (C, (x,,t),
C,(x,,t))= 1. Evidently we are using a wave-packet de-
scription and not plane waves; this is essential for a
proper spatiotemperal discussion. The wave function
for the e beam particles is obtained by tak.ing the
appropriately symmetrized product of such packets:

(2.1a)

where a scalar product of spin and/or other internal
variables is implied.

We shall be interested in situations where the en-
semble average implies that the number of beam par-
ticles e, certain parameters in the C,, and the state of
the target (in the case of a scattering problem) are ran-
dom variables. In particular, we shall be concerned with
what we designate as incoherent beams for which the
ensemble average implies the following properties4:

(1) The random variables describing different beam
particles are statistically independent; all beam par-
ticles have equivalent statistical properties.

(2) The phases of the various C, are random in a
sense made precise in Eq. (3.2). Loosely speaking this
phase randomness is associated with the unspecified
emission times of particles from a source.

(3) The number of beam particles n is statistically
independent of other variables and is described by a
Poisson distribution.

(4) The beam is suKciently uniform that during the
course of an experiment, averages such as that of the
particle density dehned above are independent of time.
g (5) The C', may be factored into a product of a space
factor C „.and a spin factor I„,. (For scattering experi-
ments a sum of such terms may be required. ) Initial
spin orientations of the beam particles are random. It
follows that the quantity

x(1)=-(C,*(y.,f,)~,(y„f,)) (2 2)

is independent of the index j, since all particles are
equivalent (assumption 1), and is independent of the
time f, (assumption 4). We may then write the particle
density at yt as nx(1) where

n= (n). (2 3)

If the mean speed of beam particles is V, the average
particle Qux at y& is

~(y) = -I x(1). (2.4)

We imagine now a particle detector to be located at a
point Yt, a conveniently chosen reference point in the
detector. This detector, which we call "one," will be
represented by an operator which signiies the presence
of particles within the active volume, namely,

where s is an operator which forms a symmetric wave
function for particles satisfying Bose-Einstein (B.E.)
statistics and an antisymmetric wave function for par-
ticles satisfying Fermi-Dirac (F.D.) statistics.

As is customary, we imagine repeating the experiment
many times and represent the eGect of this as perform-
ing an ensemble average denoted as (. . ). For example,
the average density of beam particles at a point y is

(e(t), g &(y—x&)+(&))= (2 C';*(y &)C'~(y &)); (2 1b)
j'-I j~l

' M. L. Goldberger and K. M. Watson, Phys. Rev. 134, 3919
(1964).This paper will henceforth be referred to as II.

where

~1 Z ji(~t 0), (2.5a)

j~(&t 0)= d'X vt(y) ~(y —xt) . (2.5b)

Here the integral extends over the detector volume and
yt(y) depends on its calibration. For a uniformly sensi-
tive counter, 71 is independent of y. Recall also that we

4As was done in I, we assume that on taking the ensemble
average we may treat the diferent 4; asbeing e8ectivelyorthog-
onal. The physical implications of this assumption, and generali-
zations of it, require further study.
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assumed in the introduction that our detectors are 100'Po

eKcient, giving a count every time a particle enters the
active volume.

The instantaneous counting rate of the detector dur-
ing the experiment is (%(t),Ji+(t)); the ensemble
average of this,

L,(r) =
dM

P (~)e
2x

(2.12)

It is convenient to introduce the frequency characteris-
tic of the detector according to

(J.)=((~(~),J +(~))), (2.6) and often in practice to imagine that we deal with a low-
frequency band pass 6lter for which

is by our assumption independent of time. This may be
evaluated in terms of the particle density and detector
calibration as described by Eqs. (2.1b), (2.2), and

(2.5a,b):

(2.»)

d'y vib )x(1)

where co„ is a frequency such that input signals which
have frequencies in the range —co„&co&co~ are un-
modified by the transient response characteristics of the
detector.

Taking into account the 6nite resolving time of the
(2.7) detector, we find for the mean counting rate

where x(1) is the single-particle density function de-

flned by Eq. (2.2). We shall assume that the average
beam density (1) is uniform over the detector volume

and factor it out of the above integral

(G)= dtL, (T, t)(J,)—
=8 (0)&J ), (2.14a)

&Ji)= iix(1) d'Xvi(X)

where the second form follows from the definition of B~,
(2.g) Eq. (2.12), and the fact that (J,) is independent of time;

since Bi(0)= 1 according to Eq. (2.13) we see tha, t

yi ——V/wi.

Now in practice, physical particle counters cannot
have the instantaneous response characteristics sup-

posed above. The necessarily 6nite response time is de-

scribed by a function Li(r) such that what we call the
instantaneous counting rate at a time T& is given by""

dh, L,(Ti—ti)(+(ti) )Ji@(ti)).

The function x(1) is evaluated. at any convenient point
in the detector. For illustrative purposes we occasionally
introduce a special counter which is uniform (yi ——con-

stant) and which has flat surfaces of area Zi and thick-
ness m» so that

(J.)=~x(1)( ~ b' (2 9)

It is also convenient to introduce the concept of a
"calibrated counter" dered in such a way that in

terms of the average particle flux at yi Lsee Eq. (2.4)j
(Ji)=~i~(yi), (2.10)

so for such a counter, the uniform eKciency, p& is given

by
(2.11)

«)=(J ) (2.14b)

with

(2.15a)

Thus, under the assumptions which led to the time con-
stancy of (Ji), we find that the detector response char-
acteristics play no role.

We turn now to the physically more interesting
problem posed in Sec. I, namely, the study of Quctua-
tions in the counting rate. In particular, we consider
the autocorrelation function defined by Eq. (1.2).'
Since it involves no added complication we generalize
the problem to the studv of the space-time correlations
of two counters called "one" and "two" located at
points Yi a,nd Y2, respectively. The autocorrelation
function for a single counter may then be found by
setting Yi——Y2 and regarding the two counters as a
single counter.

The counting rate operator for detector "two" is
given, by analogy with the description of "one," Eq.
(2.5), by

The causal transient response function Li(~) must

satisfy the condition that

Li(r)=0 for r(0.
~ The linear transient response characte. 'istic has been discussed

in more detail in connection with Eq. (4.10) of I and Eq. (2.29)
of D.

j~(Y2,0) = d'x v2(y)~(y —*i), (2.15b)

6 The theoretical basis for this was developed in II.

where the integral extends over the volume of the second
detector and y2 is its sensitivity calibration function. It
will be convenient to introduce the notion of time-
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dependent, or Heisenberg, counting operators such as Scattered
particles

n

Js(r)=Q jt(Ys, r),
L=l

g (Y ) —e Ii tnt'.(Y 0)e iKt—r
FIG. 2. Correlation of

(2 1(i) counting rates for two
detectors.

Cg Ci

1oetay line

The quantity E& is the kinetic energy operator for the 3th

beam particle.
Now the experiment of interest, illustrated in Fig. 2,

is one in which the instantaneous outputs of detectors 1
and 2 are, respectively, voltages Ci(t) and Cs(t), where
the voltage C1 is passed through a distortionless delay
line with delay v. =~&—71 and fed into a correlator C
whose output at tim. e t2 is the product

G12 C2(4)Cl(4 r) ~

The ensemble average, resulting from repeating the ex-
periment many times, is

(G12) (C2(»2)Cl(»2 r))

which under most circumstances of practical importance
will be a function of v only, i.e., independent of t2.

We consider first the case that the two detectors have
a rapid transient response in terms of the scale of the
fluctuations. We have shown in II, Eq. (2.21), that for a
pure beam state, described by the wave function %'(tl)
at the time t1 of the first measurement that the correla-
tor output is'

M—= (J(ts)J(»i))=(%(ti)& E&JS(»s—»i)E,j,&lr(»l)) (2.17)

for t»t1. The meaning of the projection operator ~1
in this expression is

El 1 if there is ——a particle in detector 1
=0 if there is no particle in detector 1.

If t1&t2, the correlation function is'

pl(»1) Js(»2) ) (+(4)&
Es~l(»i 4)ESJs+(4)) & (2.19)

where Es is the projection operator corresponding to
(2.18) for detector 2.

Now we have assumed up to this point that we are
dealing with counters which are transparent to beam
particles, letting them pass through unimpeded when
recording a count. We call such detectors T type. In the
other extreme we may imagine using A-type counters
which absorb, or otherwise stop the beam particles.
The appropriate modifications of our formalism to

7 The explicit form derived for Eq. (2.17) in II is

2f =& (t» (»t), Et*~a(»s—»t)E&&ttP(»t)),

where the EI, are projection operators onto the eigenstates of Ji.
Here s(=1,2, ~ ~ ) labels a state with one, two, ~ ~ ~ particles in
counter "1." We have replaced this, the correct expression,
by the simpler quantity, (2.17), where in terms of the above Et.,
E1=Z,E1,. For all of the applications in the present paper, the
two forms are to a good approximation equivalent. We shall dis-
cuss this point in detail in a forthcoming paper on coherent beam
fluctuations.

c,(t) c, (t-~~

cover this contingency will be made presently; further
the measurement of the autocorrelation function for a
single counter will be described.

When it is necessary to consider the transient re-
sponse of the detectors, the output of the correlator is
taken to be

d4L2(TS»2) »E»lI l(T1»t)

where
X(T[Js(4)Ji(»l) j), (2.20)

n

+ Q Eljs(YS,r)E,jl(Y„O), (2.22)
k/l=l

where 7.= t2—t1.
Since jl(Yl,0)=0 unless the coordinate x» lies in the

volume of counter 1, from the de6nition of E1, Eq,
(2.18), we may set

Eij»(Yi 0) = j»(Yi,O)

From this it follows that for k&l,

Eljs(Ys,r) j»(Y„O)=Elj»(Yl,0)js(Ys,r)
ji(Yl o) jtt(Ys, r)

= js(Ys,r) jl(Yl,O).

(2.23)

(2.24)

It is clear that for an A-type detector we must set

Erg»(YS&r)Egl(Yl&0) =0
& (2.25)

since if a particle is absorbed in counter 1 it certainly
cannot be found in counter 2. We shall assume when we
study the autocorrelation function in a single counter

(T[A(4)A(»i) j)= (Js(4)J,(»l)) for 4&»,
(2.21)= (&l(»i)A(4)) for 4)4.

In this case, T2—T1 is the delay introduced by the delay
line of Fig. 2. The arguments leading to Eq. (2.20) were
given in II.

In order to evaluate 61~ we must make use of the
wave function of the system, Eq. (2.1a), and the defini-
tions of the counting operators, J, Eqs. (2.5) and (2.15).
We have

a
E,&,(r)E»A= p Eij»(Ys, r)El jl(Yl,0)

l~1
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that a single particle cannot be counted twice, so that
the condition (2.25) obtains in this case also.

We are finally in a position to compute the expecta-
tion value in the state %(t&) described by Eq. (2.1a) of
the relevant product of the J's as described by Eq.
(2.17).We consider first tg) ti and recall the definition of
ja(Y2,r), Eq. (2.16), and obtain after an elementary
calculation

where

M„(t„&,)

of the product of the counting operators defined by
Eqs. (2.17) and (2.18) is irrelevant, since the operators
commute. The correlation function, Eq. (2.20), becomes
simply

di2L2(T2 f2)

X dtiLi(Ti —4)M„(4,4) . (2.29)

It is convenient to introduce an abbreviated notation:
n

=(e(t,), p ja(Y2,~)Ji(Y„O)e(4))
k&l l (1)" = d4L, (Ti—ti) d'y, y, (y,) (2.30)

n 00 1

d'y, q, (y&) d'y272(y2) Z LC,~'(y2 ~2)
k&i=1

XC ~(y2, t2)%*(yi,ti)%(yi, ti)+C ~*(y2 f2) and similarly for things labeled with "2."We may then
rewrite Gi~, using the definition of M„, Eq. (2.26), as

M~((2 (i)=(4(/i) p Eijt(Ym, r) j)(Yi,0)%'(ti)). (2.27)
l=l

where

G12 2 E~kl~f klj y (2.31)

M =M„(t2)ti)+Ms(t2)ti), T-type )

M=Mn(4, 4) ) A-type,

M =M„(tm, ti), auto correlation.

(2.28)

It is necessary at this point to establish some con-
ventions for carrying out spin sums a,nd averages of our
expressions for M, Eqs. (2.28). Since 4'(t&) represents a
pure state, the various beam particles have a definite
spin orientation. When the ensemble average is per-
formed we must average over these orientations. The
single-particle wave function C (C*) represents column
(row) matrices, and. matrix products between adjacent
C* and C are implied in Eqs. (2.26) and (2.27). In a
scattering experiment, the scattering amplitude con-
tained in C will be a column matrix for each initial spin
orientation' and an average over these will eventually be
carried out.

When we may replace M by M„,9 the time ordering

It will also in general be a function of the target particle spin
operators, implying further matrix products in these variables.

9 Even for T-type detectors, the term Md will be negligibly small
except when they are arranged in line with the beam, as in a
gounter telescope. This is shown in Sec. V.

The plus or minus sign in Eq. (2.26) refers to &.E.
or F.D. statistics, respectively. Evidently the M comes
from the second. term of (2.22), simplified according to
(2.24), whereas Mq comes from the first term using
Eq. (2.23).

For T-type detectors we have both terms contributing
to M, whereas for A-type or for the single detector
autocorrelation experiment we have only 3f, according
to the condition (2.25) which forbids in either of these
cases the counting twice of the same particle. To
summarize:

(1) (2)C 1,*(1)C ~(1)C p*(2)C p(2), (2.32)

=(e(e—1))P(Apg)a(Bp))j
=e'P(~ w)~(&w) j, (2.34)

where kAl and we have used our assumption 3 of a
Poisson distribution of particle numbers to replace
(e(e—1))by e' Now, by .assumption 1 on the statistical
independence of the beam particles, we may write

«"*(1)C"(1)C'i*(2)C'~(2))=(C»'(1)C"(1))(C'i"(2)C'i(2))
(C ~*(2)C g(2) C (*(1)C p(1))g = (C p*(2)C p(1))(C (*(1)C ((2)),
where g is a factor taking account of the average over
spin orientations Lsee Eq. (2.38) below/, and define

x(12)= (C'~*(1)C'~(2))=x*(21)' (2 35)
we recall the definition x(1)= (C»*(1)C»(1)), Eq (2.2), .
and write

(2)h(1)x(2)~g~x(12) j'j. (2.36)

Fina, lly, we note that the first term involves the prod-
uct of the mean counting rates in the individual

(1) (2)C»*(2)C((2)C,~(1)C»(1) (2 33)

The ensemble average now yields the correlation
function
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slse q

n' 1 (2) I x(12) I
'. (2.37&G») =(Gi)(G2)+g&' 1 x

F

so that we havee E s. (2.7) and. (2.14a)7 socounter where

d(0g(M) = 1, (3.6)

For a completely po

(2.38)
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eini ia't 1 spin orienta-e the average is taken over th
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'

have
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maximum excursion of ~—cv', 8 scarcely varies. We find

n' (1) (2)
~
x(12)

~

'~Xs'B, (0)B2(0)

d'yn'i(yi) d'y pa(y2)
[tMg(Q7)

Xexp(iLq(y~ —yi) —o&(T2 Ti)1) . (3.12)

Dl(s) —=yi —s

D2(s) =- ym- s.
(3.13)

We have thus completed the evaluation of the cor-
related counting rate (Gi~) for two cases of practical
importance. Needless to say, if neither the narrow- nor
the broad-band conditions obtain, the complete result,
Eq. (3.9), must be used. Finally, as noted in I, in the
case of narrow electronic bandwidth (i.e., narrow with
respect to the beam-spectral function), it may be ad-
vantageous to put a dc blocking filter in the detector
output. This means, according to Eq. (2.14a), that
(Gi) =0 )and, of course, (G~) =0) since Bi(0)= B2(0)=0
if no dc is passed. Thus (G») will be given by (3.9)
or (3.10).

The assumption of a point source made in obtaining
Eq. (3.8) must in general be relaxed for macroscopic
incoherent sources. This is easily done by merely aver-
aging the expression (3.8) over source points. To do this
we let yi(yq) be a vector from a fixed point 6 in the
source to some point in detector "1"("2") and s be a
vector from 6 to a point in the source and define

IV. APPLICATION TO A RADIATING SOURCE

We shall now show that the formalism developed in
in Sec. III can be used for the analysis of spectral lines. "
For the sake of illustration we consider a radiating
source which has a Lorentz line shape. (Similar con-
siderations apply to the observation of the spectrum
from a radioactive source. ) The wave function of a
typical beam particle has the form" (for j= 1, 2, ~ ., n)

C
@ (» t'[ pi[ye-ep(t tg)]~ ,'r[t i—

q
(x/—vi]——

) t
g

=0
for t —t,—(x/U) &0

for t —t;—(x/U) (0. (4.1)

The linewidth is I', I;, is the "emission time, " C is a
normalization constant, and V is the particle velocity
which is, of course, c, the velocity of light in the case of
photons.

The wave packet amplitude a, (q), defined by the
Fourier transform of (4.1), according to Eq. (3.1) is

readily found to be

rewrite F.q. (3.15) as

X(12)=x~(12)Q(p; jF, g2—) . (3.17)

Here, Xi (12) is the value of x(12), as given by Eq. (3.8),
for a point source of the same intensity as that for which

x(12) is calculated.
The illustrations given in the next two sections,

assuming point sources, are rather trivially modified
for a Gnite source when Eq. (3.17) is used. This will be
done in a subsequent paper in which we shall study
counting accuracy and observation times in detail.

Then, for a source of uniform intensity

E~ d's
y(12) = d~g((u)n, V,Di(s)Dg(s)

Xexp(iLq(D2(s) —D;(s))—~(t2 —ti)$) . (3.14)

CV
e,(q) =—

2iri e,—e„+(il'/2)

The beam spectral function g(&u) is therefore

(4.2)

x(12)=
ÃPI$2

~~ g(~) exp(iraq(y2 —yi)

—(o(tm —ti)))Q(qigi —j2), (3.15)
where j—=y/y and

d $

Q(q;ji—gg) =— exp[iq(j, —jm). sj. (3.16)
Ut

When the beam spectral width is narrow enough that q
may be replaced bv a mean momentum p in Q we can

Here the integral on s extends over the volume (or sur-

face) 'U, of the source. (The appropriate modification
for a source of nonuniform intensity is obvious. )

%hen the linear dimensions of the source are small
compared with yi and ym we may rewrite Eq. (3.14) in
the simpler form

(4.3)

To find the correlation function we must evaluate

Eq. (3.9). The analysis is particularly simple for the
case of electromagnetic radiation in the visible or lower

frequency part of the spectrum. The counters may be
made small enough that they be regarded as point
counters at Yi and Y~, and the electronic response times
made fast enough to give credibility to the broad-
band approxiination, Eq. (3.12). With the beam spec-
tral function given by (4.3) we find immediately )here

"An application of the Hanbury Brown-Twiss technique for
this purpose was suggested by A. T. Forrester, J. Opt. Soc. Am.
51, 253 (1961).

"See Eq. (4.1) in II or, for example, Eq. (8-119) of M. I.
Goldberger and K. M. Watson, in Collision Theory (John Wiley
R Sons, Inc. , New York, 1964).
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Here uj is the spin wave function of the jth beam par-
ticle which has momentum p and

P;(k,n, r) = (irt+e, e—s)r
+kDp ( r)+p R;~( r)—=(sr/+co ek)r

+kx;—p d;—(k9;—p) z,( r)—, (6.18)Fn. 4. Scattering by a
composite target.

It is useful to form wave packets out of the P; ac-
cording to

C;(;,0) = d'p &,(p)4;(p, ,), (6.19)

Since we have assumed that the target particle recoil is
negligible, the retardation factor in the denominator of
Eq. (6.14) may be set equal to unity, and we write

f= f expL —ip .z(—r„)j, (6.14a)

where f is just the usual free-particle scattering ampli-
tude given by

f= —(2s.)'(p/ V) Tu.

The quantity (—r„) is the time that the scattering
occurred for a beam particle which reaches the point x
at time zero.

In the weak binding limit, we may evaluate P„,
Eq. (6.9), in terms of a retarded time even for a target
which recoils. The evaluation is a little more involved,
but straightforward. "

In I, our principle interest was the study of intensity
correlations between beams scattered from multipar-
ticle targets. We shall therefore discuss in a manner
similar to the above treatment the scattering from a
composite target containing Ã scatterers having co-
ordinates x~, xN and an initial wave function
go(z&, ,zz). The geometry of the scattering is illus-
trated in Fig. 4; the coordinate origin is located in the
target. The point in the source from which the jth beam
particle originated is d;, and th, e point x; is at the de-
tector. We introduce the vectors

and from these the symmetrized wave function at t= 0
La formal derivation of Eq. (6.20) is outlined in the
Appendix]:

n

@(0)= s g 4;(x;,0)g,(s„,s&). (6.20)

d'p A, (p)y;(p, x;,t). (6.21)

For large x, and consequently large ],

P, (p,x;,t)
= e &x/ty (—p x )

(2~)—t/s ~ m

dr kdkee &s~"'&T u, (6.22).
Xj

where

P; (k,n, r, t) = (i rt+ e, ee)r—
—eet+kD ( r)+p R (——r). (6.23)

We write p;(p, x, ,t) in a form analogous to the single
target expression, Eq. (6.12)

(2s-)—'"
y, (p,x;,t) = exp Li(px,—e,t)jf;, (6.24)

The time-dependent beam particle functions are of
course generated by the kinetic energy operator E; for
the jth particle. Thus

C,(x;,t) = e 'x~'C;(xr, 0)

D ~=x —zj y ay

R/ =z —d;.
(6.16)

where the scattering amplitude f is given by

We assume that multiple scattering may be neglected.
Then, following the argument which led to the expres-
sion for the scattered wave from a single bound scat-
terer, Eq. (6.9), we obtain for the wave function of the
jth scattered particle

N

f = —2or P dr kdk
ex=1

Xe px(iL P( , km, t) —px;+ e„t))T;nu;. (6.25)

To evaluate the integral which appears in (6.25) we
again use the weak binding, heavy scatter limit and
write k= p+q, with q small in the exponent of (6.25)

P;(k,n, r,t) px, +eo'=irtr+qf —V(t+r)—
+x,—S,"z (—r)7—p d;—p, z.(—r), (6.26)

dr kdk e'~~&' '&Tt ut. (6.17)
where, as before

"This is done explicitly by K. M. Watson, Phys. Rev. 118, 886
(1960). See also Colttsioe Theory, Ref. 12, Sec. (11.1).

r =de„/d„,

pe=pl; —p.
(6.27)
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We find then, analogous to (6.14) and (6.15), the results

(2m.) '"
&J(p x ~) = fexp[i(Pa —est)7) Lexp( —iii'dJ)7

X Q f.~'exp[ —
imp z.(—r„)7,

—r„=t—[x—9 z.(—r,)7/V

= t lx--z.(-r„)l/V,

Fn. 5. Correlated counting
rates for scattering by a com-
posite target.

Delay line

f ~ = —(2m') 2—T Q
V

Gorrelator

—",=&—(V /V),
—r„=~—(V,/V) .

(7.1)
(2~)—3/u

g, (p,x,,t) =- exp( —ie„t)
%e shall, finally, assume that the beam spectrum is
narrow enough that the scattering amplitudes may be
treated as constants over the spectral width.

It is convenient to express the instantaneous cor-
related counting rate defined by Eq. (2.17) in terms of
the wave function at 1=0 given by Eq. (6.20) and
Heisenberg counting operators, Eq. (2.16). Thus we
write Eq. (2.17) as

X P f.~ expfi[pD, -(—r„)+p RP(—r,)7}. (6.29)
a i

In practice we may replace p by pR; since, as was ex-
plained in I, those beam particles which do not strike
the target are of no interest. Then the wave function @,
becomes a function of the magnitude of p and if we
de6ne M=(@(0),E (t )J2(t)E (t )I (t )4'(0)). (7.2)

The wave function p, (p,x, ,t) may also be written, using so that we have"
the definitions of Dp and R;, (6.16), as

we obtain

a, (p) = dQ„p'A, (p),

C,(x,t) d=p 8;(p)y, (p,x,l), (6.30)

For the present experiment, it is desirable to arrange
tha, t Mz defined by Eq. (2.27) is negligible. Then we

may apply directly Eq. (2.36), remembering that we
must include now in the scalar product in (7.2) the
target wave function gp. We have, then,

which is similar in form to that used in Sec. III, Eq.
(3.1). [The form (6.30) also applies to a spherically
expanding beam. 7

The wave function for a lightly bound target particle
which recoils may be obtained similarly. "

VII. SCATTERED PARTICLE CORRELATIONS

We may now apply the general expressions for time
correlations developed in Sec. II to the analysis of a
scattering experiment. In particular, we consider a
modification of that illustrated in Fig. 4 shown in Fig. 5
where we add a second detector of target particles and
process the output of the two detectors precisely as de-
scribed in connection with Fig. 2. For simplicity of pre-
sentation here we assume that the scattering is inde-
pendent of spin. The general case will be described in
the second paper of this series.

The two detectors are located at Yi and Y2. For
simplicity we assume that they and the beam source are
small in the sense that all three subtend very small solid
angles at the target. Further, the target will be taken
small enough that the retarded times defined by Kq.
(6.28) are substantially the same for all target particles,

(Gi2)=rs' (1) (2)

X((go Lx(1)x(2)+gIx(»2) I'7g&)) (7 3)

Here ( ) indicates an average over the scatterer
states gp."In addition, if we were not assuming a small
source, the average would also include one over the
source points d;.'e The mean counting rate for detector
"1"becomes according to Eqs. (2.8) and (2.14a)

(G )=& (0) ((go,x(1)g )) d'rv (y) (7.4)

It is often the case, as explained in I, that one can re-
place Eq. (7.3) by the simpler expression

(G12)=@' (1) (2)L((go,x(1)go))

X«.,x(2)g.»~gl((g. ,x(12)g.»l 7 (7.5)
I' These simplihcations are of course not essential, but permit

us to avoid unnecessary detail here."If the scatterer is in thermodynamic equilibrium, for example,
this grill be the usual ensemble average of equilibrium statistical
mechanics.

~ This has been exhibited explictly in I.
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What is involved here is that in the sum over a complete where
set of target states g„which appears in a product like

(go x(1)x(2)go) =Z(go x(1)g )(g x(2)go)
e(»t)= P f.(u) expL —ip z.(—r,)j (7.8)

Ng
((go,x(12)go))= (2~)'

x((g„l4,(p,y„t,) I'g, )&,
(7.6)

«ng(o. )

we retain only the term n= 0. This is usually permissi-
ble, for example, when the target is large compared to
the characteristic correlation distances within it. It is
well to keep in mind that (possibly) interesting higher
order target correlations have been lost in the passage
from the rigorous Eq. (7.3) to the approximate Eq. (7.5) .

For an incoherent incident beam we may have the
particular characteristics of the wave packet ampli-
tudes described in Sec. III to express the quantities
which appear in Eq. (7.5) in terms of the beam spectral
function t'see Eqs. (3.2) and (3.5)j:

and y= p(d —R) with R a unit vector from source to
target; it is the usual momentum transfer.

The first of the quantities appearing in Eq. (7.6) may
now be evaluated in terms of the scattering amplitude:

Ng
((go,x(1)go))= ~~ g(M)((go, I ~(g, t) I'go)&

Na

, ((go I&(g t) I'go))
ny&2

Ng
~(gi), (7.9)

nyq

where a (gi) is the differential cross section for scattering
in the direction gi. The second line in (7.9) follows from
our assumption about the constancy of the scattering
amplitude over the beam spectrum.

The Aux of scattered particles at y is according to
Eq. (2.4)

X ((go 4,*(p yi, ti)tt';(p, y2 t2)go)),

etc. The wave functions @, are defined by Eq. (6.28)
with p—=R, .

I.et us recall the prescription given following Eqs.
(2.28) for carrying out spin orientation averages and
sums. Each p; is, in general, labeled by an initial orienta-
tion for the beam and target particles. The average
over the target particle orientations is obviously im-

plied by Eq. (7.6). A corresponding average over the
beam particles which are labeled by the index, j in

Eq. (7.6) is also implied. Final beam spin orientations
are to be specified by the detectors so that in Eqs. (7.3)
and (7.5) we must sum separately over the spin orienta-
tions (which might have been observed) at detectors
"1"and "2." Since the form of counting operator we
have assumed is spin-independent, only the initial spin
orientation is summed over in Eqs. (7.6).

To avoid complication of notation, we assume hence-
forth that the scattering is spin-independent and de-
scribed by the wave function (6.28). Our assumption
about the smallness of the source, target, and detectors
permits us to write Eq. (6.28) in a somewhat simpler
form:

F(yi) =&~l'(~(gi)lyi')
—=F ((g Vy"),

(7.10)

where the beam Aux incident on the target E& is given by

(7.11)Ii y ——N~U.

For the "calibrated detector" defined in Sec. II, Eqs.
(2.11) and (2.14), we find from Eq. (7.4)

c(Fi) c(l'i)
(G,&

=Bi(0)xiF, =Z,F, , (7.12)
P'2 P2

if B,(0)=1.
The second of the expressions in (7.6) may be evalu-

ated in terms of our wave function (7.7) to give

Egg
((go x(12)go))= d g( ) exp{iLP(y —y )

—(t —t )j}(&*(g t )+(g,t )& (7 13)

Using our small-detector assumption, we define and
write

pi= p(gi —8)—p( I i—R),
p,=p(V o R) p( V,—8) . — —

(2or)-'"
4»(p, »t) = We shall suppose that the target contains species

t,-= 1, 2, of particles and that for all of the o,, par-
XexpI j(px—o~t)] exp/ipd; jf(N, t), (7.7) 'ticles of species c, f„,=f, Then.

Ng
((go,x(12)go))= 2 f"*(g)f.o(gi) d~g(~) exp{aLP(yo —yi) —~(t2 tl)jj

nyyy2 c,c'

X((go, 2 exp{iLei s-;( T) t, o
—E-.( —r)3.) g)

o—,&

ac~~ec

where the sums on n, (n;) run over all particles of species c(c').

(7.15)
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(7.16)rs, (x,t) =g Bgx—z (f)7.

This result may be expressed in terms of Van Hove's correlation function" by introducing the particle density of
species c at time t:

Then if we de6ne"

~c c(f2 fr) = tPsc d s expL2(pt'x p2'x) j('0o'Lx fl (Fl/l )j22efxy g2 (F2/l )j) (7.17)

we have

((go x(12)go))=
RPI$2

dec g(os) exp{iLp(y2 —
y&)

—~(f2—4)$}p f;*(j&)f.(g2)F;.(g2 4).
c'c

(7.18)

For the calibrated counter, for example, we obtain from Eqs. (7.5) and (7.12)

(G )=(G)(G)~
I 12I 22

Zf2L2(T2 f2) dflLl(T1 fr)
d'y1

~~g(M) «p{iLp(y2 —yr) —~(&2—&~)3} I 2 f"*(I'r)f (I'2)~" (&2,&r) I
', (7 19)

c'c

where the last factor has been removed from the co in-

tegrals because of the narrow beam spectrum assump-
tion. The autocorrelation function for a single counter
mav be obtained from this by supposing that the two

detectors are a single one. In this case, for a detector of
area Z and rapid response time we have (Gts) = (G.),

body wave function. "First, we define

d—= e~+wo+2s) —p E; h—(A1)

Lsee Eqs. (6.1) and (6.21)j. In terms of d and the scat-
tering matrices

(G )=(G )2~(~/I' 2)'J"~'r.~t(0) j'g

f (Ir )f (Ir )p (T T ) ~

2 (7 2())
we may write the wave function in the form

c'c

As has been noted earlier, a dc blocking Biter may be
placed in the detector outputs, causing (Gr)=(G2)=0
in Eq. ('7.19).The evaluation then follows the lines indi-

cated in Eq. (3.10) where we imagine that the band-

width function is very narrow in comparison to the
beam spectrum.

1 1
4+= s 1+—Q 9g+- Q 9gr

1
~ g, (A2)

4 is(HA)

Here X, is the product of the e plane-wave functions for
the 22 beam particles. On rearranging terms in Eq. (A2)
(and assuming that no beam particle returns to scatter
again on the target) we obtain

APPENDIX: DERIVATION OF THE MANY-BEAM
PARTICLE WAVE FUNCTION e+= s g 1+-v'; x.g, . (A3)

To derive Eq. (6.20) from the many-body Schrodinger
equation which describes all the beam particles and the

target, we use the multiple-scattering form for the many-

"L.Van Hove, Phys. Rev. 95, 249 (1954).
2Ilt is often possible to replace n, by 8n, =n, ((go,n,go)—),

Lc=1,2, ~ j in the expressions (7.15), since scattering from the
mean densities may be negligibly small.

When the beam particle density is low enough that their
mutual excitations of the target do not interfere with
each other, and when appropriate wave packets are
constructed, this becomes equivalent to Eq. (6.20').

"See, for example, Eqs. (11.266) of Co/liseon Theory, Ref. 12.


