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The fluctuations in counting rate of a particle detector are studied. These may be used to study the co-
herence properties of the beam. For the case of electromagnetic radiation they may be used to study spectral
line shapes. The fluctuations in intensity of scattered particles provide a means of studying fluctuation phe-

1965

nomena in the target.

I. INTRODUCTION

N a recent paper! the correlation in counting rates
was studied for two detectors counting scattered
particles. There it was shown that by such an observa-
tion the phase of a scattering amplitude can be meas-
ured. In the present paper, we wish to study the cor-
relation of fluctuations in the counting rate of a single
detector and of a pair of detectors.

We have in mind a typical scattering experiment, as is
illustrated in Fig. 1. A beam of particles is directed on a
target. Particles scattered into the detector are counted
and recorded. For simplicity of discussion, we shall
suppose that the detector output is in the form of an
instantaneous electric voltage C(z), at time ¢, across two
terminals 7'p. We shall also suppose the detector to
have been calibrated so that

C(d)ds

0

Ne= (1.1)

is the total number of particles entering the detector in a
time interval 7. The normalization (1.1) suggests that
we may call C(¢) the instantaneous counting rate of the
detector.

In any given experiment the counting rate C(¢) will be
expected to fluctuate with time—and it is just this
fluctuation which we wish to study here. In particular,
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we shall discuss the autocorrelation function

G —1 TC C@t)d 1
A== / (+r)CO)t, (1.2)

where the time interval T is so large that [see Eq. (1.1)]
N>1.

We shall assume in this paper that the incident par-
ticle beam is “steady’ in the sense that its intensity
does not systematically drift during the course of the
experiment. We shall also assume that the detectors
used are 1009, efficient, counting every particle which
enters them. The fluctuations in C(f) will then be de-
termined by three factors. The first of these is statistical
fluctuations in the incident beam intensity, the second
is statistical fluctuations in the target, and the third is
the transient response characteristic of the detector.
The finite response time of the detector will tend to
smooth fluctuations in the scattered beam and will thus
ordinarily not be welcomed when we are studying
fluctuations.

The study of particle beam fluctuations can provide
information concerning the structure and degree of
coherence of the beam. (For such a study one would of
course omit the target and place the detector directly
in the incident beam.) After developing the general
theory in Sec. II, we shall study beam fluctuations in
Sec. III. The results will be applied to an analysis of
spectral line broadening of a radiating gas in Sec. IV.

The autocorrelation function (1.2) [more generally,
the fluctuations in C(¢) ] can be used to study fluctuations
and relaxation processes in the target.? Examples of
such phenomena, which might be studied with the func-
tion (1.2), include density fluctuations in liquids and
gases, spin waves in solids, phonon excitations in liquid
helium, etc. To apply the theory of Sec. II to such
studies, we first (in Sec. VI) cast conventional steady-
state scattering theory into such a form that scatterer
coordinates are represented by Heisenberg variables at

a retarded time. This is then applied in Sec. VII to a

2 That such information is available from fluctuations is evident
to anyone who has watched a moving ship or aircraft on a radar

A scope.
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description of several experiments which might be per-
formed to measure correlations and fluctuations.

In this connection it is perhaps worth noting that
temporal fluctuations may be studied even for a target
in a pure quantum-mechanical state. For example, let
us imagine that we are studying x-ray scattering by
hydrogen atoms, each in its ground state. The electron
coordinate in a given atom may be written as z(¢)= ¢
Xze~t where & is the atomic Hamiltonian, and its
wave function may be written as go(z), where kgo=1wogo.
The average coordinate (go,2(£)go) = (go,2g0) is of course
time-independent. The observation of the autocorrela-
tion function (1.2) provides a measurement of such
quantities as (go, 2(¢-+7)2(¢)go), which does depend on .
Time-dependent motion of this sort is physically mean-
ingful even for pure eigenstates. It is with the observa-
tion of such time dependence (for pure states and for
statistical mixtures) that we are primarily concerned.

II. CORRELATED COUNTING RATES

In this section we shall express in somewhat simpler
form the theory of correlated counting rates as pre-
sented in I in the light of the formalism? developed in
II. In addition we shall rederive some of the results of I
without the use of second quantization methods.

We consider an experiment designed to detect par-
ticles in a particle beam. These might be particles
emerging from an accelerator, or from any kind of
radiating source, or they may have been scattered from
a target. In any case, we imagine that the experiment
lasts for a time interval 7, during which » identical
beam particles are emitted. If » is sufficiently large,
transient effects associated with the beginning or end of
the measurement may be ignored.

The time-dependent wave function for the jth beam
particle (j=1,--+,n) is written as ®;(x;,f), where x; is
the space coordinate of the particle and (®;(x;),
®;(x;,t))=1. Evidently we are using a wave-packet de-
scription and not plane waves; this is essential for a
proper spatiotemperal discussion. The wave function
for the n beam particles is obtained by taking the
appropriately symmetrized product of such packets:

\I,(t)= S fI éj(xj,t) ’

7=1

(2.1a)

where § is an operator which forms a symmetric wave
function for particles satisfying Bose-Einstein (B.E.)
statistics and an antisymmetric wave function for par-
ticles satisfying Fermi-Dirac (F.D.) statistics.

As is customary, we imagine repeating the experiment
many times and represent the effect of this as perform-
ing an ensemble average denoted as (- - - ). For example,
the average density of beam particles at a point y is

¥ (@), g a(y—xj>w<t>>=<§ B4(y,)®;(y)); (2.1b)

3 M. L. Goldberger and K. M. Watson, Phys. Rev. 134, B919
(1964). This paper will henceforth be referred to as II.
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where a scalar product of spin and/or other internal
variables is implied.

We shall be interested in situations where the en-
semble average implies that the number of beam par-
ticles #, certain parameters in the &;, and the state of
the target (in the case of a scattering problem) are ran-
dom variables. In particular, we shall be concerned with
what we designate as incoherent beams for which the
ensemble average implies the following properties?:

(1) The random variables describing different beam
particles are statistically independent; all beam par-
ticles have equivalent statistical properties.

(2) The phases of the various ®; are random in a
sense made precise in Eq. (3.2). Loosely speaking this
phase randomness is associated with the unspecified
emission times of particles from a source.

(3) The number of beam particles # is statistically
independent of other variables and is described by a
Poisson distribution.

(4) The beam is sufficiently uniform that during the
course of an experiment, averages such as that of the
particle density defined above are independent of time.
# (5) The ®, may be factored into a product of a space
factor ®,; and a spin factor u,;. (For scattering experi-
ments a sum of such terms may be required.) Initial
spin orientations of the beam particles are random. It
follows that the quantity

x(1)=(®;*(y1,1)®i(y1,11)) (2.2)

is independent of the index j, since all particles are
equivalent (assumption 1), and is independent of the
time #; (assumption 4). We may then write the particle
density at y; as 7x(1) where

a=(n). (2.3)

If the mean speed of beam particles is V, the average
particle flux at y, is

F(y)=aVx(1). (2.4)

We imagine now a particle detector to be located at a
point Y, a conveniently chosen reference point in the
detector. This detector, which we call “one,” will be
represented by an operator which signifies the presence
of particles within the active volume, namely,

Ji= l_):l UY1,0), (2.50)
where
i(Y40)= f Pyrsr—x).  (2.5b)
1

Here the integral extends over the detector volume and
7v1(y) depends on its calibration. For a uniformly sensi-
tive counter, v, is independent of y. Recall also that we

4 As was done in I, we assume that on taking the ensemble
average we may treat the different ®; as being effectively orthog-
onal. The physical implications of this assumption, and generali-
zations of it, require further study.
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assumed in the introduction that our detectors are 1009,
efficient, giving a count every time a particle enters the
active volume.

The instantaneous counting rate of the detector dur-
ing the experiment is (¥(#),/1¥(#)); the ensemble
average of this,

<J1>= <(\Il(t)3J1\I,(t))> ’ (26)

is by our assumption independent of time. This may be
evaluated in terms of the particle density and detector
calibration as described by Egs. (2.1b), (2.2), and
(2.5a,b):

()= ds}%()’)(é B*(y,)%:(y,0))

1

5 / Fynbx) @.7)

1

where x(1) is the single-particle density function de-
fined by Eq. (2.2). We shall assume that the average
beam density (1) is uniform over the detector volume
and factor it out of the above integral

T=mx(1) / Fyn(y). 28)

The function x(1) is evaluated at any convenient point
in the detector. For illustrative purposes we occasionally
introduce a special counter which is uniform (y,= con-
stant) and which has flat surfaces of area =; and thick-

ness w; so that
(Jl)=ﬁx(1)(w121)71 .

It is also convenient to introduce the concept of a
“calibrated counter” defined in such a way that in
terms of the average particle flux at y; [see Eq. (2.4)]

J)=2:F(y1), (2.10)

so for such a counter, the uniform efficiency, v, is given
by

(2.9)

71=V/w:. (2.11)

Now in practice, physical particle counters cannot
have the instantaneous response characteristics sup-
posed above. The necessarily finite response time is de-
scribed by a function Ly(7) such that what we call the
instantaneous counting rate at a time T is given by?®?®

/m dllLl(Tl—'tl)(\I,(ll)7]l\I,(tl))'

The causal transient response function Li(r) must
satisfy the condition that

Ly(v)=0 for 7<0.
5 The linear transient response characteristic has been discussed

in more detail in connection with Eq. (4.10) of I and Eq. (2.29)
of 1.
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It is convenient to introduce the frequency characteris-
tic of the detector according to

® dw
Ly(r)= / e, (2.12)

and often in practice to imagine that we deal with a low-
frequency band pass filter for which
Biw)=1, |o|<wp,, (2.13)

where w, is a frequency such that input signals which
have frequencies in the range —w,<w<w, are un-
modified by the transient response characteristics of the
detector.

Taking into account the finite resolving time of the
detector, we find for the mean counting rate

<G1>=’—/w dt LI(Tl—‘t)<J1>

=B,(0){(J}), (2.142)

where the second form follows from the definition of By,
Eq. (2.12), and the fact that (J;) is independent of time;
since B1(0)=1 according to Eq. (2.13) we see that

(G={). (2.14b)

Thus, under the assumptions which led to the time con-
stancy of (J1), we find that the detector response char-
acteristics play no role.

We turn now to the physically more interesting
problem posed in Sec. I, namely, the study of fluctua-
tions in the counting rate. In particular, we consider
the autocorrelation function defined by Eq. (1.2).°
Since it involves no added complication we generalize
the problem to the study of the space-time correlations
of two counters called “one” and “two” located at
points Y; and Y, respectively. The autocorrelation
function for a single counter may then be found by
setting Y1=Y, and regarding the two counters as a
single counter.

The counting rate operator for detector “two” is
given, by analogy with the description of “one,” Eq.
(2.5), by

Ta= ¥ j(Y20) (2.152)
=1
with
71(Y5,0) =/d3y vo(y)d(y—x1), (2.15b)
2

where the integral extends over the volume of the second
detector and v is its sensitivity calibration function. It
will be convenient to introduce the notion of time-

¢ The theoretical basis for this was developed in II.
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dependent, or Heisenberg, counting operators such as

Ta(r) =z #(Ya),

§1(Yay7) = 65175V, )57, (2.16)

The quantity K, is the kinetic energy operator for the /th
beam particle.

Now the experiment of interest, illustrated in Fig. 2,
is one in which the instantaneous outputs of detectors 1
and 2 are, respectively, voltages Cy(¢) and Cy(z), where
the voltage C; is passed through a distortionless delay
line with delay 7=7,—7; and fed into a correlator C
whose output at time {; is the product

Gr2=Co(to)C1(ta—1).

The ensemble average, resulting from repeating the ex-
periment many times, is

(Gr2)=(Cs(t2) C1(ta—1))

which under most circumstances of practical importance
will be a function of 7 only, i.e., independent of f.

We consider first the case that the two detectors have
a rapid transient response in terms of the scale of the
fluctuations. We have shown in I, Eq. (2.21), that for a
pure beam state, described by the wave function ¥(t)
at the time ¢; of the first measurement that the correla-
tor output is’

M={J(t2)J (t2))=(¥(ts), ExJo(la— 1) ExJ1¥(t)) (2.17)

for £3>¢;. The meaning of the projection operator E,;
in this expression is

E;=1if there is a particle in detector 1

. 2.18
=0 if there is no particle in detector 1. (218)
If #,> 15, the correlation function is?

(N1t Ta(ta)) = (¥ (t2), EoJs(h—12) EaJ2¥(t2)), (2.19)

where E, is the projection operator corresponding to
(2.18) for detector 2.

Now we have assumed up to this point that we are
dealing with counters which are transparent to beam
particles, letting them pass through unimpeded when
recording a count. We call such detectors T type. In the
other extreme we may imagine using 4-type counters
which absorb, or otherwise stop the beam particles.
The appropriate modifications of our formalism to

7 The explicit form derived for Eq. (2.17) in IT is
M=2Z W), Er2(te—11) EreJ w0 (1)),
2

where the E, are projection operators onto the eigenstates of J1.
Here s(=1,2,---) labels a state with one, two, --- particles in
counter “1.” We have replaced this, the correct expression,
by the simpler quantity, (2.17), where in terms of the above Ej,,
E1=2,Es,. For all of the applications in the present paper, the
two forms are to a good approximation equivalent. We sﬁa]l dis-
cuss this point in detail in a forthcoming paper on coherent beam
fluctuations.
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cover this contingency will be made presently; further
the measurement of the autocorrelation function for a
single counter will be described.

When it is necessary to consider the transient re-
sponse of the detectors, the output of the correlator is
taken to be

G12=/ dlszz(Tz—iz)f i Ly(T1—t)
-—00 —=00

X{T[T2(2) 71T, (2.20)

where

<T[]2(t2)]1(t1):]> = <J2(lz)]1(t1)) for t,>4
=(J1(t1)To(ta)) for ti>ts.

In this case, T's— T’y is the delay introduced by the delay
line of Fig. 2. The arguments leading to Eq. (2.20) were
given in II.

In order to evaluate G2 we must make use of the
wave function of the system, Eq. (2.1a), and the defini-
tions of the counting operators, J, Egs. (2.5) and (2.15).
We have

(2.21)

EJo(r)EJ 1= 3 Erji(Ya,7) E15i(Y1,0)
=1

+ X Eui(Ye,n)Ei(Y,0), (2.22)

k#l=1

where 7=1{fs—1;.

Since j;(Y;,0)=0 unless the coordinate x; lies in the
volume of counter 1, from the definition of E;, Eq.
(2.18), we may set

E17(Y1,0) = 7,(Y4,0). (2.23)
From this it follows that for 25,
E15u(Y2,7) j1(Y1,0) = E151(Y1,0) (Yo, 7)
= jl(Ylyo) jk(YﬁyT)
=Jju(Y2,7) u(Y1,0).  (2.24)

It is clear that for an A-type detector we must set
E15:(Ys,7)E151(Y1,0)=0, (2.25)

since if a particle is absorbed in counter 1 it certainly
cannot be found in counter 2. We shall assume when we
study the autocorrelation function in a single counter
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that a single particle cannot be counted twice, so that
the condition (2.25) obtains in this case also.

We are finally in a position to compute the expecta-
tion value in the state ¥(¢;) described by Eq. (2.1a) of
the relevant product of the J’s as described by Eg.
(2.17). We consider first 3> #; and recall the definition of
Ju(Ye,7), Eq. (2.16), and obtain after an elementary
calculation

M= M(ta,t1)+Ma(to,t1)
where

M n(tz,tl)
=), & (Vo) Y00 (1)

k#l=1

= / d*yrya(y1) / Pyrya(ys) 2 [B,*(ya,ta)
1 2 k#l=1

X B (yo,l2) Br*(y1,t1) Po(y1,t1) = Bi* (yo,2)

X Bi(yo,t2)Br*(y1,t) Pa(ys,t) ], (2.26)

and

M a(to,t1)= (¥ (t1), él E1ji(Ye,r) 5:(Y1,0)¥(14)).  (2.27)

The plus or minus sign in Eq. (2.26) refers to B.E.
or F.D. statistics, respectively. Evidently the M, comes
from the second term of (2.22), simplified according to
(2.24), whereas Mg comes from the first term using
Eq. (2.23).

For T-type detectors we have both terms contributing
to M, whereas for A-type or for the single detector
autocorrelation experiment we have only M ,, according
to the condition (2.25) which forbids in either of these
cases the counting twice of the same particle. To
summarize:

M=M.(ts,t)+Ma(lo)ty), T-type,
M=M,(t2t), A-type, (2.28)
M=M,(it1), autocorrelation.

It is necessary at this point to establish some con-
ventions for carrying out spin sums and averages of our
expressions for M, Egs. (2.28). Since ¥(¢;) represents a
pure state, the various beam particles have a definite
spin orientation. When the ensemble average is per-
formed we must average over these orientations. The
single-particle wave function ® (®*) represents column
(row) matrices, and matrix products between adjacent
®* and ® are implied in Egs. (2.26) and (2.27). In a
scattering experiment, the scattering amplitude con-
tained in & will be a column matrix for each initial spin
orientation® and an average over these will eventually be
carried out.

When we may replace M by M,,° the time ordering

8 It will also in general be a function of the target particle spin
operators, implying further matrix products in these variables.

9 Even for T-type detectors, the term 3 ; will be negligibly small

except when they are arranged in line with the beam, as in a
counter telescope. This is shown in Sec. V.
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of the product of the counting operators defined by
Egs. (2.17) and (2.18) is irrelevant, since the operators
commute. The correlation function, Eq. (2.20), becomes
simply

G12=f dt2L2(T2—t2)
et 0
X/ A Ly(T1—t)Ma(teytr) . (2.29)

It is convenient to introduce an abbreviated notation:

/(1)- . -E/w dtlLl(Tl—tl)/lﬁyfyl(yl)- -, (2.30)

(1) =dx(ys,1h),

and similarly for things labeled with “2.” We may then
rewrite G, using the definition of M,, Eq. (2.26), as

n

Gro= Z [A IR = Bkl] )

k7#l=1

(2.31)
where

. / ) / QB VBB DB(D), (2.32)

Bu= / () / DD N)D(). (2.33)

The ensemble average now yields the correlation
function

(Gro)= <k§l‘:=1 [Au=+Bu])

=(n(n—1))[(4u)=(Bu)]
=*[{4r)==(Bu)],

wh.ere k7l and we have used our assumption 3 of a
Poisson distribution of particle numbers to replace
'(n(n— 1)) by 72. Now, by assumption 1 on the statistical
independence of the beam particles, we may write

(B (1) Pe(1)D*(2)P1(2)) = (B4*(1)B4(1) {B,*(2) 24(2))
(Be*(2)2u(2)*(1)Br(1) Y= (Bi*(2) @1(1) }(®*(1)B,(2) ),
W}}ere g isa .factor taking account of the average over
spin orientations [see Eq. (2.38) below], and define

x(12)=(@*(1)®:(2)) =x*(21); (2.35)

we recall the definition x(1)=(®:*(1)®:(1)), Eq. (2.2)
and write ’

(Gu)—? / W / D x(Wx()g[x(12)]2]. (2.36)

(2.34)

Finally, we note that the first term involves the prod-
uct of the mean counting rates in the individual
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counters [see Egs. (2.7) and (2.14a)] so that we have

(Gaa) = (Gr){(Go) g f W ] @x(12)[2. (2.37)

For a completely polarized beam, g=1. For a randomly
polarized beam,
g={dvk,v1) , (2.38)

where the average is taken over the initial spin orienta-
tions vy and »; of particles £ and /. For an unpolarized
beam of electrons or photons we have

=% (2.39)

Equation (2.37) represents the major result of this
section. It is equivalent to the corresponding result ob-
tained in I, but stated there somewhat less generally in
that we had set To="T\.

III. APPLICATION TO AN INCOHERENT BEAM

In this section we shall apply our fundamental ex-
pression for (Gi2), Eq. (2.37), to the discussion of an
incoherent beam. This might be a beam emitted by a
radiating or radioactive source, or by an accelerator.
In any of these we write a typical beam particle wave
function as (=1, 2,- -+, n)

1
Bi(xf) =- / dgay(g)eitamea, (3.1)
X

if we omit the spin wave function. Here x= |x[, and ¢,
is the energy of a particle with momentum ¢ and ¢;(g)
is a wave packet amplitude. The phase incoherence
assumption for the beam, called assumption 2 in Sec. IT
is to be interpreted to mean that for the ensemble
average

(a5(p)ar*(9))=0s3(p—p(@){| as() [?).  (3.2)

Here p(q) is a weight function which we shall now
evaluate.1?

At a distance y, from the source we write the particle
flux, Eq. (2.4), as

Fy)=aVx(1)=Ra/4rys, (3.3)

where Rp is the equivalent isotropic source strength.
If we substitute the wave-packet representation for ®;
into the definition of x(1), namely x(1)=(®;(1)®;(1)),
Eq. (2.2), we find

1
x-— [w@(a@l). 6o
Y1

It is convenient to express ¢ in terms of the particle
energy by writing w=e¢, and introducing the energy
spectrum of the beam, g(w), as follows: Define

dgp(g){| ai(g)|)= (Np/M)g(w)dw, (3.5)

A somewhat different description of the ensemble average
(3.2) was given in L
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where

(3.6)

[,

and Np is a constant. We find immediately from Eq.
(3.3) and these definitions

Np=Rp/4xV, (3.7

which has an obvious interpretation.

It is now easy to express the important correlation
function x(12) defined by Eq. (2.35) in terms of the
spectral function g(w). For the special case of a point
source we obtain

Np
x(12)=-
ny1ys

/dw g(w)ei[q(ya—yx)—w(tr—h)] , (3.8)

where ¢ is implicitly defined in terms of w by w=¢,. We
may complete the evaluation of (Gis), Eq. (2.37), using
this result for x(12) and the Fourier representation for
the transient? response functions L(7'—¢) given by Eq.
(2.12). We obtain

# [ [ @i [ 222 ;”1‘2(”‘)

X f is—y%:(—yz—) / dw / de'g(0)g(o') Byl — )

Bz(w_w’)ei[(q—q’) (ya—y1)—(0—0’) (T3—T1)]

(3.9)

where o' =¢,.

In the limit that the bandwidth function B is very
narrow compared to the beam-spectral function g(w),
we may approximate (3.9) as follows (we take B;=Bs
for simplicity);

2 / W f @ [x(12)]?

Ng? [ dyvi(y) [ @Pyrya(ye)
g__B_ IV / bt /dwlB(w)|2
AwpJ1  y? ¥

Xexp{i[w(Tl——Tg)—%(yl——yg):” , (3.10)

where V=dw/dq, evaluated at the mean beam energy,
and the beam spectral width Awg is defined by

(Awp) 1= /dw[g(w) . (3.11)

The other limit of interest is one in which the band-
width function is very broad compared to the variation
of the beam-spectral function. In this case we may re-
place B(w—w") by B(0) since by hypothesis during the
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maximum excursion of w—w’, B scarcely varies. We find

ﬁZ/(l)f(Z)|x(12){2§NBZBI(O)Bg(O)

« / @*yryi(y1) f d*yave(ya)
1 'y12

f dog()

2

. (3.12)

y2?

Xexp{i[g(y:—y1)—w(Ts—T1)]}

We have thus completed the evaluation of the cor-
related counting rate (Gi2) for two cases of practical
importance. Needless to say, if neither the narrow- nor
the broad-band conditions obtain, the complete result,
Eq. (3.9), must be used. Finally, as noted in I, in the
case of narrow electronic bandwidth (i.e., narrow with
respect to the beam-spectral function), it may be ad-
vantageous to put a dc blocking filter in the detector
output. This means, according to Eq. (2.14a), that
(G1)=0[and, of course, {(G2)=0] since B;(0)= B2(0)=0
if no dc is passed. Thus (Gi2) will be given by (3.9)
or (3.10).

The assumption of a point source made in obtaining
Eq. (3.8) must in general be relaxed for macroscopic
incoherent sources. This is easily done by merely aver-
aging the expression (3.8) over source points. To do this
we let yi(y2) be a vector from a fixed point © in the
source to some point in detector “1” (“2”) and s be a
vector from O to a point in the source and define

b
Then, for a source of uniform intensity
)= [ g
7 J s VDi(s)Da(s)
Xexp{i[g(Da(s)—Du(s))—w(ta—t) ]} . (3.14)

Here the integral on s extends over the volume (or sur-
face) U, of the source. (The appropriate modification
for a source of nonuniform intensity is obvious.)

When the linear dimensions of the source are small
compared with y; and y, we may rewrite Eq. (3.14) in
the simpler form

Np

x(12)=

/ dow g(w) exp{i[g(y2—y1)
—w(le—11)1}0(q191—F2)

e (3.15)

where §=y/y and
. d3s o
gd—99)= / —explig(i—02)-s). (3.16)

When the beam spectral width is narrow enough that ¢
may be replaced by a mean momentum p in Q we can
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rewrite Eq. (3.15) as
X(12)=xp(12)Q(p; §1—72) - (3.17)

Here, Xp(12) is the value of x(12), as given by Eq. (3.8),
for a point source of the same intensity as that for which
x(12) is calculated.

The illustrations given in the next two sections,
assuming point sources, are rather trivially modified
for a finite source when Eq. (3.17) is used. This will be
done in a subsequent paper in which we shall study
counting accuracy and observation times in detail.

IV. APPLICATION TO A RADIATING SOURCE

We shall now show that the formalism developed in
in Sec. ITI can be used for the analysis of spectral lines.!!
For the sake of illustration we consider a radiating
source which has a Lorentz line shape. (Similar con-
siderations apply to the observation of the spectrum
from a radioactive source.) The wave function of a
typical beam particle has the form!? (for j=1, 2,---, %)

@j(x,t) =__ei[pr—ep(t*tj)]e—%I‘[t—tj-(z/ 18]}

X
I—t— (x/V)>0
I—t;—(x/V)<0.

for

=0 for (4.1)
The linewidth is T, # is the “emission time,” C is a
normalization constant, and V is the particle velocity
which is, of course, ¢, the velocity of light in the case of
photons.

The wave packet amplitude a;(g), defined by the
Fourier transform of (4.1), according to Eq. (3.1) is

readily found to be

T (42
ai(g)=———"""—"7"—. .
= eo— e+ (iT/2)

The beam spectral function g(w) is therefore

g<w>=%[<w—ep)2+§]'l. (43)

To find the correlation function we must evaluate
Eq. (3.9). The analysis is particularly simple for the
case of electromagnetic radiation in the visible or lower
frequency part of the spectrum. The counters may be
made small enough that they be regarded as point
counters at Y; and Ys, and the electronic response times
made fast enough to give credibility to the broad-
band approximation, Eq. (3.12). With the beam spec-
tral function given by (4.3) we find immediately [here

11 An application of the Hanbury Brown-Twiss technique for
this purpose was suggested by A. T. Forrester, J. Opt. Soc. Am.
51, 253 (1961).

12GSee Eq. (4.1) in II or, for example, Eq. (8-119) of M. L.
Goldberger and K. M. Watson, in Collision Theory (John Wiley
& Sons, Inc., New York, 1964).
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g is the spin average factor (2.38)]

(G12)={G1)(G2)
X{14-gexp[—T'|To—T1—(1/c)(Ya—Y1)|]}. (44)

The autocorrelation function for a single counter is ob-
tained by setting (G2)=(G1) and V=V

(Ge)=(G1)*{1+gexp(—T|To—T1|}. (4.5)

Thus, the linewidth, T' can be determined by a measure-
ment of (Giz2) or {G.), the latter being sufficient and
slightly simpler experimentally.

V. EVALUATION OF M,

We have up to this point in our evaluation of the cor-
related counting rate (Gi2) neglected the contribution
from events which correspond to the same particle
passing through both counters. This contribution to
(G12) which is, of course, relevant only for the case of
two T-type detectors, was called M4 in Sec. II, Eq.
(2.27). We shall discuss briefly the evaluation of M.

For simplicity let us assume that the two counters are
identically constructed as thin flat disks, each of sur-
face area T and thickness w; further we take them to be
spatially uniform so that the quantities y1(y1) =72(y)=7v
are constant [see Eq. (2.5b)]. Each counter is to be
oriented so that the beam impinges normally on its
flat surface. We shall consider only the case of a beam of
low enough density that when the projection operator
E; acts on j;(Ys,7) we may write

Ey~e, (51)

where

o— / By 5(y—x). 5.2)

This is an approximation in that E; is defined to be
unity if any particle is in counter one; we have already
assumed that the /th particle is in the counter or else
the factor 7;(Y;,0) which enters M4, Eq. (2.27) vanishes.
There could, however, be other particles, beside /, in
the counter. We shall discuss briefly at the end of this
section the opposite limit of a very high density beam.

From the definition of M4, Eq. (2.27), and the wave
function for the system, Eq. (2.1), we find

Ma= 2 (Bi(x1,t1), e171(Ya,7) j1(Y1,0) u(x1,t1))
=1
—y Y [ dr @)
=1

X/daylla(yl'-X)/d3y28iK’5(Y2—x)e—iKT
1 2

X/d3y16(y1—x)d>l(x,tl). (5.3)
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Here K is the kinetic energy operator for the /th beam
particle which we take to have the form

K=P2/2M,

where P=—4V, is the momentum operator, and M is
the particle mass. Now repeatedly using the well-
known relation!?

ei1v2/2Mf<X) — /dsx/eirv2/2Ma(x-——x/)f(x/)
= (M/2mir)¥/ / '

Xexp[iM (x—x')?/27]f(x),
we find from Eq. (5.3)

n s M\3
Mi= Z(*—) 7 f d*yy’ / @y / d?ys
1=1\277 1 1 2

M
X&:*(y1 1) Pi(y1,th) eXp[i};-(yl— y1') 2]
T

(54)

xexp[—g(yl'—yl)- Gi-3) |. 639

If we now substitute the Fourier representation of the
wave functions ®; together with Eq. (3.8), used earlier,
we obtain for the ensemble average of Mg the result

Ma)= (M )3 *Np

&y [ &y M
/ / / d*ye exPl}_()ﬁ yi')? :I

X exp[ —#(y{—- yo-(yi'— w)]

X / do g(e) expligle) (i—3)], (5.6)

where ¢(w) is the momentum of a beam particle of
energy,

As a simple illustration of Eq. (5.6), let us suppose
that the counters have dimensions small compared with
their separation from the source. We introduce new
variables

R=3(y/+vy1),

r=y’'—yi,
and assume |r|<<|R|=V;, the distance of counter 1

13 We have here used the relation e%e®=expl[%(a,b) Jexp (a+b),
valid when [a,[a,0]]=[0,[q,6]]=0.
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from the source. We obtain
Npy?
> / dw g(w)
V2
T Y
X / d’R / d3y26|:R—yz+ﬂqR] , (5.7)

where R=R/R.

To simplify this expression further, let us assume
that the beam spectrum is very narrow and centered at
a frequency corresponding to momentum p, and let
g=p be set inside the & function; the integral over w
then, from the normalization of g(w), is unity and we
have

Npy? . . T
(Ma)y= e /d R/d y25[R—Y2+ﬂPR:| . (5.8

F1c. 3. A simple counter tele-
scope illustrating the measurement
implied by Eq. (5.9).

(Ma)=

The physical interpretation of Eq. (5.8) is clear: If the
two counters are aligned with the beam direction and if
7 is the flight time between the counters, a coincidence
will occur. If the two counters are aligned exactly, one
directly behind the other a distance s apart (illustrated
in Fig. 3), and if we use the expression y=V/w, Eq.
(2.11), we find

o, if rp/M<s—w
V |w—st+rp/M, ifs—w<lrp/M<s
(M 3)=(G1)—X .
w? | wts—rp/M, ifs<rp/M<s+w
0, if 7p/M>s+w. (5.9)

Finally we consider the limiting case of a very dense
beam. It should be evident that the projection opera-
tor E; plays no role in the expression for M, and we may
assume that there is always at least one particle in
counter one; hence £=1. We have then,

M=§ @:(xut2), 1(Yo,7) (Y, 0)Be(x21))

n
=y

=1

d3x D*(x,11) / A3y K75(ys—x) et KT
2

X / Byd(y—x) (). (5.10)
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Using Eq. (5.4), as before, we find

M\ =
Md=<——) vy d3x/d3y1
1

2wt =1

iM(x— Y2)2:|

T

X / @Pya®1* (x,1:) Pi(y1,t) CXP[_
2

M (y2—y1)?

T

Xexp[ :I . (5.11)

We now form the ensemble average of M and use the
expression (3.8) for the average of the ®’s to obtain

o2
—iM(x— Y2)2:| epr:iM (y2—1) 2:|

T

X exp[

2r
X [ do g0) explig =221,

VI. TIME-DEPENDENT SCATTERING THEORY

We turn now to the major problem studied in this
paper, namely, the analysis of fluctuations in a beam of
scattered particles and the question of what information
about the scatterer can be deduced from such a study.
To do this, we must first cast conventional scattering
theory into a form which is suitable for exhibiting the
time dependence of the scattering process.

We begin with the description of scattering of a
single beam particle by a single, bound, scattering par-
ticle. This will be done in the impulse approximation
in which the scattering matrix is replaced by that for a
free particle with a momentum distribution characteris-
tic of the initially bound state.

The bound system is described by a Hamiltonian %
and wave function go(z),'* where z is the particle coordi-
nate. Thus

hgo(z) =wog(z), (6.1)

where —w, is the binding energy. The momentum of
the beam particle prior to the scattering is p so that the
initial configuration of the system beam particle and
bound scatterer may be written as

Xo= (2m)—3/2¢ir1"xyg(z) , (6.2)

where # is the spin wave function of the projectile.
The scattered particle wave function is then, if K is the
beam particle kinetic energy operator and 7 the scat-

4 To avoid a distracting notation, we continue to avoid exhibit-
ing spin variables explicitly.
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tering matrix,'®

VUse= (wotep+in—h—K)1TX,
= —i/ dr exp[i(wotept+in—K—h)7]TXs. (6.3)
0

The time-dependent scattered wave function for a time
long after the scattering is completed may be obtained
from Eq. (6.3) by multiplication by exp[—i(h+K)¢]
and replacing the lower limit of integration by — .
Although we shall ultimately require s, for such long
times, we shall continue to use the representation (6.3)
which gives the scattered wave function exactly for all
points in configuration space, not just in the asymptotic
region.

Since 7 is the two-particle scattering matrix, we have
for a free particle of momentum Q,

T exp(ip+x) exp(1Qo-2)

=/d3kfd3Q exp[i(k-x+Q-z)]
X 5(k+Q—p—Q0)(k,Q| 7[p,Q0)
=/d3k expli(k-x—p-z)]
X (k, Qo—o| T|p, Qo) exp(iQo-2) ,

where p=k—p, the momentum transfer to the scat-
terer and 7 is the submatrix of 7 on the momentum
shell. If we now introduce a Fourier representation of go,

(64)

go(2) = (2m)5" / B0, exp(iQ0-2)a(Q),  (6.5)
we find for 7X, the result

d%k exp[i(k-x—p-2)]
X (k, Qo—| T|p, Qo)ugo(z),

where we must interpret Qo as Qo= —1V,. Finally, we
insert this into our formula for the scattered wave,
Eq. (6.3), and obtain

Voo= — (27)3/% / dr / &k
0

Xexpli(ep+in—e)7] exp{il k-x—g-2(—7) I}

(k, Qu(—7)—e[T|p, Qo(—7))ugo(z) ,
where ¢~*7 has been commuted to the right to act on g,
thereby canceling the factor ¢?07 in Eq. (6.3). We have

also indicated explicitly the concomitant time de-
pendence in z and Q, according to the definitions

TXy= (2m)—302 /
(6.6)

(6.7)

6.8)

z(___ 7.) i e—-ihrzeihr ,
etc.

Rlif er are following the notation of Chap. II, Collision Theory,
ef. 12,
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We require ¥, only for large x, far from the scatter,

x>>1/p. In this limit we may as usual integrate over the
directions of k to obtain!6

Vo= ——(27r)”1/2x_1/ dr/ kdk eP* D Tygy(z), (6.9)
0 0

where

P(k,r)=(ept+in—er)T+kbx—p-z(—7), (6.10)
and now (we use the notation £=x/x)
o=kE—p. (6.11)

We may simplify the expression for ¥, Eq. (6.9), in
several limiting cases. We consider the weak binding
limit'® in which the Q, dependence of T° may be ne-
glected and also suppose the target particle to be so
heavy that its recoil from the collision can be neglected.
In this case we may write

eip:c

Yso fgo, (6.12)

(2n)¥%

where the scattering amplitude f

f=—21r/°° drf00 kdk exp{i[P(k,7)—px1}Tu (6.13)
0 0

is a column matrix in the beam particle spin variables
and a square matrix in those of the target particle. To
evaluate the integrals, we set k= p-q, where ¢ is con-
sidered to be small and expand the exponent in (6.13)
about ¢=0:
P(k,7)— pr=1nT— g0 2(—7)

gl Vrta—g-s—r) 4,

V=dey/dp,
Qo=pE—p.

The integration over ¢ may be carried out approximately
by writing

/ kdk...:f (P—I_q)dq.-zj)/ dq...
0 —p —o0

which is legitimate since we are in the asymptotic region
where px>>1. We find

where

f= —-(27r)2pTu/dT fx—Vr—&-2(—7)]

Xexp[—igo+z(—7)]
T“exp[—igo- 2(—7,)]

= — (2r)p—u (6.14)
( PV 1—%-2(—1.)/V
where (—7,) is the retarded time defined by
1
T,=-I;|:x—:8-z(—r,):|. (6.15)

16 That is, we take JS'dQue™ *F(E) = (2r/ikx)F (£)e** in the
integrand of Eq. (6.7).
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F16. 4. Scattering by a
composite target.

Detector

Since we have assumed that the target particle recoil is
negligible, the retardation factor in the denominator of
Eq. (6.14) may be set equal to unity, and we write

f=fexp[—igo-2z(—7.)], (6.14a)

where f is just the usual free-particle scattering ampli-
tude given by
f=—Qn)(p/V)Tu.

The quantity (—7,) is the time that the scattering
occurred for a beam particle which reaches the point
at time zero.

In the weak binding limit, we may evaluate s,
Eq. (6.9), in terms of a retarded time even for a target
which recoils. The evaluation is a little more involved,
but straightforward.”

In I, our principle interest was the study of intensity
correlations between beams scattered from multipar-
ticle targets. We shall therefore discuss in a manner
similar to the above treatment the scattering from a
composite target containing N scatterers having co-
ordinates z;,---,zy and an initial wave function
go(z1," - - ,zx). The geometry of the scattering is illus-
trated in Fig. 4; the coordinate origin is located in the
target. The point in the source from which the jth beam
particle originated is d;, and the point x; is at the de-
tector. We introduce the vectors

Dj=x;—2,,

6.16
R]_a= Za— dj . ( )

We assume that multiple scattering may be neglected.
Then, following the argument which led to the expres-
sion for the scattered wave from a single bound scat-
terer, Eq. (6.9), we obtain for the wave function of the
Jth scattered particle

2T
x(2m)3/2

¢j(p,Xj) =

X3

a=1

dT/ kdk eiPi%® DT oy, (6.17)

17 This is done explicitly by K. M. Watson, Phys. Rev. 118, 886
(1960). See also Collision Theory, Ref. 12, Sec. (11.1).
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Here #; is the spin wave function of the jth beam par-
ticle which has momentum p and

Pjky,7)= (intep—ei)T
+kD;*(—7)+p- Ry (= 7) = (int+ep—en)7
+kxj—p-dj— (k2;—p)-2o(—7), (6.18)
for > |2a|.
It is useful to form wave packets out of the ¢, ac-
cording to

¢%Mm=/ﬁ%AAMW@m», (6.19)

and from these the symmetrized wave function at =0
[a formal derivation of Eq. (6.20) is outlined in the
Appendix]:

w(0)= 5 TT &,(x;0)g0(an,- o). (620)

The time-dependent beam particle functions are of
course generated by the kinetic energy operator K; for
the jth particle. Thus

®;(x;,t) = e Ki®;(x;,0)

=/d3p AJ(p)¢J(p,nyt) (621)
For large x, and consequently large ¢,
qu(p,xj,t)
=¢~Kitg,(p,X;)
(27r)—1/2 N ®
= — Z / dT/kdk eiPi(k’“'T't)Tj“uj’ (622)
Xj a=1 /g
where

Pj(k)ayTat) = (“l+ €p— Ek)T
—el+kDia(—1)+p-Rio(—17).

We write ¢;(p,%;,¢) in a form analogous to the single
target expression, Eq. (6.12)

(6.23)

271' —3/2
¢j(p7xj’t) = exp[i(Pxi_ épt)]f]' ’ (624)
Xj
where the scattering amplitude f is given by
N 00
fi=—2r 3 / dT/kdk
a=1 /g
Xexp{i[P,-(k,a,r,t)—pxj—l- ept:]}Tjauj. (625)

To evaluate the integral which appears in (6.25) we
again use the weak binding, heavy scatter limit and
write k= p-+¢, with ¢ small in the exponent of (6.25)

Pi(k7a)7at) _le—l" €p"""i77‘f+9[_ V(t—l_ T)

+a—8; 2a(—7) J—P-di—o-2a(—7), (6.26)
where, as before
=d
r=des/ds, (6.27)
Qo=pLi—p.
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We find then, analogous to (6.14) and (6.15), the results

s —3/2

¢i(p,x,t) = {exp[i(px— et) ]} [exp(—ip-d;)]

X

N
XX fo expl—igo za(—17)],

—re=t—[x—& 2 (—7)]/V
=t{—|x—2.(—1)|/V,

(6.28)

fui=— <2w)2§nau,-.

The wave function ¢;(p,x;,t) may also be written, using
the definitions of D;* and R;%, (6.16), as

2ar)—8/2
d’j(p:xi’t) == eXP( - iept)
X
N
X X=:1 fo exp{i[pD;*(—7.)+p-Ri*(—7)]1}. (6.29)

In practice we may replace p by pR; since, as was ex-
plained in I, those beam particles which do not strike
the target are of no interest. Then the wave function ¢,
becomes a function of the magnitude of p and if we
define

9= [ d0,a,0),
we obtain

;(x,t)= / dp a;(p)ei(p,x,1) , (6.30)

which is similar in form to that used in Sec. III, Eq.
(3.1). [The form (6.30) also applies to a spherically
expanding beam. ]

The wave function for a lightly bound target particle
which recoils may be obtained similarly.?”

VII. SCATTERED PARTICLE CORRELATIONS

We may now apply the general expressions for time
correlations developed in Sec. II to the analysis of a
scattering experiment. In particular, we consider a
modification of that illustrated in Fig. 4 shown in Fig. 5
where we add a second detector of target particles and
process the output of the two detectors precisely as de-
scribed in connection with Fig. 2. For simplicity of pre-
sentation here we assume that the scattering is inde-
pendent of spin. The general case will be described in
the second paper of this series.

The two detectors are located at Y; and Y, For
simplicity we assume that they and the beam source are
small in the sense that all three subtend very small solid
angles at the target. Further, the target will be taken
small enough that the retarded times defined by Eq.
(6.28) are substantially the same for all target particles,
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Source

Fic. 5. Correlated counting
rates for scattering by a com-
posite target.

Delay line

Correlator

so that we have!8
_Trlzt—‘(yl/V) 3
_T72=t—(Y2/V) .

We shall, finally, assume that the beam spectrum is
narrow enough that the scattering amplitudes may be
treated as constants over the spectral width.

It is convenient to express the instantaneous cor-
related counting rate defined by Eq. (2.17) in terms of
the wave function at =0 given by Eq. (6.20) and
Heisenberg counting operators, Eq. (2.16). Thus we
write Eq. (2.17) as

M=(¥(0), E1(t)J 2(t2) E(})J1(0) ¥ (0)) . (7.2)

For the present experiment, it is desirable to arrange
that Mg defined by Eq. (2.27) is negligible. Then we
may apply directly Eq. (2.36), remembering that we
must include now in the scalar product in (7.2) the
target wave function go. We have, then,

(7.1)

(Glz>=ﬁ2/ (1)/ 2
X{(gox(Dx(2)£¢[x(1,2)[*Iga)) . (7.3)

Here (---) indicates an average over the scatterer
states go.'° In addition, if we were not assuming a small
source, the average would also include one over the
source points d;.2° The mean counting rate for detector
“1” becomes according to Egs. (2.8) and (2.14a)

(G)= B0 (gox(Dg) / Bynly).  (14)

It is often the case, as explained in I, that one can re-
place Eq. (7.3) by the simpler expression

Gy / (1) / @ eox(Deo)

X{(go,x(2)g0))=g | {(go,x(12)go))[2].  (7.5)

18 These simplifications are of course not essential, but permit
us to avoid unnecessary detail here.

1 If the scatterer is in thermodynamic equilibrium, for example,
this will be the usual ensemble average of equilibrium statistical
mechanics.

» This has been exhibited explictly in I.
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What is involved here is that in the sum over a complete
set of target states g, which appears in a product like

(gosx(1)x(2)g0) = 2-(8o;x (1) gn) (g% (2)g0)

we retain only the term #=0. This is usually permissi-
ble, for example, when the target is large compared to
the characteristic correlation distances within it. It is
well to keep in mind that (possibly) interesting higher
order target correlations have been lost in the passage
from the rigorous Eq. (7.3) to the approximate Eq. (7.5).

For an incoherent incident beam we may have the
particular characteristics of the wave packet ampli-
tudes described in Sec. III to express the quantities
which appear in Eq. (7.5) in terms of the beam spectral
function [see Egs. (3.2) and (3.5)]:

Ng
(Gox(Dg))= (2m)— f derg(ey)
n

X <(g0a ] ¢j(P7y17t1) I 2g0)> ) (76)

Ng
(Gox(12)g))= (2m)— / deyg(ey)
n

X {(go,05* (5:¥1,41)$i(p,¥2,12)0)) 5

etc. The wave functions ¢; are defined by Eq. (6.28)
with p= Rja.

Let us recall the prescription given following Egs.
(2.28) for carrying out spin orientation averages and
sums. Each ¢; is, in general, labeled by an initial orienta-
tion for the beam and target particles. The average
over the target particle orientations is obviously im-
plied by Eq. (7.6). A corresponding average over the
beam particles which are labeled by the index, j in
Eq. (7.6) is also implied. Final beam spin orientations
are to be specified by the detectors so that in Egs. (7.3)
and (7.5) we must sum separately over the spin orienta-
tions (which might have been observed) at detectors
“1” and “2.” Since the form of counting operator we
have assumed is spin-independent, only the initial spin
orientation is summed over in Egs. (7.6).

To avoid complication of notation, we assume hence-
forth that the scattering is spin-independent and de-
scribed by the wave function (6.28). Our assumption
about the smallness of the source, target, and detectors
permits us to write Eq. (6.28) in a somewhat simpler
form:
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where

500 = £, 1ol®) expl—ier(~)] (19

and p=p(#—R) with R a unit vector from source to
target; it is the usual momentum transfer.

The first of the quantities appearing in Eq. (7.6) may
now be evaluated in terms of the scattering amplitude:

((go,x(l)go))——— / dor g(6) (g, | 500 | g0))

1

= (e |50 50
nyi

Np
E__'O'(ﬁl) ’

7y,?
where o(¢1) is the differential cross section for scattering
in the direction §;. The second line in (7.9) follows from
our assumption about the constancy of the scattering
amplitude over the beam spectrum.

The flux of scattered particles at y is according to

(7.9)

Eq. (24)
F(y)=NsV(o(§:1)/9:)
7.10
=Fr(e@)/3), 710
where the beam flux incident on the target Fr is given by
=N3gV. (7.11)

For the “calibrated detector” defined in Sec. II, Egs.
(2.11) and (2.14), we find from Eq. (7.4)

o(¥y) o(¥)
(G =By(0)Z F——— =3 Fp——" | (7.12)
V2 2

if B;(0)=1.
The second of the expressions in (7.6) may be evalu-
ated in terms of our wave function (7.7) to give

Np
(eox(12)ge))=— f deog(@) exp{ilp(ye—y1)
nyiys

—(ta— 1) (F*(@1,t)F(Gat)).  (7.13)

Using our small-detector assumption, we define and

write .
o1=p((i—R)=p(¥,—R),

0:=p(fr— R)=p(¥,—R). (7.14)

We shall suppose that the target contains species
¢=1, 2,--- of particles and that for all of the «, par-
ticles of species ¢, fac=f.. Then

21,.)—3/2
¢i(P;XJ) =
X
X expli(px— ept) ] exp[ipd;1F(2,0), (7.7)
<(g07X(12)g0))“ 2 fe*(@) 1o yﬂ/dwg(w} exp{i[p(y2—y1) —w(te—t) ]}
Ay e.e’

X ((g(); > eXp{'Ll:Ql *Zay ( - Tn) — Q02 Zac( —

ac’yae

Trz):l}g()»; (715)

where the sums on a.(ar) run over all particles of species ¢(c¢’).
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This result may be expressed in terms of Van Hove’s correlation function?! by introducing the particle density of

species ¢ at time ¢:

ne(X,0) =2 [x—z.(t)]. (7.16)
Then if we define??
F o o(tot))= /dsx’/d% expli(g1-X'— 02 X) W no[X/, 1— (YVi/V) X, ta— (Yo/V)]), (7.17)
we have
N
<(g0,X(12)gO)>=ﬁy /dw g(w) exp{ilp(ya—y1)—w(te—t) B2 for*(@1) fe(fa)Fer (tayts) . (7.18)
12 c’e

For the calibrated counter, for example, we obtain from Egs. (7.5) and (7.12)

2

(Gr12)=(G1)(G2)=*=

L2

d3y2

x[=

2 Wa

where the last factor has been removed from the v in-
tegrals because of the narrow beam spectrum assump-
tion. The autocorrelation function for a single counter
may be obtained from this by supposing that the two

detectors are a single one. In this case, for a detector of
area = and rapid response time we have (Gi2)=(G.),

(Go)=(G1)*+=(Z/Y*)’Fr*[ B:(0) I’¢

XIZ Je* (P fl TP o To T2 (7.20)

As has been noted earlier, a dc blocking filter may be
placed in the detector outputs, causing (Gi)=(G2)=0
in Eq. (7.19). The evaluation then follows the lines indi-
cated in Eq. (3.10) where we imagine that the band-
width function is very narrow in comparison to the
beam spectrum.

APPENDIX: DERIVATION OF THE MANY-BEAM
PARTICLE WAVE FUNCTION

To derive Eq. (6.20) from the many-body Schrédinger
equation which describes all the beam particles and the
target, we use the multiple-scattering form for the many-

21, Van Hove, Phys. Rev. 95, 249 (1954).

2Tt is often possible to replace n, by &n.=n.—{(g0,7c£0)),
[¢=1,2,---] in the expressions (7.15), since scattering from the
mean densities may be negligibly small.

Tg 0 0
; / dtaLo(To—1s) / dthLy\(Ty—1t) | —

/ doog(@) exp{ilp(yr—y0)—w(—t)])

d3y1

1 We

1z Jo* (T A P)F ooltaty) |2, (7.19)

body wave function.? First, we define

d= €p+wO+1:17—' Z Kj_h

=1

[see Egs. (6.1) and (6.21)7]. In terms of d and the scat-
tering matrices

(A1)

n

TJ'= Z fl';ﬂ’

a=]1

we may write the wave function in the form

1 1
Tt=gi14+-3 TJ"“Z Ti
d i d i

1

X= 2 Tpt--- } Xogo. (A2)
d G

Here X, is the product of the # plane-wave functions for

the # beam particles. On rearranging terms in Eq. (A2)

(and assuming that no beam particle returns to scatter

again on the target) we obtain

n 1
¥t=s ]I [1+&Tj]xago- (A3)

=1

When the beam particle density is low enough that their
mutual excitations of the target do not interfere with
each other, and when appropriate wave packets are
constructed, this becomes equivalent to Eq. (6.20).

2 See, for example, Eqs. (11.266) of Collision Theory, Ref. 12.



