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Problem of Energy in an Expanding Universe

JAROSLAV PACHNER

Prague, Czechoslovak' a*

(Received 10 August 1964)

It is proved that a plausible definition of the total energy of a body in Newtonian cosmology can be given
by the condition that the energy is conserved, if the body is participating in the general cosmic expansion.
The same formula for the total energy results also from a certain metric describing a relativistic model of a
universe with a uniform and isotropic distribution of matter and distinguished by an interesting property:
that the differences of space-like coordinates have in it an immediate metric meaning as the lengths measured
by rigid rods. It is found that the cosmic expansion has either no effect, or quite imperceptible effects on the
motion of planets in our solar system, but during the formation of local systems such as clusters of galaxies,
the deviations from the exact validity of the conservation law of energy are of considerable magnitude.
This process is to be stud'. ed on the basis of McVittie's model.

INTRODUCTION

HE concept of energy appears to be a very useful
one in classical Newtonian dynamics as well as

in the modern quantum theory of particles and wave
fields. Its most important property, the conservation
law, is in the pure gravitational field a consequence of
the fact that the Newtonian absolute space is static
and, because of this, the mean mass-density, taken
over the inGnite volume of the space, remains constant.
The forces acting on a test particle moving in the Geld
of an isolated system of celestial bodies can be therefore
deduced from a scalar potential not depending explicitly
on time.

The Newtonian absolute space is an idealization of
reality. In fact, we are living in an expanding system of
galaxies with a nonvanishing mass-density depending
explicitly on time (with the exception of the steady-state
universe in which the mean mass-density does not vary).
In Newtonian cosmology we easily deduce from Newton's
law of general gravitation and his second law of motion
the dependence of the mean mass-density on time, but
if in a simple model with a uniform and isotropic
distribution of matter we assume that the force acting
on a test particle participating in the general cosmic
expansion equals the negative gradient of a scalar
potential, we find that the sum of its kinetic and
potential energy is not conserved because of the
explicit dependence of the scalar potential on the time.

The aim of the present paper is to examine the
significance of the concept of energy in an expanding
universe. We shall show that also in Newtonian
cosmology it is possible to define the Lagrangian and
the total energy of a test particle in such a way that the
latter is conserved for a certain standard motion and
certain reference frames. ' It is quite natural to choose
the general cosmic expansion and the reference frames
whose origin remains at rest relative to the expanding
system of galaxies (which may be determined by the
isotropy of the observed red shift) as the standard form
of motion and as the standard reference frames,

*Present address: Praha 2, Na Smetance 16.
Compare in this connection: H. Bondi, in Recent DeveLopments

ate Gpn, eraL Relativity (Pergamon Press Ltd. , London, 1962), p. 47 ff.
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1. DEFINITION OF ENERGY IN NEWTONIAN
COSMOLOGY

In a model filled with a uniformly and isotropically
distributed cosmic "dust" the equation of motion of a
test particle has in three-dimensional vector notation
the form

d'r/dt'= —(4s-/3) yppr, (1.1)

y being the Newtonian gravitational constant. The
mean mass-density po of the cosmic dust stands in a
simple relation to Hubble's "constant" H(t) and to the
deceleration parameter q (t):

(1.2)(4s-/3) yps
——gH'.

We have also
H = —(1+q)EP. (13)

The dot indicates here and hereafter differentiation
with respect to time.

The equation of motion (1.1) which follows directly
from Newton's second law of motion and his law of
general gravitation may be deduced also from the
Lagrangian

z =m{-',i' —(2s./3)yper'l, (1.4)

where m denotes the mass of the test particle. Since the
mean density po depends explicitly on time, the total
energy A of our test particle, deGned by the usual
formula

A=+;(BZ/Bj;)j; Z, —
is not conserved, for

dA/dt= aZ/at= (2~/3)~p, m—r'Wo. (1.6)

It is well known that the Lagrangian is not uniquely
determined by the equation of motion, for we may add
to the former the total time derivative of any function
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respectively. We shall see that the same expressions for
the Lagrangian and for the total energy of a test
particle follow also from a certain metric of relativistic
cosmology. Thereafter we shall quantitatively investi-
gate the motion of a test body and the change of its
total energy in a very simplified model of a local system
of celestial bodies and during its formation.
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the expression for the total energy

A=m f-', r'+ y),
and its total time derivative

(1 9)

dA/dt =m{8y/Bt —r' cjQ/Bt) . (1.10)

The energy in Eq. (1.9) is conserved if

y= q p
——,'r', q p

——const. (1.11)

Putting this function into (1.10), we find after integra-
tion that

Q= r+A(—r).' (1 12)

The left-hand side of Eq. (1.8) may be written in the
form

d'r/dt'= Br/R+ p gradr' —r'Xcurli. (1.13)

Substituting this relation and Eqs. (1.11) and (1.12)
into (1.8), we get

of coordinates and time without changing the latter.
Since A given by Eq. (1.5) may be certainly interpreted
as the total energy of a particle, if its kinetic energy is
a quadratic function of velocities and if the potential
depends linearly on velocities, ' let us suppose the
Lagrangian in the form

2=m( ',i' -[—p (r t) —i Q(r, t)]). (1.7)

The scalar potential &p and the vector potential Q are
to be determined by the condition that the total energy
A, defined by Eq. (1.5), is conserved during a certain
standard motion.

From the Lagrangian (1.7) we obtain the equation
of motion

d'r/dt'= gr—ad p BQ—/Bt+r Xc'urlQ, (1.8)

fields pp and Q are then described by the functions

y = —-',B'r', Q = Hr—. (1.17)

The equation of motion (1.8), with pp and Q given by
(1.17), reduces with the help of Eqs. (1.3) and (1.2)
to (1.1).

We may thus conclude that in Newtonian cosmology
energy recovers its fundamental property of being
conserved during the general cosmic expansion, which
we choose as the standard motion in the sense of
Bondi's considerations, ' only if the potential is composed
additively by the scalar potential p, and by the scalar
product of a vector potential Q and the velocity of the
particle.

l,= (xi—xp) PG(ti)/Gpg. (2.2)

2. NEWTONIAN COSMOLOGY AS A LIMITING
CASE OF RELATIVISTIC COSMOLOGY

Since the 6eld equations of general relativity contain
as unknown functions the gravitational potentials, we
may expect that a slight arbitrariness in the choice of
the Lagrangian will be reduced if we compute it also
by the usual limiting process from a certain preferred
metric of relativistic cosmology.

In regions suKciently small compared with the radius
of the universe, the Robertson-Walker line e]ement may
be written in the form

ds'= (G(t)/Gp]'(d—x'+dg'+dz')+c'dP (2.1)

This metric has some important features: The time-like
coordinate is orthogonal to the space-like coordinates.
It is identical with the cosmic time. The distance l~

between the points (xi,0,0,ti) and (xp,0,0,ti), measured
by a rigid rod, is given by the formula

r'XcurlA(r) =0.
This equation is satisfied if

(1.14)
After the transformation of coordinates

x, =x;PG(t)/Gpg, (x,=x,y,s), (2.3)
A= grada(r), 1.15

the metric (2.1) takes the form
a(r) being an arbitrary scalar field not depending
explicitly on time.

ds'= —(dx'+dy'+ds')+ (c'+24 )dt' (2.4)

In Newtonian cosmology we choose the general
cosmic expansion described by Hubble's law

as the standard motion, during which the numerical
value of the total energy equals zero. Because of it

where in the three-dimensional vector notation

4 = p(r, t) rQ(r, t), —

q (r,t) = ,'H'r', Q(—r, t-) = Hr. —

Here H also indicates Hubble's "constant"

H =6/G.

(2.5)

(2.6)
yp=0.

Without changing the generality of our computation
we may put

u(r) =0,
for this scalar field appears neither in the equation of
motion (1.8) nor in Eqs. (1.9) and (1.10).Both unknown

'See, for instance, J. W. Leech, Classical mechanics (John
Wiley R Sons, Inc. , New York, 1958), Chap. 5.

We emphasize that the metric (2.4) is not diagonal, for
r in Eqs. (2.5) does not indicate a velocity, but it is a
symbol for the derivative with respect to t:

r'= dr/dt.

In contradistinction to the metric (2.1), the time-like
coordinate in (2.4) is not orthogonal to the space-like
coordina. tes (with the only exception of the origin of
coordinates, where all four axes are orthogonal to each
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other). If a test body moves through the cosmic space
with the velocity of the general cosmic expansion given

by Eq. (1.16), its proper time becomes identical with
the cosmic time. As follows from Eqs. (2.2) and (2.3),
the distance between the same two points as in Eq.
(2.2), measured by a rigid rod, exactly equals the
difference (xi—xp) of the new coordinate x

lg ——Xg—Xp. (2 7)

The metric (2.4) has thus a very preferred position, for
the differences of the space-like coordinates have in it
an immediate metric meaning as the lengths measured

by rigid rods.
A test particle moves in general relativity along

a geodesic. In the Newtonian approximation it is
described by the relation

d'x;/dt'=, (x;=x, y, s), (2.8)

where, in the case of the metric (2.4),

Z =m (-,'r's —C). (2.10)

The potential C is determined by Eqs. (2.5) in analogy
with Einstein's statement' that (-,'g44) plays the role of
the gravitational potential in the Newtonian approxima-
tion. In our case this analogy is, of course, quite formal,
for C contains, besides the nonconstant part of (isg44),

also the g;4 multiplied by r' which is now to be interpreted
as the velocity of the test particle. However, the
identification of (-,g44) with the gravitational potential
as well as the identification of the variable part of the
coefficient standing at dP with the generalized gravi-
tational potential, is justified in both cases by the
identity of the equation of motion obtained from the
Lagrangian containing (sig44), or C, respectively, with
the corresponding equation of a geodesic in Newtonian
approximation.

Comparing Eqs. (2.5) with (1.17) we find that the
metric (2.4), with its important properties mentioned
above, gives us exactly the same Lagrangian that has
been deduced in the foregoing section by the condition
that the total energy of a test particle has to be con-
served, if the particle is participating in the general
cosmic expansion.

Till now we have considered an idealized model of the
universe. In regions sufficiently small compared with
the radius of the universe the actual local inhomo-
geneities and anisotropy in the distribution of matter

Bg~4 1 Bg44
+— = Hx, H'x, —. (2—.9)

Bt 2 Bx~

Equation (2.8) with (2.9) is identical with the equation
of motion (1.1). It can be also deduced from the
Lagrangian

The corresponding equation of motion,

d'r/dt' = —qH'r —grad@ (2.14)

is, of course, identical with the Newtonian approxima-
tion of the equation of a geodesic belonging to the
metric (2.11). The total energy is expressed by the
relation

A=m[ ,'rs+ p+-4 j,
and its total time derivative by

dA/dt=m[Hr (r' Hr)+DO/c—tt).

(2.15)

(2.16)

After having justified the choice of the Lagrangians
(2.10) and (2.13), we shall apply the latter in the
following two sections to weigh the real significance of
the concept of energy in an expanding universe.

3. MOTION OF A TEST PARTICLE
AROUND A CENTRAL BODY

In this section we examine the question whether the
general cosmic expansion has some effect on the motion
of planets in our solar system.

At first we simplify the given problem by assuming
that a test particle moves around a single central body
in an expanding universe filled throughout with a
homogeneously and isotropically distributed cosmic
dust. The motion is governed by Eq. (2.14), into which
we put

ym p/r, —(3.1)

mo being the mass of the central body. We get

d'r/dts = qH'r ym pr/r'. — —(3.2)

We now integrate this equation by the method of
successive approximations. For this purpose we expand
the function qIJ. into a Taylor series, restricing our-
selves to the linear terms. In the Friedman universe

are taken into account in the metric4

dss = —(1—2@/c') (dx'+dy'+ds')
+ (c'/2C+24)dt' (2.11)

by the scalar potential +, which is given by the Poisson
equation

'ft'+ =«v (n np)— (2.12)

and by the conditions 4=0, grad+=0 at the boundary
of a sufficiently large region of the universe within
which the mean mass-density equals the mean mass-
density po of the whole universe. By p we denote the
actual mass-density. In the presence of the held + the
differences of spatial coordinates do not equal exactly
the lengths measured by rigid rods, but, similar to the
case in the Schwarzschild's metric, the influence of 0
may usually be neglected.

Comparing the metric (2.4) with (2.11), we replace
the Lagrangian (2.10) by the following one:

Z=mL-', r —(C+e)). (2.13)

' A. Einstein, Ann. Physik 49, 769 (1916). 4 J. Pachner, Acta Phys. Polon. 25, 735 (1964).
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we have
qH =q&HpL1 —3Hi(t —ti)]+ . . (3.3)

r = r,L1+-,'q, HP (t—ti)']. (3.5)

This immeasurably small increase of the radius is not
apparent, but it does really exist. ' It is a consequence of
the decrease of the total mass 3f within a sphere of
radius r

M =mo+ (47r/3)r'po= mo+qH'r'/y

resulting from the cosmic expansion (pp(0) and causing,
by Newton's law of general gravitation,

g dS= —47ryM

the decrease of the intensity g of the gravitational field.
The energy of our test body,

A = —',mP —(gamp/r)+ (qi —1)HPr, '
+2 (1+qi)Hi'r p(t —ti)+ .], (3.6)

is therefore very slowly increasing':

In the first approximation we neglect the time-depend-
ent term and obtain from (3.2) the following formula
for the angular velocity co of a test particle moving in a
circular orbit around the central body:

co = (ymo/ri )+qiHP . (3.4)

In the further approximation we suppose the initial
conditions r=r~, i=0 for /=I~, and find the radius of
the circular orbit to be increasing by the function

d'r/dt' = pm—or/r', (3.10)

the expression for the total energy of our test particle

A=mPrsr' —
(gamp/r)

——', (1+q)H'r'+-,'qH'rp'], (3.11)

and that for its total time derivative

dA/dt=m[ (1+q—)H'r r'+ (1+,'q)H"'r'—
—-P'qHPrp'], (3.12)

for in the Friedman universe

d'H/dt'= (2+Sq)H'. (3.13)

We compare these relations with the equations
deduced from the Newtonian approximation of the
metric within a vacuole as calculated by Schucking. '
The Lagrangian belonging to his metric takes in our
notation the form

a uniformly distributed radiation, such as neutrinos,
then we have to prefer McVittie's model.

It will be expedient now to compute the Lagrangian,
and the relations deduced therefrom, describing the
fie]d within a vacuole of the radius rp. The scalar
potential + is here given by the function

4'= —(pmo/r)+2spps(rp' r'/3—), (3.8)

which follows from Eq. (2.12) and the boundary condi-
tions 4=0, W/Br=0 at r=rp. With the help of (1.2)
and (1.3), the Lagrangian takes the form

Z =m$ ,'i'+ (-ymp/r) Hr r—', H'r-'—
+-,'(H+IP)rp'] . (3.9)

Hence we obtain the equation of motion

dA/dt m(1+ q, )HPrP —. (3 7) 2 =mL.,"i'y (gamp/r) —2(ymo/ro)]. (3.14)

This result seems to be contradictory to the conclusion
of Einstein and Straus~ that "in the planetary realm
everything behaves as if there existed no cosmic expan-
sion or curvature. " In fact, the vacuole model and
the metric (2.11), representing with 4 given by (3.1)
the Newtonian approximation of McVittie's metric, '
describe two quite different physical situations. In the
former all the mass within the vacuole is concentrated
into a single central body with the mass mp, while in
the latter, besides the central body, all the space is filled
with the uniformly and isotropically distributed cosmic
dust of density pp.

There is now the question which of these two models,
that of Einstein and Straus, or that of McVittie,
depicts reality better. In the case just considered we
may answer that the vacuole model should be preferred,
if the major part of the matter in our universe consists
of massive bodies and nebulae. However, if the major,
or at least a considerable, part of the matter consists of

Compare in this connection a contradictory opinion: R. H.
Dicke and P. J. E. Peebles, Phys. Rev. Letters 12, 435 (1964).' J. Pachner, Phys. Rev. Letters 12, 117 (1964).

7A. Einstein and E. G. Stratls, Rev. Mod. Phys. 17, 120
(1945); 18, 148 (1946).

8 G. C. McVittie, Monthly Notices Roy. Astron. Soc. 93, 325
(1933).See also: J. Pachner, Phys. Rev. 132, 1837 (1963).

The radius rp of the vacuole is given by his formula

rp ——rp(t) = (3mp/4~pp)'~'.
We now obtain

d'r/dt' = —pmpr/r',

A= mL.",r' —(gamp/r)+2(gamp/rp)],

(3.15)

(3.16)

(3.17)

and, with the help of Eq. (1.2),

dA/dt = 2mH (ym p—/r p) = —2mqH'r p'. (3.18)

From the standpoint of our investigation it is
interesting that the motion of a test particle within a
vacuole is not influenced by the cosmic expansion and
may be computed by starting also from the Lagrangian

Z =m'p'r's+ (ymo/r)] (3.19)

We have thus one equation of motion only, but three
different Lagrangians and three different expressions
for the total energy of the test particle and its conserva-
tion. With the same right we may say that the energy
of a test particle moving within a vacuole is exactly
conserved Lif we assume the Lagrangian (3.19)], or it
varies by Eq. (3.12) or (3.18), respectively. This
indeterminateness concerning the energy is a con-

' E. Schiickin8, Z. Physik 137, 595 (1954).
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sequence of the invariance of the Geld equations of the
general relativity with respect to arbitrary transforma-
tions of coordinates. "

We may thus conclude: As long as the whole space is
static, the law of conservation of energy does certainly
hold, but in an expanding space with an inhomogeneous
distribution of matter it is impossible to define the
energy uniquely and in such a way that it is conserved
everywhere and always.

The deviations from the exact validity of the law of
conservation of energy lie, in all the cases considered
hitherto, so far below the limit of observability that it
seems to be idle to discuss this problem. However, in
the following section we shall see that in a certain case
they amount to values which must not be neglected.

4. A MODEL OF FORMATION OF LOCAL SYSTEMS

Astronomical observations show that there exist
1arge regions of the universe which are not inQuenced

by the general cosmic expansion. If they are of a
spherical shape, their radii can be computed by a
formula following from a dimensional consideration:
Since the motion of a test body within this local system
is governed by the laws of Newtonian dynamics and
outside it by Hubble's law (1.16), we may expect that
the radius rp depends on the Newtonian gravitational
constant y, on the total mass esp of the local system,
and on Hubble's "constant" H. The only expression,
formed by p, nzp, and H, which has the dimension of a
length, is (yms/H')'I'. We suppose therefore that

measurements of clusters of galaxies. Though the
coeQicient k=q '~' is better founded theoretically than
k=1, in application we take the latter value because
of the uncertainty in the empirical data on q. '2

Both models under consideration differ substantially,
however, in one important feature. The radius of a
vacuole given by (3.15) is increasing with the velocity

Pp —Htp
&

for in Newtonian cosmology

po=G '(t).

(4.3)

d'r/dt' = qH'r yms/r— — (4.4)

Since the system of galaxies is expanding with the
same velocity, a body outside a vacuole never can
become its member and, if we go back. towards the
beginning of the expansion, we cannot explain by the
vacuole model why a member of a local system ceased
at one time in the past to participate in the general
cosmic expansion. The necessary retardation of its
velocity can be caused only by a higher intensity of the
gravitational field due to a local aggregation of matter
above the cosmic average. The formation of local
systems is thus to be studied on the basis of McVittie's
model.

Investigating in McVittie's model the transition from
the radial motion by Hubble's law (1.16) to the motion
influenced mainly by the Newtonian force of the central
body, we may restrict ourselves on the radial component
of r. In the equation of motion following from (3.2)

rp ——k (gamp/H')'~'. (4 1) we put

The dimensionless factor of proportionality k is not
determined by the dimensional consideration, but
usually it lies nearby unity.

Schucking's formula (3.15) for the radius of a vacuole
can be easily reduced with the help of Eq. (1.2) to
(4.1) with

k=q 'i' (4.2)

Physically it states that the total mass of a vacuole and
the intensity of the gravitational field at its surface
reach the same values regardless of whether all the
matter is concentrated into a single central body, or
whether it is uniformly distributed with the density pp.

In a model of a local system in which, besides the
central body with the mass mp, all the space is filled
with uniformly and isotropically distributed cosmic
dust of density pp, we may determine its radius rp by
the condition' that the intensity of the cosmic field
—qHr equals here the intensity of the Newtonian Geld

arm/rs' (see Eq. (3.2)7. Hence we obtain again the
formula (4.1) with k given by (4.2). In an earlier paper"
this author used the formula (4.1) with k = 1 and found.
very good agreement with the results of astronomical

' Compare Ref. 9. Schiicking remarks that his metric (34)
Drom which we have deduced the Lagrangian (3.14)g can be
made static by a suitable transformation of coordinates. The
Lagrangian (3.19) corresponds to this static metric."J.Pachner, Z. Astrophys. 55, 177 (1962).

q= ,', a=2/3-t. (4.5)

These relations (4.5) hold exactly in a iiat space. In a
curved Friedman universe, they may be applied with
an accuracy that improves the more we approach the
beginning of the cosmic expansion. By rp& we shall
denote the radius of the local system at the moment t&,

i.e., the radius of the sphere where the cosmic force
qH'mr equals the Newtonian force pmpm/r':

rst= f(9/2)ttspmojr "'.

By means of the substitutions

3=xtq, r =yvpi,

we reduce Eq. (4.4) into a dimensionless form

d'y/dx'= (2/9) (* 'y+y ')—
As the initial conditions we choose

for x=1: y=yt, dy/dx=-'syt.

(4.6)

(4 7)

(4.8)

(4.9)

We thus assume that until the moment t~ the inQuence
of the Newtonian force on the velocity of our test body
may be fully neglected.

The differential equation (4.8) can be integrated by
a numerical method. The author carried out the integra-

"A. Sandage, Astrophys. J. 133, 355 (1961);J. Soc. Ind. Appl.
Math. 10, 781 (1962).
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FIG. l. Graphical representation of the functions y(x)& yp(x),
y*(x) (scale on the left-hand side), and p(x), w(x) (scale on the
right-hand side).

tion with the help of Milne's method XI," supposing
y&

——2. The result of this calculation is graphically
represented in Fig. 1 by the curve y. The straight line

yo depicts here the dependence of the radius ro of the
local system on the time, for we have

~o= ~oiyo= ~oi~'". (4.10)

The curve p represents the ratio of the Newtonian force
qmsm/r' to the cosmic force qH'mr acting at the
moment x on the test body:

p= (pm sm/r') /qH' mr=x'y '. (4.11)

If McVittie's model of a local system were replaced
by the vacuole model, the radius of the vacuole ro would
increase by the function (4.10) too, but the test body
would move, under the same initial conditions (4.9),
according to the relation

r*=~oiy*= ro&y&X"'. (4.12)

As we see in Fig. 1, the graph of the function y*(x) is
exhibited by a straight line parallel to ys(x). Therefore,
the test body moving outside the vacuole by Hubbles'
law (1.16) never can enter into it.

The expression (2.15) for the total energy of our test
body can be easily reduced by means of Eqs. (4.5)—(4.7)
to the form

A = —(ympm/rr) w (x), (4.13)

where r&
——ro&y& indicates the position of the test body

at the moment tj. and

w(*) =3rL(1/y)+(3/*)' —(9/4)(dy/~x)'j. (4.14)

The energy A thus equals the total energy of the test
body &mom/rt a—t the moment t& multiplied by the
dimensionless function w(x). With regard to the chosen
initial conditions (4.9), we have

w(1) =1. (4.15)

The function w(x) is graphically represented in Fig. 1
too. The numerical differentiation in (4.14) was
performed with the help of Milne's formulas. "

"W. E. Milne, ffttrlertcat Sotmtfoe of DtJferentia/ Eqlatt'ons
(John Wiley Bz Sons, Inc. , New York, 1953), p. 88.

'4 W. E. Milne, Numerical Calculus (Princeton University
Press, Princeton, New Jersey, 1949), p. 96.

The graph y(x) in Fig. 1 shows that the Newtonian
force of the central body (i.e., of the local agglomeration
of matter above the cosmic average) progressively
retards the motion of the test body until it reaches
rest (y, =145.05 at x=3000.6), and then causes its
free fall towards the central body which it reaches at
the moment @=6860.Since the Newtonian field within
a local system is in reality created by a group of
celestial bodies rotating around their center of gravity,
we may expect that the free fall changes over to a
rotation too. This plausible transition can be computed
with sufFicient accuracy by the methods of classical
analytical mechanics as a, restrained problem of three
bodies "

As the graph of the function w(x) in Fig. 1 exhibits,
the change of the total energy of the test body is of
considerable magnitude. As soon as the function p(x)
amounts to 250, the function w(x) reaches practically
its asymptotic value 0.0130. In this region the law of
conservation of energy holds again.

The differential equation (4.8) was numerically
calculated supposing the initial values (4.9). Because
the Newtonian force influences the motion of the test
body even before x=1, the intial velocity (oIy/dx), =t
lies in fact slightly lower than at —,y&. This difference
affects the process quantitatively, but by no means
qualitatively.

Pote added irt proof. Since A&0 and dw/dx&0, the
energy of the test body increases during its capture by
the Geld of a local system. This agrees, of course, also
with Eq. (2.16), if we consider the process from the
standpoint of an observer situated at the center of
gravity of the local system. However, if we compute
dA/dt by Eq. (2.16) from the standpoint of another
observer very distant from the local system and par-
ticipating on the cosmic expansion, we 6nd that it
depends on the position of this observer (i.e., on the
chosen standard reference frame), whether the energy
of the test body increases (r' —Hr&0) or decreases
(r—Hr) 0). It is therefore very doubtful what use the
introduction of the concept of energy into the cosmo-
logical considerations can bring to us.

With regard to these results" and taking also into
consideration a new' model of an oscillating isotropic
universe'~ in which the absence of a singularity with the
infinite density of matter depends essentially on the
existence of a negative stress indirectly proportional to
the fourth power of the curvature of space and causing
the continuous creation of matter we arrive at the con-
clusion that the fundamental laws of physics cannot
have in an expanding universe the form of conserva-
tion laws.

' See, for instance: E. T. Whittaker, Analytische Dynamik der
Eunkte u'nd starren Xorper (Springer-Verlag, Berlin, 1924), p. 376.

From another point of view D. Layzer, Astrophys. J. 138, 174
(1963), shows that the conservation law of energy is not generally
valid in an expanding universe.

'r J. Pachner (to be published).


