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might be emitted by the Quid particle just after the
pulse of intense radiation went by. Owing to the weaker
gravitational binding just after the pulse, one expects
this additional radiation to reach inanity with a smaller
redshift than if it were emitted ahead of the strong
pulse. However, we see that this eRect is just canceled
by the greater Doppler shift from the moving Quid after
the impulse. The total conversion factor from local
radiant energy to its value at infinity is, as we have seen

in Eqs. (4.18), (5.7), and (6.1), just Z'+y, and from
Eqs. (6.6) and (6.8) we compute

6(Z/+y) =0.
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In Vaidya's metric for a radiating sphere,

ds2 = —(1—2nzr ')dN~ —2dld p+ p2dQ'

where m(n) is a nonincreasing function of the retarded time I=t r, we verify —that —dm/dn is the total
power output as given by the Landau-Lifshitz stress-energy pseudotensor, and relate it through red-shift
and Doppler-shift factors to the apparent luminosity L for an observer moving radially in this gravitational
field. We argue that the hypersurface r =2m(N) cannot be realized physically, but see that a hypersurface
r =2m(e&) at n= ao (which is not adequately represented in presently available coordinate systems) shows
the total red-shift characteristic of the Schwarzschild "singularity. "The geodesic equations are written out
to display a gravitational "induction field" GL/c'r associated with—a changing mass in the Newtonian—Gm/r' 6eld.

I. INTRODUCTION

HE metric field surrounding a star, idealized as a
radiatieg sphere, cannot be the SchwarzschiM

solution, ' except in the excellent approximation in
which one neglects the energy density of the emitted
radiation. In this paper we investigate the metric out-
side a spherically symmetric body when radiation is
included. For a normal st@.r, the inQuence of radiation
on the metric is negligible when compared with the
effects of deviations from spherical symmetry, caused
by rotation, magnetic fieMs, etc.' Nevertheless, this
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'A metric for empty space surrounding a rotating object has
been given by R. Kerr, Phys. Rev. Letters 11, 237 (1963). The
asymptotic form had been obtained previously by A. Papapetrou,

metric may have some relevance to the study of a
collapsing supernova core, ' if one allows for the pro-
duction of a copious supply of neutrinos, but neglects
their subsequent absorption in the outer envelope. A
realistic treatment must, of course, analyze the problem
of neutrino transport in detail. The solution described
here is thus chieQy useful as an extreme limiting case,
in which the neutrino optical depth of the envelope is
negligible.

We therefore seek. a spherically symmetric solution
of the Einstein equations4

,g „R—SxT „

with the "geometrical optics" stress-energy tensor of

Proc. Roy. Irish Acad. A52, 11 (1948). Static metrics for empty
space surrounding objects with axial symmetry were given by
H. Weyl, Ann. Physik 54, 117 (1917); 59, 18S (1919), and have
been further studied by M. Misra, Proc. Natl. Inst. India A26,
673 (1960); A27, 373 (1961); G. Krez and N. Rosen, Bull. Res.
Council Israel SF, 47 (1959);D, Zipoy (unpublished).' S. A. Colgate and R. W. White, Rev. Mod. Phys. (to be pub-
lished).

4 Throughout this paper we choose units such that G=1, c=1.
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radiation
T~"=qk~k" (1.2)

in which k& is a null vector directed radially outward.
This problem has been considered by Vaidya, ' by

Raychaudhuri, ' and by Israel, ~ and the most con-
venient form for the solution is that given by Vaidya'
which reads

N=t —r

in Vaidya's metric (1.3) one finds

(2 4)

given by Bondi and van der Burg, "and to the general
case without symmetry by Sachs."

The coordinates introduced by Finkelstein" for the
Schwarzschild metric have their counterpart also in the
radiating case. Setting

where

ds'= —L1 2m(u)/—r'jdu' —2dudr+r'dQ' (1.3) ds'= —(1—2mr ')dP —2 (2mt-') dtdr

+ (1+2mr ')dr'+r'dQ' (2.5)

dies =dg'+ sinsgd ys. (1.4)

Here m(u) is an arbitrary nonincreasing function of the
retarded time coordinate N. In Sec. II below we discuss
this and other closely related metrics. In Sec. III we
verify from the Landau-Lifshitz pseudotensor that m
and I.„—=—(dm/du) are, respectively, the mass and
total energy output at,'infinity, and compare this to the
energy Aux measured by local observers. Section IV
analyzes the special features of the "Schwarzschild
surface" r=2m(u). Finally, in Sec. V, we study the
geodesics in this metric, and exhibit the main features
of the non-Newtonian gravitational field tied to a pulse
of radiation.

II. RELATED METRICS

The geometry of spherically symmetric space time is
usually described by'

If m is a constant then this is just the Schwarzschild
metric, as Finkelstein showed by introducing Schwarzs-
child's time coordinate T through the formula

7= I+2m ln(r —2m) . (2.6)

A corresponding transformation to explicitly diagonalize
the metric (1.3) or (2.5) when dm/du/0 is not known.

In the form
ds'= dss'+2mr 'du') (2 7)

where dss' is the flat space metric, Vaidya's metric (1.3)
is of the type recently studied for empty space by Kerr
and Schild. "

III. THE OBSERVED ENERGY FLUX

The value of q in Eq. (1.2) is not well defined because
there is no natural normalization for k&. Let us then
define q to be the energy density of the radiation as
measured locally by an observer with 4-velocity e)", so

ds'= e'&d T'+e"dr'+r'd—Q'. (2.1) (3 1)

du =f '(end T e" lsd—r), —

The retarded time coordinate I used by Vaidya in the Therefore, in this observer's local Lorentz frame,

metric (1.3) can be introduced through the equation k"= (1; 1,0,0); it follows that tt is the energy flux as well
as the energy density measured in this frame. We shall

(2 2) only consider radially moving observers, and define

where f is an integrating factor to make du an exact
differential. The metric then takes the form

ds'= f'du' 2fe—"i'dudr+—r'dQ' (2.3)

' P. C. Vaidya, Proc. Indian Acad. Sci. A33, 264 (1951);Curr.
Science 21, 96 (1952).

A. K. Raychaudhuri, Z. Physik 135, 225 (1953).' W. Israel, Proc. Roy. Soc. (London) A248, 404 (1958).
'P. C. Vaidya, Nature 171, 260 (1953). We thank Professor

D. Zipoy for pointing out this work to us.' R. C. Tolman, Proc. Natl. Acad. Sci. Wash. 20, 3 (1934).

From Eqs. (2.1) and (2.2) it follows that u'& is a null
vector. This can also be seen from Eq. (2.3) directly;
the metric induced on a 3-dimensional hypersurface
u= constant has the signature (0,+,+) of a null hyper-
surface. For our choice of signs in Eq. (2.2) these hyper-
surfaces of constant I contain outgoing null rays, since
r increases with increasing T when dN=O.

A generalization of Vaidya's radiation coordinates
of Eq. (2.3) to the case with axial symmetry has been

U= s"=dr/dr. — (3.2)

Then, from v&v„= —1, with e'=0, v&=0, there follows

du/dr = s"= (1—2mr —')—'(p —U) = (y+ U) ' (3 3)

where
y—= (1+U' —2mr ')'I'. (3.4)

The covariant Ricci tensor for the metric (1.3) has
only one nonvanishing component: R „= 2r '(dm/d—u)
From Eqs. (3.1) and (1.1) one computes

q = (Ss-)—'tt&s "R (3.5a)

"H. Bondi, Nature, 186, 535 (1960); H. Bondi, M. G. J. van
der Burg, and A. W. K. Metzner, Proc. koy. Soc. (London) A269,
21 (1962)."R. Sachs, Proc. Roy. Soc. (London) A270, 103 (1962).

'2 D. Finkelstein, Phys. Rev. 110, 965 (1958).
"R. P. Kerr and A. Schild, invited paper presented to the

International Meeting on General Relativity, Florence, Italy,
September 1964 (unpublished).



8 1366 LINDQUIST, SCHWARTZ, AND MISNER

Another way to compute the total-energy output of
the system described by the metric of Eq. (1.3) is by
means of the various stress-energy pseudotensors. "The
one defined by Landau and Lifshitz" is usually best
because one can remember the formulas. Landau and
Lifshitz have rewritten the Einstein equations in the
form

Qpo. vP —P pv
)ap tot (3 9)

T& IQm

I TMO
gl

T~-lOm

where Tt,tI'" involves both the stress-energy tensor of
matter and an expression quadratic in first derivatives
of the metric. The left-hand side contains an expression
with the synlmetries of the Riemann tensor; it is defined

by
(3.10)

with
(3.11)

The total energy-momentum vector is

FIG. 1. Kruskal's coordinate system for the Schwarzschild
(constant m) metric shows that there are two different r=2m
hypersurfaces, corresponding to T=& cc. The Schwarzschild
metric in the above m8q coordinates is ds'= —16m'e dvdm
+4m'x'dO', where x=r/2m is defined in the region of regularity
oio&1 by —oui= (x—1)e*. Thus hypersurfaces of constant r are
represented by hyperbolas of constant m, and the Schwarzschild
"singularity" x=1 consists of the two quite regular null hyper-
surfaces v=0 and m=0. Schwarzschild's time coordinate T is de-
fined by —ai/o =or~'~ and is therefore constant along lines through
the origin of the vm plane. Schwarzschild's coordinate system
covers only the fourth quadrant of the diagram above. Vaidya's
coordinate m of Eq. (1.3) is defined here (dm/dN =0) by
o= —e "~'~(2m) '~' and covers the lower half-plane. The curves
r=constant (r(2m) are represented by a sample curve, r=m.
One may see that this curve always has a negative slope. Thus,
since light cones are lines parallel to the axes, r=m must be a
space-like hypersurface and no particle can have r =m for a world
line. Similiarly, the lines T=constant are time-like in this region.
However, there is no singularity in the coordinates system for
0&r & ~. This is the maximal extension of the exterior Schwarzs-
child solution; the singularity at r =0 cannot be eliminated. If one
demands that the geometry be regular there, and satisfy spherical
symmetry, then Bat space is the only solution.

P't, tI"= Tt,tl"'d'x= II~'~ d'Sp (3.12)

Similarly the power output can be computed from the
right-hand side of

Itot= Ttot d S'= H ~gpd S'. 313

g = —(1+2mr ')

These integrals must be evaluated in asymptotically
rectangular coordinate systems. (This is a reasonable
restriction since energy and momentum have meaning
only with reference to Lorentz transformations, and
therefore some means must be provided to introduce the
reference flat space at infinity into the calculations. )

Introducing Cartesian coordinates x'(i = 1,2,3) in
place of (r,0, p), one computes

Since q, being an energy density, must be positive, it
follows from (3.5b) that dm/du(~0.

For an observer at rest at infinity we find a total
luminosity of

L„(u)= lim (47rr'q) = —(dm/du) . (3.6)

'= —2nsg'r —2

g"=8"—2mr 'x'x&

and then, from (3.12) and (3.13),

(3.14)

Note also that if we define

I-=4~r'q

then Kq. (3.5) can be rewritten as

L„=I (y+ U)'

(3.7)

(3.8)

showing that the locally observed luminosity I. is re-
duced (or increased if U)m/r) by one factor of (p+ U)
to red shift the energy involved as it moves out, and a
second (y+ U) factor for the dilation of the time interval
over which this energy is emitted.

Po= (m; 0,0,0),

Li.,———(dm/du) =L„

(3.15)

(3.16)
' J. N. Goldberg, Phys. Rev. 111, 315 (195g); R. Arnowitt

S. Deser, and C. W. Misner, Phys. Rev. 122, 997 (1961), Pro-
ceed&sgs of The International Conference on The Theory of Gravita-
tion (PWN, Warsaw and Gauthier-Villars, Paris, 1964), p. 189;
A. Trautman in Gravitation: &n Introduction to Current Research,
edited by L. Witten (John Wiley Bz Sons, Inc. , New York, 1962),
p. 169.

'sL. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Reading, Massachusetts,
1951), Sec. 11-9.
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Equivalent results requiring more extensive computa-
tion with other stress-energy pseudotensors have been
obtained by Mufller.

" y =2m(u)

and
k= k&(B//)x&) =8/Br (4 1)

(4.2)

in the Nr plane.
Froin, this sketch one sees that, for dm/dzz/0, the

surface r = 2m(zz) lies outside the light cone; i.e., it is a
space-like hypersurface. This is also obvious from the
form of the induced metric on the hypersurface

(ds') „s„(„)=2( d——m/d—N)dzt'+r'dQ', (4.3)

which has signature (+,+,+) whenever dm/du&0.
We may properly consider it to be a space-like hyper-
surface lying in the past of the region r) 2m(N), since
no light ray starting in this region will intersect the
r= 2m( z)zhypersurface. Itis also evident from the figure
that no material particle following a time-like path can
reach the r = 2m (I) hypersurface starting from the out-
side. For this reason we consider the region r~& 2m(N)
to be unphysical; the sources of the strong gravitational
fields there cannot be objects which once existed in an
r) 2m(N) region and were then assembled into some-

thing in the region r&2m(N). As these regions cannot,
in principle, be produced experimentally, we ignore
them. Every physical situation must consequently
contain a boundary hypersurf ace r =f(I))2m (zz) with
the interior metric in the region r ~& f(zz) differing from
Vaidya's metric because of the presence of matter or
other fieMs.

The hypersurface r=2 m(~) at u= ~ in Vaidya's
metric is analogous to the Schwarzschild hypersurface
r=2m at T=+ ~ in Kruskal's metric. It is reasonable
to suppose that such surfaces are sometimes formed in
the gravitational collapse of the cores of stars at the
supernova stage. In any case they can, in principle, be
produced.

The most characteristic property of the hypersurface
zz=+~ is an infinite time dilation, which we now

~6 C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
34, No. 3 (1964).

"M. Kruskal, Phys. Rev. 119, 1/43 (1960):This form of the
Schwarzschild metric is analyzed in detail by R. W. Fuller and
J. A. Wheeler, Phys. Rev. 128, 919 (1962).

'8 J.R. Qppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).

IV. THE SCHWARZSCHILD SURFACE

In Kruskal's form" of the Schwarzschild metric one
sees that there are really two distinct Schwarzschild
surfaces r= 2'; one coincides with T= —~, the other
with T=+~ (see Fig. 1). In Vaidya's metric the
hypersurface r = 2m(zz) is analogous to the Schwarzs-
child hypersurface T= —~, r=2m. Its character can
be seen most easily in Fig. 2 where we have sketched
light cones bounded by the radial null vectors

Fzo. 2. The light cones for Vaidya's metric are shown projected
on to the I-r plane. Note that time-like vectors in the forward
light cone on the hypersurface r =2za(N) all have dr/dN&0, so no
time-like path crosses this hypersurface starting from the outside.

examine. Let a particle move radially inward along a
time-like path with a 6nite nonzero "velocity"
U=dr/dr. Then, Eq. (3.3) gives du/dr= (y+U) '.
Since light signals travel outward along rays of con-
stant u, two signals emitted by the particle at an inter-
val dl are received at infinity with the same separation
dl. For an observer at rest at infinity, du is just his
proper time dr, b, Conseq. uently we may write Eq. (3.3)
in the form

dr.b.= (y+ U) 'dr— (4.4)

V. GEODESICS

The geodesics for the metric (1.3) will all lie in
"planes" because of the spherical syDUnetry. When we
orient the coordinate system to make the "plane" in
question e=zr/2, then the geodesic equations result
from varying the action integral

1
L
—(1—2mr ')u' —2ur'+r' j']dr ) (5.1)

2

Since p is necessarily positive, in6nite time dilations
occur when U= —y~&0; from Eq. (3.4) it follows that
r = 2m (u). If I is finite, a time-like vector at r = 2m. (zz),
which lies in the future light cone, necessarily has
U~& 0; hence infinite time dilation only occurs at
r=2 m(~). Because this time dilation also affects the
frequency of a photon, there will correspondingly be a
total red shift of light emitted by a particle crossing the
r = 2m (~ ), I=+~ hypersurface.

It would be desirable, of course, to introduce a co-
ordinate system which included the r= 2m. (~), zz = + ~
hypersurface in its interior, so that one could study this
interesting hypersurface in detail and follow the world
lines of particles into the region r&~2m(~). Because
dm/du ~& 0 and m) 0, there are two possibilities to con-
sider: Either (1) m(u) is constant for all sufficiently
large u, say zz) 0, or (2) m(zt) —& ms)&0 as I -+ ~. In
case (1) the metric in the u)0 region is just the
Schwarzs child metric, whose continuation through
zz=+0c has been given by Kruskal. 'r We have been
unable to find explicitly the transformation to Kruskal-
like coordinates for solutions of type (2).
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where a dot is used for proper time derivatives. Two of
the generalized momenta associated with this variation
principle are useful to us: The angular momentum per
unit mass

(5.2)

and the energy per unit mass

y=——(BZ/Bu) = (1—2mr ')u+r'. (5.3)

Although 7 will be constant only when m is, / will of
course always be constant. The normalization condition
vp&= —1 can be written in terms of I,, y, and the radial
momentum per unit mass U=i in the form

p'= (1—2mr ')(1+Pr ')+U'. (5.4)

The geodesic equations will be further simplified by
introducing the apparent flux L defined by Eqs. (3.7)
and (3.5a)

L=L„u'= —u'(dm/dl) . (5.5)

the Einstein perihelion precession in Mercury and other
planets.

We see in Eq. (5.6c) that the gravitational induction
field L/r is directed toward the center of force, and from
Eq. (5.6b) it always acts to increase the energy of the
test particle on which it acts. (This feature was first dis-
covered in the interior metric discussed in the accom-
panying paper. ") In normal situations it is negligible,
as we can see by comparing it with acceleration a43
which gives the Einstein 43"/century perihelion pre-
cession in Mercury's orbit

ar/a4s = (GL/c'r) (3G511'/c'r') ' = 5 && 10-".

In order to find a situation where the induction field
aL, is comparatively large, we may try to take advantage
of the fact that ar, = L/r de—creases more slowly with
r than the other terms in Eq. (5.6c). Thus we can denne
a distance E where al. is comparable to the Newtonian
acceleration a = —m/r'. From

The equations resulting from the variation of Eq. (5.1)
are then

we find

ar/a = (GL/c'r) (Gm/r') '=Lr/c'm (5.9)

dt/dr =0, (5.6a) (5.10)

(5.6b)

(5.6c)

From our previous definitions we can add the equations

d p/dr= t/r',

dr/dr = V,

du 1+Pr '

dr 7+0

(5.7a)

(5.7b)

(5.7c)

to form with Eqs. (5.6) a system of first-order equations
for which Eq. (5.4) gives a first integral. These equa-
tions differ from the Schwarzschild set only in the
terms containing I..

The acceleration

(5.8)

in Eq. (5.6c) is a non-Newtonian gravitational field
associated with radiated power I.emitted by the central
source, or one may call it an iedmctiotspeld associated
with the changing Newtonian Gm/r' field. The terms

Gm/r' an.d P/—r' in this equation are the Newtonian
gravitational force, and the centrifugal force, while the
term 3GmP/c'r' is a n—on-Newtonian gravitational
force which Ltogether with the distinction (5.7c)
between coordinate time and proper time) accounts for

While this radius E for the sun exceeds the "radius of
the universe, " for the most luminous known objects it
is small enough to have some meaning without reference
to cosmology, and can even be made small with pre-
judiced data: A low minimum mass for the quasistellar
source" 3C273 is ns 10'350, while a generous value of
L would be 10't erg/sec. These figures give E 5&(10s
light years which is not much larger than the complex
radio source itself. More probable mass estimates in-
crease this value of R by several orders of magnitude.

Although the induction field L/r ma, y be comparable
to the Newtonian m/r' field at sufficiently large dis-
tances from a strongly radiating source, it will not have
important eIIfects there because of its limited duration
in time. The maximum time a constant luminosity I
can be maintained by a mass m is At=me'/L, so the
maximum velocity change a test particle can have due
to the GL/c'r acceleration during this interval is
AU=A(e/c) =aint/c=GrN/c'r. But if the test particle
were originally in a Newtonian orbit with e' Gm/r,
this gives

Thus the induction field L/r is likely to be of im
portance, if at all, only in catastrophic phases of gravi-
tational collapse where one might find e c and
Grn/c'r 1.

"C. W. Misner, preceding paper, Phys. Rev. 137, 31360
(1965)."J.L. Greenstein and M. Schmidt, Asttophys J. 140, 1 (196.4).


