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Relativistic Equations for Spherical Gravitational Collapse with Escaping Neutrinos*

CHARLES W. MISNER

Iamrence Raijiation Iaboratory, University of California, Ji evermore, California
and

Department of Physics arsd Astronomy, t University of Maryland, College Park, Maryland

(Received 9 September 1964l

The general-relativity equations for the dynamics of a self-gravitating sphere of ideal Quid as given by
Misner and Sharp are modified to allow an extremely simplified heat-transfer process in which internal
energy is converted {atsome rate controlled by an equation of state) into an outward Qux of neutrinos which
have no subsequent interaction with matter. This outward Qux of radiation carries with it an inward non-
Newtonian gravitational force field. Thus, if a portion Am of some central mass is converted into escaping
radiation, the corresponding energy increase Gttns/R of each unit mass of surrounding matter is seen to be
the work done by this non-Newtonian inward impulse accompanying the radiation.

I. INTRODUCTION of these radiating objects are obtained by matching to
an exterior solution containing pure outgoing radiation.
A convenient form of this solution has been discovered
by Vaidya' and is discussed in the accompanying
paper. '

N connection with both supernovae and qua, si-.- stellar radio sources' it has been proposed that at a
certain stage of collapse, neutrinos could be emitted
copiously. This neutrino production occurs only at
extreme temperatures attained in regions of intense
gravitational fields where general relativity is im-
portant. In this paper, the equations of general rela-
tivity are written out for a spherically symmetric
situation in which one might attempt to study not only
the effects of the changing gravitational fields of the
collapsing matter on the escaping radiation, but also
the forces on the matter due to gravitational fields
associated with the escaping radiation. These last could
be important if it is possible suddenly to convert a sig-
nificant fraction of the total mass of the system into
radiation.

Except to point out a few qualitative features of the
non-Newtonian gravitational field carried by a pulse of
radiation, this paper does not continue beyond the for-
mulation of the basic equations to consider any
applications.

The idealized situation which we envision is that of a
sphere of Quid subject to gravitational and pressure
gradient forces. This Quid does not, however, obey a
simple adiabatic equation of state but each element of
Quid will cool by emission of neutrinos at some rate de-
termined by its temperature and density. To simplify
the treatment of the neutrino Qux, we assume that all
the neutrinos move radially outward when emitted and
that they are neither scattered nor absorbed by the
surrounding matter.

When the neutrino Qux vanishes, the equations de-
rived here reduce to those previously obtained by
Misner and Sharp. ' They also show many similarities to
the relativistic hydrodynamic equations with weak heat
diffusion. 4 The boundary conditions at the outer surfa
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II. THE STRESS-ENERGY TENSOR

The Quid will be described by its local thermodynamic
properties such as the matter density or baryon number
density rt, energy density e, and pressure p. Then matter
conservation is expressed by the equation of continuity

(2 1)(rtu")., „=0,
where n& is the Quid's four-velocity. The stress-energy
tensor of the Quid we take to be

To"= (c+p)u"u"+pg"" (2.2)

It fails to satisfy a local conservation law because of the
neutrino emission. In fact, if C(T,rt) is the cooling rate
(rate of decrease of internal energy due to the neutrino
emission) for a unit amount of matter, then rtC is the
rate per unit volume in the rest frame of the Quid and we
can write

rtC=uo( T"—)—(2 3)
which reduces to

rtC= (eu—");„+pu";„.
We can further simplify this by writing

(2.4)

e=n(1+e) (2.5)

to define a specific internal energy e that does not
include rest-mass energy. When this definition and the
equation of continuity (2.1) are introduced into
Eq. (2.4) there results

e,„tt"= C p(1/rt)—„u"— , (2.6)

which is just the first law of thermodynamics with —C
giving the heat input rate.

be 'P. C. Vaidya, Nature 111,260 (1953). A less simple form of
this metric is given by Vaidya, in Proc. Indian Acad. Sci. A33,
264 (1951).

4). ' R. W. I indquist, R. A. Schwartz, and C. W. Misner, follow-
ing paper, Phys. Rev. 13?, B1364 (1965).
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For the neutrinos we assume the "geometrical
optics" form of stress-energy tensor

E "—qk"k"

where k& is a null-vector

(2.7)

(2 8)

and q will be the energy Qux density in some frame
which depends on the normalization', of kl". The total
stress-energy tensor satisfies local energy and mo-
mentum conservation laws

in the present case gives

Dg(srh)= (ffU/BR) 4—gR.qgr(1+U' 2—mR ') 'g' (42)
and will be used to eliminate D&X from all other held
equations. We are using the symbol (8/BR) to incan
(R') '(8/ciR) where R'= gfR/gfr, and we have also
written gx=R'/lR'l so that our equations will continue
to be correct in case E' is negative. ' When we substitute
from Eq. (3.6) also in the left-hand side of Eq. (4.2)
there results

Dg(1+ U' —2mR ')'I'=n[UD„e+ (I./R) j, (4.3)

(4.4)

is the total neutrino Qux or luminosity.
When Eqs. (4.2) and (3.6) are used to simplify the

equation
(2.10)ggs( —E ". )=nC

which will govern the behavior of the neutrino Qux. Rg' —-', R= 8gr(Tgg+Egg) (4 4')
there results

III. COORDINATES AND METRIC

(Ts"+Es").
, „=0. (2 9) where

The energy balance part of these equations gives, from
Eq. (2.3), the equation

The metric will be chosen as in previous work. ' to have
the form

=4s.R' e+q 1+
BR (1+U'—2mR ')"' (4.5)

where

ds'= e'~dt'+ e"—dr'+R'dQ',

dQ' =d8'+ sin'8d qP

(3.1)

(3.2)

and r is a comoving coordinate so that

D,=ggs(a/Bxs) = e e(a/at) . -(3.3)

(That is, I'= 0 for s= r, 0, ig.) Then, the derivative

This is an ordinary differential equation which defines
m in each t = constant hypersurface. But, in contrast to
the q=o case, the appearance of ns on the right-hand
side prevents its solution being given as a simple
integral.

The continuity equa, tion (2.1) can be written either
in an integrated form

(3 4) «R'nl aR/ar
I (Iy U' —2mR ') "'= (dA/dr) g s(4 6=)

of the metric component R(r, t) describes the velocity
of the Quid. Differentiation along an outward radial
unit vector orthogonal to I& is given by

D„=—e
—'g'(cl/clr) . (3.5)

The metric component e" which appears here can be
written in terms of a function m(r, t) according to the
definition'

e"= (1+U' —2mR ') '(clR/cir)'. (3.6)

where the right-hand side is time-independent, or as a
differential equation

1 1 B 2m -»2
D,n+ (R—'U) =4—grRqgr 1+U'—,(4.7)

1l E~ BE E

where the term in q was introduced through the use of
Eq. (4.2).

The local energy balance for the Quid is governed by
Eq. (2.6) which reads

Dge= —C—pDg(1/n) . (4.8)We choose the null vector k& which defines the direction
of propagation of the neutrinos so that

B B
kg =e & +e '" =D,+D-„. —

Bx" Bt Br TD]s= —C. (4.9)

Using the thermodynamic relation de= Tds pde, where-
the specific volume is tg= 1/n, gives an equation for the

(3 7) specific entropy

IV. THE FIELD EQUATIONS

The field equation

R,„=8~(Tg„yE„) (4 1)

Consequently, the quantity q in Eq. (2.7) is the energy
density of the neutrinos in the rest frame of the Quid,
i.e., q= n„N„EI"".

The momentum balance for the Quid from the radial
component of Eq. (2.9) can be simplified somewhat

7 iVore added Az proof. This modi6cation involving o.=~1 was
introduced into the manuscript after numerical computations
by M. May and R. H. VAite done at the Lawrence Radiation
Laboratory (Livermore) showed in some examples of adiabatic
collapse that negative values of E' could evolve from nonrela-
tivistic initial conditions. The limiting value of fgIT/off = IP/g'
when R =0 Lwhich is needed in Eq. {4.7}g is obtained by differ
entiating the square of Eq. (4.6) with respect to r,
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using Eq. (2.4) to read

(p+ p)u~. „u"= —(g~ "+u~u")p, „—El'", „+uCu". (4.10)

The last of the field equations is the Einstein equation
for R&' or R„&. Simplifying it as before, ' we find

The reaction forces from the neutrino emission can be
handled most simply by using the identity

2m Bp m+4rrR'(p+q)
D(U= 1+U'—

R BR R
(4.17)

k„E~",.„=0, (4.11)

which is obtained by differentiating the identity
k„EI'"=0 and noticing that k„., „E~" vanishes since

k, „k&= (-,'k„k&) „=0.From Eqs. (4.11) and (2.10) then
we find a simple expression for the radial component of
E„"., „, namely,

(4.12)

With this substitution, the radial component of
Eq. (4.10) reads

Bp Bp nIC
(p+ p) = — — (4»)

BR BR (1+ U' 2mR —')'i'

Our choice of co-moving coordinates makes this equation
of hydrodynamics look like a simple hydrostatic balance
of forces. It is this equation which one uses to deter-
mine the metric component (—gpp)'i'—=e& on each t=
constant surface. A convenient boundary condition is
to make @=0at the outer surface of the body, so that
coordinate time, t, becomes proper time there.

We turn now to Eq. (2.10) for the neutrino flux. In
Qat space the total power 1.would be independent of
R on each null cone, so we choose to write the equation
in terms of L, instead of q. It reads

4vrR'riC=e "Di(e"L)+e P&D„(e'&L) . (4.14)

Since the above equation is unfamiliar, it is appro-
priate to study a simple case. None of the Einstein
equations has been used to simplify Eq. (2.10) to the
form (4.14), so it applies also to the case where L is
weak enough not to inQuence the metric. For a static
metric (Dik =0=D,p) and outside the region of neutrino
production (C=O), Eq. (4.14) reduces to

The first term on the right-hand side here represents
the mechanical forces through Eq. (4.13); the second
term gives the gravitational forces.

By using Eq. (4.17) to carry out some differentiations
in Eq. (4.3) we obtain

D&rs= 4~R'p—U L[U+—n(1+ U' —2mR ')'i'7 (4.18)

which can be interpreted in terms of energy conservation.
A complete set of equations for this problem could

consist of Eqs. (4.7), (4.8), (4.16), (3.4), and (4.17)
giving the time deriva, tives of the basic independent
va, riables ri, e, I (or q), R, and U, together with
Eqs. (4.5) apd (4.13) to define the auxiliary quantities
~r~ and p, and equations of state to give p(ri, e), C(ri, e),
and if desired the temperature T(n, e) or other thermo-
dynamic variables. Equations (4.18) and (4.3) are
identities resulting from the above system of equations.
Equation (4.6) is a restriction (constraint) on the initial
conditions which will be preserved thereafter as an
identity from the system of equations just described.
When general relativity is initially unimportant so that
2mR '((1, Eq. (4.6) can be satisfied trivially; it then
merely defines A (r) in terms of the initial values of e,
R, and U.

V. BOUNDARY CONDITIONS

Outside the region occupied by the Quid sphere, the
metric must deviate from the Schwa. rzschild form
owing to the neutrino Qux which also permeates the
exterior region. A convenient form of this "radiating
Schwarzschild" metric has been found by Vaidya' and
is discussed in more detail in the a,ccompanying paper. '
This solution reads

(D,+D„)(Le'P) =0. (4.15) ds'= —L1—2M (u)R '7du' —2dudR+R'dQ' (5.1)
One understands this equation by considering a pulse
of neutrinos; ea,ch neutrino's energy gets redshifted ac-
cording to the factor e&= (—gpp)'i' as it moves out, and
the energy Qux is further reduced by another factor e&

because of the time-dilation of the duration of the pulse.
In the general case, where Eq. (4.15) is not valid, the

additional terms in D&X are therefore gravitational fields
produced by moving sources and acting on the neu-
trinos. Equation (4.14) is equally valid, of course, for
an energy Qux due to photons or gravitons moving
through a transparent medium. By using Eq. (4.2) we
can rewrite Eq. (4.14) as

R=R, (u) (5.2)

then the induced metric on the surface is

(ds') = —L1+2 (dR,/du) —2MR '7du'+R, 'dQ'. (5.3)

In comparison, the interior metric (3.1) on the boundary
r =r,= constant, is

where M(u) is an arbitrary nonincreasing function, and
—dM/du is the radiated power reaching infinity at re-
tarded time N=T —R. If the boundary surface is de-
scribed in these external coordinates by

D,L=4~R're —e '&D, (Le'&)

BU L ( 2m —'"
—2L ——n~ 1+U'—

BR R 5 R
(4.16)

(ds'), = —dP+R'(r„t) dQ'

when we impose the boundary condition

(5.4)

(5.5)
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dt =du)U, + (1+U '—2MR, ')"'j, (5.7)

where U, = U(r„t). The second fundamental forms for
this surface can also be compuated in each metric; their
equality, equivalent to the equality of first derivatives
of the metric, yields the boundary conditions

(5.8)
and

(5.9)

(We assume that n.=&1 at the boundary. ) From these
equations and Eq. (4.19) we flnd an expression for the
luminosity as observed at R= ~,
L = dM/du—=L,(U,+(1+U,' 2m,—R, ')"'$'

The equality of these two boundary-hypersurface
metrics for arbitrary angular displacements dQ' gives
the equation of the boundary surface in the exterior
coordinates

(5.6)

The relationship between the distant observer's proper
time u and the interval of proper time on the boundary
surface dt is then

y—= (1+U' —2mR ')"', (6.3)

is the (conserved) total energy per unit mass for a test
particle on a radial geodesic, so we are pleased that the
same quantity can through Eq. (6.1), be used as the
total energy, per gram of local internal energy, inside
the fluid sphere. LBut note that in regions where R' is
negative (n= —1), the ma, in e term contributes nega-
tively to m. This is essential in order that this formula
yield m=0 for spherically symmetric closed universes. $

Let us now study Eq. (4.3) which gives the rate of
change of this energy per unit local mass y:

(spherical) gravitational field, and

quan

U+ (1+U' —2mR ')'")
as an energy density associated with the outgoing
radiation. At the surface of the body we had even found
in Eq. (5.7) that the factor which multiplies the locally
measured energy density q here, is in fact the proper
Doppler and red-shift factor which would come in in
converting a quantum of local energy at the surface to
its value at infinity. Correspondingly, in the exterior
Schwarzschild metric,

(5.10) D,y = Uy(ay/aR)+n(L/R) . (6.4)

All the quantities on the right-hand side of this equation
are obtained from the interior solution and evaluated
at the surface. Note that for a collapsing surface,
U, &0, the power output L vanishes as the Quid

surface sinks to the characteristic Schwarzschild limit

R,=2m, . (5.11)

The uRey coordinates of Eq. (5.1) do not extend into
a region which would match onto the collapsing surface
when R, (2m, .

m(«)= d'l'j«(1+U' —2mR ')'"

+q[nU-ir (1+U' 2mR ')"]). (—6.1)

The element of proper volume which appears here is

d3V =4 R2.&~2dr. (6.2)

In particular, for r =r, the integral in Eq. (6.1) correctly
gives the proper total energys of the system M(u). We
And it helpful then to think of en(1+ U' —2mR ')'" as
an energy density associated with matter moving in this

In the general, nonsymmetrical, asymptotically Bat system,
no compelling arguments are known to show that there should be a
basis for preferring any of several distinct definitions of energy
density, although total energy should be unambiguous.

VI. PHYSICAL INTERPRETATION

By integrating Eq. (4.5) we obtain a formula for
m(r, t) which we interpret as being the total energy con-
tained inside a sphere of coordinate radius r, namely,

The terms on the right-hand side here represent the
rate at which work is being done on a mass element by
(a) mechanical forces per unit mass Bg/BR as given by
Eq. (4.13) and (b) gravitational forces associated with
the neutrino flux L. According to Eq. (6.4) we may
consider that the gravitational forces produced by the
Quid itself, which survive in the L=0 limit, do only that
work which is accounted for by the gravitational po-
tential term m/R in y.

From Eq. (4.18) we see that the conversion of a
portion Am of the mass in a region into radiation, if it
takes place in a short proper time interval hr, corre-
sponds to a flux (we henceforth assume n=+1)

L= (dm/Ar) (U+y) '. (6-5)

As this pulse of radiation passes a Quid particle, the
gravitational potential will rise from —m/R to
—(m —Am)/R and Eq. (6.4) gives the net-energy
change

Ay= (Am/R)(U+y) ' (6.6)

which is always positive. To see the forces which
account for this energy increase, we must turn to
Eq. (4.17) where only the term

47rqR= —(L/R) = —(—Am//Rhr) (U+y) ' (6.7)

can be important if we consider impulse where h7 ~ 0
for finite Am. Since Am&0, this force is directed toward
the center. The corresponding change in U is

AU= —(Am/R) (U+y) '. (6.8)

Consider now a small amount of radiation which
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might be emitted by the Quid particle just after the
pulse of intense radiation went by. Owing to the weaker
gravitational binding just after the pulse, one expects
this additional radiation to reach inanity with a smaller
redshift than if it were emitted ahead of the strong
pulse. However, we see that this eRect is just canceled
by the greater Doppler shift from the moving Quid after
the impulse. The total conversion factor from local
radiant energy to its value at infinity is, as we have seen

in Eqs. (4.18), (5.7), and (6.1), just Z'+y, and from
Eqs. (6.6) and (6.8) we compute

6(Z/+y) =0.
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In Vaidya's metric for a radiating sphere,

ds2 = —(1—2nzr ')dN~ —2dld p+ p2dQ'

where m(n) is a nonincreasing function of the retarded time I=t r, we verify —that —dm/dn is the total
power output as given by the Landau-Lifshitz stress-energy pseudotensor, and relate it through red-shift
and Doppler-shift factors to the apparent luminosity L for an observer moving radially in this gravitational
field. We argue that the hypersurface r =2m(N) cannot be realized physically, but see that a hypersurface
r =2m(e&) at n= ao (which is not adequately represented in presently available coordinate systems) shows
the total red-shift characteristic of the Schwarzschild "singularity. "The geodesic equations are written out
to display a gravitational "induction field" GL/c'r associated with—a changing mass in the Newtonian—Gm/r' 6eld.

I. INTRODUCTION

HE metric field surrounding a star, idealized as a
radiatieg sphere, cannot be the SchwarzschiM

solution, ' except in the excellent approximation in
which one neglects the energy density of the emitted
radiation. In this paper we investigate the metric out-
side a spherically symmetric body when radiation is
included. For a normal st@.r, the inQuence of radiation
on the metric is negligible when compared with the
effects of deviations from spherical symmetry, caused
by rotation, magnetic fieMs, etc.' Nevertheless, this

*Work supported in part by NASA Grant NsG 436 and the
U. S. Atomic Energy Commission.
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'A metric for empty space surrounding a rotating object has
been given by R. Kerr, Phys. Rev. Letters 11, 237 (1963). The
asymptotic form had been obtained previously by A. Papapetrou,

metric may have some relevance to the study of a
collapsing supernova core, ' if one allows for the pro-
duction of a copious supply of neutrinos, but neglects
their subsequent absorption in the outer envelope. A
realistic treatment must, of course, analyze the problem
of neutrino transport in detail. The solution described
here is thus chieQy useful as an extreme limiting case,
in which the neutrino optical depth of the envelope is
negligible.

We therefore seek. a spherically symmetric solution
of the Einstein equations4

,g „R—SxT „

with the "geometrical optics" stress-energy tensor of

Proc. Roy. Irish Acad. A52, 11 (1948). Static metrics for empty
space surrounding objects with axial symmetry were given by
H. Weyl, Ann. Physik 54, 117 (1917); 59, 18S (1919), and have
been further studied by M. Misra, Proc. Natl. Inst. India A26,
673 (1960); A27, 373 (1961); G. Krez and N. Rosen, Bull. Res.
Council Israel SF, 47 (1959);D, Zipoy (unpublished).' S. A. Colgate and R. W. White, Rev. Mod. Phys. (to be pub-
lished).

4 Throughout this paper we choose units such that G=1, c=1.


